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Accuracy of rate coding: When shorter time window and higher spontaneous activity help
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It is widely accepted that neuronal firing rates contain a significant amount of information about the stimulus
intensity. Nevertheless, theoretical studies on the coding accuracy inferred from the exact spike counting
distributions are rare. We present an analysis based on the number of observed spikes assuming the stochastic
perfect integrate-and-fire model with a change point, representing the stimulus onset, for which we calculate the
corresponding Fisher information to investigate the accuracy of rate coding. We analyze the effect of changing
the duration of the time window and the influence of several parameters of the model, in particular the level of
the presynaptic spontaneous activity and the level of random fluctuation of the membrane potential, which can
be interpreted as noise of the system. The results show that the Fisher information is nonmonotonic with respect
to the length of the observation period. This counterintuitive result is caused by the discrete nature of the count of
spikes. We observe also that the signal can be enhanced by noise, since the Fisher information is nonmonotonic
with respect to the level of spontaneous activity and, in some cases, also with respect to the level of fluctuation
of the membrane potential.
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I. INTRODUCTION

The question of how the information is encoded in the
brain activity remains one of the major unresolved problems
in neuroscience. A pioneering work in this direction was done
by Adrian [1], who did experiments on the stretch receptor
in a muscle spindle and demonstrated that the number of
spikes emitted by the receptor neuron increases with the force
applied to the muscle. Since then, the neuronal firing rate
has been traditionally thought to contain relevant information
about external stimuli. The firing rate is usually determined by
counting the number of spikes that occur within a predefined
time window [2]. The irregularities encountered in real spike
trains make the determination of the firing rate complicated and
thus a sufficiently long time window is necessary to achieve a
satisfactory precision.

It is clear that an approach based only on the firing rate
neglects all the information possibly contained in the exact
timing of the spikes [3–5], leading to the concept of temporal
coding [6–10]. One of the common objections against reducing
the complexity of neural coding only to firing rates is based
on behavioral experiments, which suggest that reaction times
are often rather short [11] and thus are against the common
understanding that the reliability of rate coding increases
proportionally to the applied time window.

In the past two decades, the performance of both temporal
and rate coding was investigated for various settings, ranging
from single neurons to neuronal networks (see, for example,
[12–18]). The problem of quantifying the code performance
is often approached by examining the accuracy with which
the stimulus can be ultimately decoded from the observed
response and the best decoding precision is evaluated using
the Cramér-Rao lower bound on the mean-square error (see,
e.g., [19–24]). Since the probability distributions of the number
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of spikes are rarely known for advanced neuronal models, two
approaches can be mostly encountered in the literature. Either
processes based on a statistical description of the neuronal
activity and enabling a straightforward way to express the
count of spikes are used, e.g., Bernoulli or Poisson processes
[25–27], or the rate is inferred from interspike intervals [28].

In this work the probability distribution of the number
of spikes in a fixed time window for the stochastic perfect
integrate-and-fire model is derived. We then use Fisher
information to infer the rate coding accuracy and investigate
how it is influenced by the key parameters of the model. In
particular, our first goal is to study the role of the observation
time window. Throughout the paper, the time window is always
the window used by the nervous system and not a window
determined by an external observer. Our second goal is to
investigate how the amount of noise in the form of either
presynaptic spontaneous activity or the random fluctuation of
the membrane potential impacts the decoding accuracy and if
there is an optimal level of noise enhancing the signal, like, for
example, in stochastic resonance and other similar phenomena,
which were found in many settings (see, e.g., [29–36]). As we
show, counting spikes in a longer time window does not always
improve the decoding accuracy. Moreover, the loss in decoding
precision caused by a change in the length of the time window
might be, at least partially, compensated by increasing the level
of spontaneous activity of presynaptic neurons. Finally, we
identify several stochastic-resonance-like phenomena related
to the level of spontaneous activity and the level of fluctuation
of the membrane potential.

II. METHODS

A. Fisher information

A common approach to analyze the decoding performance
is to ask how well an optimal decoder can estimate the true
value of the presented stimulus s based on a stochastic neuronal
response R [26,31,37,38]. To quantify the estimation accuracy,
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the mean-square error is used,

MSE(ŝ) = E[(ŝ − s)2], (1)

where ŝ is the estimator of s from R. If the estimator ŝ is
unbiased, i.e., E(ŝ) = s, the mean-square error is equal to
the variance of the estimator MSE(ŝ) = var(ŝ). According to
the Cramér-Rao theorem [39,40], every unbiased and regular
estimator ŝ satisfies the inequality

var(ŝ) � 1

J (s)
, (2)

where J (s) denotes the Fisher information about s carried by
R. For the sake of simplicity and analytical tractability, many
theoretical studies on neural coding use the inverse of Fisher
information as an approximation of the mean-square error,
which implies that a higher Fisher information is assumed to
reflect a higher decoding accuracy [29,31].

From the rate coding perspective, the response R is the
number of spikes after the stimulus onset. Hence, R is a
discrete quantity, with probability mass function pR(r; s), and
the Fisher information is given by

J (s) =
∑

r

1

pR(r; s)

[
∂

∂s
pR(r; s)

]2

. (3)

Note that the stimulus level s plays the role of a parameter of
the distribution of R.

B. Neuronal model

Throughout the study, we describe the neuronal activity by
the stochastic perfect integrate-and-fire model introduced by
Gerstein and Mandelbrot [41]. The idea of the model is to
approximate the membrane potential dynamics by a Wiener
process X(t), which is given as the solution to a stochastic
differential equation

dX(t) = μdt + σdW (t), X(0) = 0,

where W (t) is the standard (driftless) Wiener process, μ > 0 is
the drift, and σ > 0 is the diffusion parameter. The membrane
potential is thus driven by a deterministic force μ accompanied
by white noise. Once X(t) reaches a constant threshold B > 0,
a spike is elicited, X(t) is immediately reset to its starting value
0, and the accumulation of the membrane potential starts anew.
The resulting spike train is then a renewal point process, where
interspike intervals are independent and identically distributed
as T ∼ IG(B/μ,B2/σ 2), an inverse Gaussian distribution
with mean E(T ) = B/μ, and variance var(T ) = Bσ 2/μ3.

Denote by X0 the value of the membrane potential at a
randomly chosen time. The distribution of X0 can be derived
from the known transition probability density of the Wiener
process under the absorbing boundary B, which gives the
probability density that the process starting from zero at time
zero attains the value x at time t while the boundary B has not
been crossed during that time [42,43],

f B
X (x,t) = 1√

2πσ 2t

{
exp

[
− (x − μt)2

2σ 2t

]

− exp

[
2μB

σ 2
− (x − 2B − μt)2

2σ 2t

]}
. (4)

The conditional density of X0 given that the time elapsed since
the last spike is t can be written as

fX0|T >t (x|t) = f B
X (x,t)

1 − FT (t)
, (5)

where FT (t) is the cumulative distribution function (CDF)
of the interspike interval T . The time interval between the
randomly chosen time point and the last preceding spike is the
backward recurrence time S, which has the probability density
function (PDF) fS(t) = [1 − FT (t)]/E(T ) [44]. Multiplying
the conditional density fX0|T >t (x|t) by fS(t) and integrating
over all possible t yields the unconditional distribution of X0

as follows:

fX0 (x) =
∫ ∞

0
fX0|T >t (x|t)fS(t)dt =

∫ ∞

0

f B
X (x,t)

E(T )
dt

= 1

B

[
exp

(
μ(x − |x|)

σ 2

)
− exp

(
2μ(x − B)

σ 2

)]
.

(6)

We consider a situation where a stimulus of level s is
presented at time t0. The spontaneous activity before t0 results
only from the spontaneous activity of presynaptic neurons,
while the evoked activity after t0 is affected by the stimulation.
Before t0, the parameters of the Wiener process are μ = μ0

and σ 2 = σ 2
0 . The presentation of the stimulus of intensity

s at t0 changes the parameters to μ = μ(s) and σ 2 = σ 2(s)
(Fig. 1).

Throughout the paper, we assume that the evoked drift μ(s)
is the sum of the spontaneous drift μ0 and the stimulus-
driven increment �μ(s). The specific functional form of
μ(s) is derived from the Hill function [45], which is fre-
quently employed in both theoretical and experimental studies
[46–50]. For a stimulus level s expressed on a logarithmic

FIG. 1. Schematic illustration of the studied model. Shown on
top is a sample path of the membrane potential X(t), described by a
Wiener process. When X(t) exceeds a constant threshold B > 0, an
action potential is generated. Then X(t) is reset to 0 and its evolution
starts anew. At time t0, a stimulus is applied and the parameters of
the process change from μ0 and σ 2

0 to μ(s) and σ 2(s). The times
from the stimulus onset to the first, second, third, etc., nth evoked
spike are denoted by T1,T2,T3, . . . ,Tn. Shown on the bottom is the
corresponding counting process of evoked spikes N (t∗), which gives
the number of spikes in a time window [t0,t0 + t∗].
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scale, it can be written as

μ(s) = μ0 + A

1 + e−b(s−s0)
, s ∈ (−∞,∞). (7)

The parameter A is the maximum possible increment in the
drift μ(s), b controls the steepness of the function, and s0 is
the inflection point.

For the diffusion parameter σ 2(s), we assume a linear
dependence on the drift μ(s), that is,

σ 2(s) = kμ(s) + m, (8)

where k,m � 0. The linear relationship σ 2(s) = kμ(s) + m

can be derived for the membrane potential described by a
randomized random walk with Poissonian input, where the
amount of excitatory input is proportional to the stimulus
intensity and the inhibitory input is constant [51]. By letting
either k or m be equal to zero, we obtain the following two
special cases: σ 2(s) = kμ(s), which corresponds to balanced
excitatory and inhibitory input [52,53], and σ 2(s) = m, which,
together with the requirement lims→−∞ σ 2(s) = σ 2

0 , gives a
diffusion parameter independent of the stimulation, that is,
σ 2(s) = σ 2

0 . In the following we study the accuracy with which
the stimulus intensity s can be decoded from N (t∗), the number
of spikes observed in a time window of duration t∗.

III. RESULTS

A. Fisher information

The reported Fisher information J (s) about s based on the
observation of N (t∗) was calculated numerically using the
formulas for the distribution of N (t∗) given in the Appendix.
Throughout the paper, we consider two different scenarios
corresponding to two possible beginnings of the observation
time window. (i) The observation time window starts with an
evoked spike. In this scenario the initial value of the membrane
potential is known and X0 = 0 [Figs. 2 and 4(a)]. (ii) The
observation time window starts at t0. Here the initial value of
the membrane potential X0 is random and has the PDF (6),
with μ = μ0 and σ 2 = σ 2

0 [Figs. 3 and 4(b)]. We focus on
the dependence of the Fisher information on the duration of
the time window t∗, but we also take into account the level of
spontaneous activity μ0 and the parameters k and m governing
the diffusion parameter σ 2(s). Without loss of generality, the
threshold B is set to B = 1 and, as a consequence, drift μ

represents also the firing rate. Moreover, we set A = 50, b = 1,
and s0 = 0.

1. Fisher information with respect to the length
of the time window t∗

In general, Fisher information roughly increases as the
time window gets longer [see Figs. 2(a) and 2(b), where the
observation time window starts with a spike, i.e., X0 = 0, and
Figs. 3(a) and 3(b), where the time window starts at t0, i.e.,
X0 is random]. In both cases, however, the Fisher information
is nonmonotonic and has many local maxima and minima.
The local extremes are more pronounced when X0 = 0, but
they are also clearly visible when X0 is random. Therefore,
observing the process for a longer time may not necessarily
lead to a higher decoding accuracy.

2. Fisher information with respect to the level
of spontaneous activity μ0

When the response starts with a spike, the Fisher in-
formation has again a nonmonotonic behavior with respect
to μ0, with many local maxima and minima [Figs. 2(a),
2(c), 2(d), 2(f), 2(g), and 2(i)], and a qualitatively similar
behavior is also observed when X0 is random [Figs. 3(a),
3(c), 3(d), 3(f), 3(g), and 3(i)]. Therefore, increasing the
amount of presynaptic spontaneous activity may result in
both improving or deteriorating the accuracy of decoding the
stimulus, depending on the particular parameter conditions.
For example, from Fig. 2(c) we observe that the Fisher
information can be initially decreasing or increasing with
respect to μ0 depending on whether the observation time
window is small (t∗ = 0.007 and 0.02 s) or large (t∗ = 0.04 s).

If we ignore local extremes, the overall tendency is
that the Fisher information decreases with respect to μ0

due to the variability of the underlying process, which is
linearly proportional to μ0. When k = 0, however, the Fisher
information has a mild overall increasing tendency (Fig. 4).
This is because more spikes can be observed in the same
time window due to the higher spontaneous activity, while the
variability of the process remains constant (Fig. 4).

It is interesting to look at the mutual effect of both the
spontaneous activity and the time window on the Fisher
information [see Figs. 2(a) and 3(a), where X0 = 0 and X0

is random, respectively]. The white dashed lines displayed
in the figures mark all points where the time window is
t∗ = nB/μ(s), n ∈ N, which approximately correspond to the
local maxima of the Fisher information with respect to t∗ for
fixed μ0 derived when σ 2

0 = σ 2(s) = 0, as discussed in more
detail in Sec. III B. If the parameters of the system are chosen
to be near a local maximum of J (s) with respect to t∗ and
then the observation time window is taken shorter, the loss in
the decoding accuracy can be to some extent compensated by
increasing the level of spontaneous activity μ0. Similarly, if
the level of spontaneous activity is increased, by shortening the
observation window we may get almost the original decoding
accuracy.

3. Fisher information with respect to the
diffusion coefficient σ 2(s)

If X0 is random, increasing the diffusion parameter σ 2(s)
through increasing k or m always yields a lower Fisher
information [Figs. 3(d)–3(i)]. On the other hand, when X0 = 0,
in some cases the Fisher information is initially increasing with
respect to k and m [Figs. 2(d)–2(i)], meaning that a positive
level of noise enhances the signal. There are also cases, though,
where the Fisher information is strictly decreasing with respect
to k or m. Whether J (s) is increasing or decreasing in a given
situation depends on the level of spontaneous activity. If the
spontaneous drift μ0 is approximately around

μ0 ≈ nB

t∗
− A

1 + exp[−b(s − s0)]
, n ∈ N, (9)

then increasing σ 2(s) has the effect of deteriorating the
decoding accuracy. On the other hand, if the spontaneous drift
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FIG. 2. Fisher information J (0) about the stimulus intensity s = 0 based on the number of spikes N (t∗) in a time window of length t∗.
The observation time window starts with a spike and the initial value of the membrane potential at the beginning of the time window is thus
X0 = 0. In all cases, the diffusion coefficient is σ 2(s) = kμ(s) + m. (a)–(c) Fisher information as a function of the spontaneous firing rate μ0

and the duration of the time window t∗ when k = 0.01 and m = 0.5. The Fisher information is nonmonotonic with respect to both μ0 and t∗.
(d)–(f) Fisher information as a function of the spontaneous firing rate μ0 and the absolute coefficient m of the diffusion parameter σ 2(s) when
t∗ = 0.025 s and k = 0.01. (g)–(i) Fisher information as a function of the spontaneous firing rate μ0 and the coefficient of proportionality k of
the diffusion parameter σ 2(s) when t∗ = 0.025 s and m = 0.5. For some values of μ0 [dashed and dot-dashed lines in (e) and (f)], the Fisher
information is initially increasing with respect to k and m and thus with respect to the fluctuation level of the membrane potential. The white
dashed lines in (a), (d), and (g) mark the points satisfying t∗ = nB/μ(s), which approximately correspond to the local maxima of J (s) with
respect to t∗, where B = 1 is the membrane potential threshold and n = 1,2, . . . .

μ0 is around

μ0 ≈ 2n(n + 1)B

(2n + 1)t∗
− A

1 + exp[−b(s − s0)]
, n ∈ N, (10)

and σ 2(s) is small, then increasing σ 2(s) through k or m

may improve the decoding accuracy. Finally, increasing k or
m causes the local extremes of the Fisher information with
respect to t∗ and μ0 to become smaller and for a sufficiently
large σ 2(s) they are almost negligible.

B. Comparison with the limit case σ 2 = 0

The counterintuitive nonmonotonic behavior of the Fisher
information can be explained by looking at the limit case

σ 2
0 = σ 2(s) = 0, when the process X(t) is deterministic. The

only randomness in the system is then the initial value of the
membrane potential X0 when the observation time window
does not start with a spike.

Denote by Tn the time from t0 to the nth following spike. If
X0 = x0 is known, Tn = tn is deterministic and equal to

tn = (nB − x0)/μ(s). (11)

If X0 is random, the CDF of Tn is given by

FTn
(t) = P

(
nB − X0

μ(s)
� t

)
= P[X0 � nB − μ(s)t] = 1 − FX0 [nB − μ(s)t], (12)
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FIG. 3. Fisher information J (0) about the stimulus intensity s = 0 when the time window starts at t0 and the initial value of the membrane
potential X0 is thus random. In all cases, the coefficient diffusion is σ 2(s) = kμ(s) + m. (a)–(c) Fisher information as a function of the
spontaneous firing rate μ0 and the time window t∗ when k = 0.01 and m = 0.5. The Fisher information is nonmonotonic with respect to both
μ0 and t∗. (d)–(f) Fisher information as a function of μ0 and m when t∗ = 0.025s and k = 0.01. (g)–(i) Fisher information as a function of μ0

and k when t∗ = 0.025s and m = 0.5. For any choice of μ0, the Fisher information is decreasing in k and m. The white dashed lines in (a), (d),
and (g) mark the points satisfying t∗ = nB/μ(s), which approximately correspond to the local maxima of the Fisher information with respect
to t∗, where B = 1 is the membrane potential threshold and n ∈ N.

where FX0 is the CDF of X0. Consequently, we can write

pN(t∗)(n) = P(Tn � t∗ < Tn+1) =
{
FX0 [B − μ(s)t∗], n = 0
FX0 [(n + 1)B − μ(s)t∗] − FX0 [nB − μ(s)t∗], n � 1.

(13)

If σ 2
0 = 0, X0 is uniformly distributed over the interval [0,B],

so we obtain

pN(t∗)(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t∗ ∈ (
0, (n−1)B

μ(s)

)
1 − n + μ(s)t∗

B
, t∗ ∈ [ (n−1)B

μ(s) , nB
μ(s)

)
n + 1 − μ(s)t∗

B
, t∗ ∈ [

nB
μ(s) ,

(n+1)B
μ(s)

)
0, t∗ ∈ [ (n+1)B

μ(s) ,∞)
(14)

for n ∈ {1,2, . . . }, and for n = 0 we have

pN(t∗)(0) =
{

1 − μ(s)t∗
B

, t∗ ∈ (
0, B

μ(s)

)
0, t∗ ∈ [

B
μ(s) ,∞

)
.

(15)

The Fisher information about s based on observing N (t∗)
can be calculated as

J (s) = [μ′(s)t∗]2

[(n + 1)B − μ(s)t∗][−nB + μ(s)t∗]

if t∗ ∈
(

nB

μ(s)
,
(n + 1)B

μ(s)

)
(16)

and is illustrated in Fig. 5(a). It is a piecewise function
that is defined on every interval [nB/μ(s),(n + 1)B/μ(s)],
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FIG. 4. Fisher information J (0) about the stimulus intensity s =
0 as a function of the spontaneous firing rate μ0 when the diffusion
coefficient is independent of stimulation, namely, σ 2(s) = σ 2

0 = 2.
(a) Fisher information when the observation time window starts with
a spike. (b) Fisher information when the observation window starts
at t0. Three lengths of the observation window are used: t∗ = 0.007 s
(red solid line), t∗ = 0.02 s (blue dashed line), and t∗ = 0.04 s (green
dotted line). If the local extremes are ignored, the Fisher information
has a mild overall increasing tendency in all the cases, suggesting
that the decoding accuracy improves with increasing spontaneous
firing rate μ0.

n = 0,1,2, . . . , and for t∗ = nB/μ(s), n ∈ {1,2, . . . } goes
to infinity. The minimum Fisher information on the interval
t∗ ∈ [nB/μ(s),(n + 1)B/μ(s)] is achieved at

t∗min = 2n(n + 1)B

(2n + 1)μ(s)
, n ∈ N. (17)

The discontinuities are caused by the shape of the proba-
bilities pN(t∗)(n) = P[N (t∗) = n], illustrated in Fig. 5(c). The
probabilities pN(t∗)(n) are piecewise linear and the derivatives
with respect to s are not defined at t∗ = nB/μ(s), n ∈ N. At
these points also pN(t∗)(n − 1) and pN(t∗)(n + 1) tend to zero
and the corresponding terms in the formula for the Fisher
information tend to infinity. At t∗ = nB/μ(s), the probability
of observing n spikes is equal to one.

Now we compare the Fisher information J (s) for the limit
case σ 2

0 = σ 2(s) = 0 [Fig. 5(a)] with the Fisher information
J (s) for the previously studied cases σ 2

0 > 0 and σ 2(s) > 0
[Fig. 5(b)]. It can be seen that the local maxima of the
Fisher information for σ 2

0 > 0 and σ 2(s) > 0 are located
near t∗ = nB/μ(s), n ∈ N. This can also be confirmed in
Figs. 2(a), 2(d), 2(g), 3(a), 3(d), and 3(g), where the white
dashed lines, corresponding to t∗ = nB/μ(s), are very close
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FIG. 5. (a) Fisher information J (0) about the stimulus intensity s = 0 as a function of the length of the time window t∗ for the limit case
of the zero diffusion coefficient σ 2

0 = σ 2(s) = 0. The Fisher information goes to infinity for all t∗ satisfying t∗ = nB/μ(s), n ∈ {1,2, . . . }.
(b) Fisher information J (0) when σ 2

0 > 0 and σ 2(s) > 0. The local maxima are located approximately at t∗ = nB/μ(s). (c) Probabilities
of observing n spikes pN(t∗)(n) = P[N (t∗) = n] as functions of t∗ for the limit case σ 2

0 = σ 2(s) = 0. At t∗ = nB/μ(s), the probability of
observing n spikes is equal to 1 and all the other outcomes have zero probability. (d) Probabilities pN(t∗)(n) as functions of t∗ when σ 2

0 > 0 and
σ 2(s) > 0. At t∗ = nB/μ(s), the probability of observing n spikes is nearly one and decreases when the diffusion coefficient σ 2(s) is increased.
All figures were obtained for the spontaneous firing rate μ0 = 50 Hz.
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to the local maxima of the Fisher information with respect to
t∗. In Fig. 5(b) we can also notice that if the value of σ 2(s)
is increased by increasing k or m, the local maxima have the
tendency to vanish.

We can also see the correspondence between the shape of
the Fisher information J (s) and the probabilities pN(t∗)(n). As
σ 2(s) increases, the probabilities pN(t∗)(n) become smoother
with not so sharp transitions between the increasing and
the decreasing part. Also, the maximum of the probability
pN(t∗)(n) is less than 1 [Fig. 5(d)], which results in smaller
fluctuations of the Fisher information.

We can conclude that the nonmonotonic behavior of the
Fisher information is caused by the discrete character of N (t∗).
If the randomness of X(t) in the form of σ 2(s) is not too
high, there are only a few possible outcomes of N (t∗). Hence
the Fisher information is the sum of only a small number of
nonzero terms in the form [∂pN(t∗)(n)/∂s]2/pN(t∗)(n). There-
fore, a big change in any of them is strongly reflected in the
Fisher information. Note that an individual term has a big
contribution if the respective probability is close to zero, which
typically happens around t∗ = nB/μ(s). The local maxima
and minima of the Fisher information with respect to t∗ appear
periodically with the period approximately equal to B/μ(s),
which is the mean interspike interval. Hence, this phenomenon
is not restricted only to short time windows.

IV. DISCUSSION

This analysis reveals that even in neuronal models as
simple as the perfect integrate-and-fire model the effect of
spontaneous activity, noise, and the length of the observation
window might be highly nontrivial. In spite of the relative
simplicity, the question of neuronal coding is often studied
at this or at a similar level of complexity [54–58], because
it allows analytical calculations. Therefore, it is possible to
identify the reasons for the nonmonotonic behavior of the
Fisher information in our work. Since the perfect integrate-
and-fire model is based on Brownian motion, it can be also
applied on a wide variety of physical problems beyond the
field of neuroscience, implying that the described phenomena
might appear also there.

Although analogous calculations for more detailed bio-
physical models, such as models including leakage or setups
considering the activity of a group of neurons, which are the
directions in which the analysis should be extended in the
future, are technically prohibitive, this fact cannot be used
to imply that the described effects do not occur therein. On
the contrary, the most important result presented here, i.e.,
that the Fisher information is nonmonotonic with respect to
the observation window t∗, is caused by the discrete nature
of the counting distribution. Thus it is not specific for the
chosen model and should be largely independent of the amount
of biophysical detail taken into account. Our expectation
concerning the role of μ0, k, and m in leaky integrate-and-fire
models is that they could have an even stronger effect, since

they may help to move the process from the subthreshold to the
suprathreshold regime (in the case of μ0) or increase the chance
that X(t) crosses the threshold in the subthreshold regime (in
the case of k and m), which is the classical phenomenon of
stochastic resonance [30].

We assumed one particular form of μ(s) given by the
logistic function. However, the observed phenomena are more
general. When analyzing the Fisher information with respect
to t∗, k, and m, we fix μ0 and s, so the value of μ(s)
is constant and the functional form of μ(s) plays no role.
When we study the behavior of the Fisher information with
respect to μ0, the assumed form of μ(s) might have some
influence. Nevertheless, our results with respect to μ0 can also
be obtained for other types of μ(s), for example, for the linear
relationship μ(s) = μ0 + s, s � 0.

V. CONCLUSION

We studied the accuracy of the rate code with respect to
several key parameters of the neuronal system and showed
that the relationships are nontrivial. Altogether, our results
may be summarized in the following four points. (i) Using a
longer time window may not necessarily improve the decoding
accuracy. (ii) Although the presynaptic spontaneous activity
might seem a disturbing element, since it bears no information
about the stimulus, its presence at a certain level might improve
the decoding accuracy. (iii) The loss in the decoding accuracy
caused by the change of the time window can be partially
compensated if it is accompanied by an appropriate change of
the level of spontaneous activity and vice versa. For example,
a shorter time window may sometimes give almost the same
accuracy if the level of spontaneous activity is increased by an
optimal amount. (iv) If the time window begins with a spike,
the decoding accuracy might be improved by increasing the
fluctuation of the membrane potential.
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APPENDIX: DISTRIBUTION OF N(t∗)

Here we show how the distribution of N (t∗) can be derived.
The first step to obtain the distribution of N (t∗) is to find the
distribution of Tn, the time from t0 to the nth following spike.

Distribution of Tn. Since the Wiener process is a time and
space homogeneous process, the distribution of Tn, the nth
passage time of X(t) to a constant threshold B, is the same as
the first-passage time of the same process X(t) to the threshold
nB. Thus, Tn|X0, the time to the nth spike given a fixed starting
position X0 = x0, follows an inverse Gaussian distribution
IG[(nB − x0)/μ(s),(nB − x0)2/σ 2(s)] with the CDF

FTn|X0 (t |x0) = �

(
−nB − x0 − μ(s)t

σ (s)
√

t

)
+ exp

(
2(nB − x0)μ(s)

σ 2(s)

)
�

(
−nB − x0 + μ(s)t

σ (s)
√

t

)
. (A1)
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Multiplying the PDF of Tn|X0 by fX0 (x), given by (6) with the parameters μ0 and σ 2
0 , and integrating over all possible x0 values,

we obtain the unconditional PDF of Tn,

fTn
(t) =

∫ B

−∞
fTn|X0 (t |x)fX0 (x)dx = μ(s)σ 2

0 − 2μ0σ
2(s)

Bσ 2
0

exp

(
2μ0

[
μ0σ

2(s)t − μ(s)σ 2
0 t + (n − 1)Bσ 2

0

]
σ 4

0

)

×
[

exp

(
2μ0B

σ 2
0

)
�

(
−nBσ 2

0 + 2μ0σ
2(s)t − μ(s)σ 2

0 t

σ 2
0 σ (s)

√
t

)
− �

(
− (n − 1)Bσ 2

0 + 2μ0σ
2(s)t − μ(s)σ 2

0 t

σ 2
0 σ (s)

√
t

)]

+ μ(s)

B

[
�

(
nB − μ(s)t

σ (s)
√

t

)
− �

(
(n − 1)B − μ(s)t

σ (s)
√

t

)]
. (A2)

When n = 1, the distribution of T1 is identical to the distribution of the first-spike latency reported in [59].
Distribution of N (t∗). Consider first the case when the membrane potential at time t0 is fixed and known, i.e., X0 = x0. The

conditional probability of observing n spikes in the time window of length t∗ given that X0 = x0 can be written as

pN(t∗)|X0 (n|x0) = P[N (t∗) = n|X0 = x0] = P(Tn � t∗|X0 = x0) − P(Tn+1 � t∗|X0 = x0). (A3)

Plugging (A1) into (A3), we obtain

pN(t∗)|X0 (n|x0) = �

(
−nB − x0 − μ(s)t∗

σ (s)
√

t∗

)
− �

(
− (n + 1)B − x0 − μ(s)t

σ (s)
√

t∗

)
+ exp

(
2μ(s)[nB − x0]

σ 2(s)

)

×
[
�

(
−nB − x0 + μ(s)t∗

σ (s)
√

t∗

)
− exp

(
2μ(s)B

σ 2(s)

)
�

(
− (n + 1)B − x0 + μ(s)t∗

σ (s)
√

t∗

)]
(A4)

for n = 1,2, . . . . If n = 0, we have

pN(t∗)|X0 (0|x0) = 1 − �

(
−B − x0 − μ(s)t∗

σ (s)
√

t∗

)
− exp

(
2(B − x0)μ(s)

σ 2(s)

)
�

(
−B − x0 + μ(s)t∗

σ (s)
√

t∗

)
. (A5)

If the value of X0 is not known, the straightforward way to
get the unconditional density of N (t∗) is to calculate the joint
density of N (t∗) and X0 and integrate over all possible values
of X0, that is,

pN(t∗)(n) =
∫ B

−∞
P[N (t∗) = n|X0 = x]fX0 (x)dx, (A6)

using (A4) and (6). Unfortunately, the closed form of (A6)
cannot be obtained and numerical integration must be done.

To avoid possible numerical issues, we suggest computing
pN(t∗)(n) as

pN(t∗)(n) =
⎧⎨
⎩

∫ t∗

0
fTn

(τ )[1 − FT1 (t − τ )]dτ, n � 1

1 − FT1 (t∗), n = 0,

(A7)

which has the numerical advantage of performing the numer-
ical integration only over a finite interval.
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