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In this paper we derive alternative continuous time limits of the utterance selection model (USM) for language
change [G. J. Baxter et al., Phys. Rev. E 73, 046118 (2006)]. This is motivated by the fact that the Fokker-Planck
continuous time limit derived in the original version of the USM is only valid for a small range of parameters. We
investigate the consequences of relaxing these constraints on parameters. Using the normal approximation of the
multinomial approximation, we derive a continuous time limit of the USM in the form of a weak-noise stochastic
differential equation. We argue that this weak noise, not captured by the Kramers-Moyal expansion, cannot be
neglected. We then propose a coarse-graining procedure, which takes the form of a stochastic version of the
heterogeneous mean field approximation. This approximation groups the behavior of nodes of the same degree,
reducing the complexity of the problem. With the help of this approximation, we study in detail two simple families
of networks: the regular networks and the star-shaped networks. The analysis reveals and quantifies a finite-size
effect of the dynamics. If we increase the size of the network by keeping all the other parameters constant, we
transition from a state where conventions emerge to a state where no convention emerges. Furthermore, we show
that the degree of a node acts as a time scale. For heterogeneous networks such as star-shaped networks, the time
scale difference can become very large, leading to a noisier behavior of highly connected nodes.
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I. INTRODUCTION

In the study of complex systems, one important challenge
is to deduce the macroscopic behavior of a system from
the microscopic dynamics. This problem is at the center of
statistical mechanics. In this paper we are interested in the
(stochastic) agent-based class of complex systems. In (stochas-
tic) agent-based models, agents interact following some rules
(subject to noise) and we would like to characterize the
average behavior of the complete population. One possibility
to obtain a characterization of the average behavior is by
obtaining a mean field approximation. What is meant by a
mean field approximation varies between authors. The original
idea is to characterize the dynamics of a complex system
by choosing a representative agent and approximating the
effect of the rest of the population as a mean field (see, for
example, [1]). This approach is well adapted to well-mixed
populations, but in the case of heterogeneous populations, for
example, when the social structure is a complex network,
this approach usually fails to describe the dynamics. To
tackle this problem, the heterogeneous mean field (HMF)
approximation has been proposed. In this approximation, the
dynamics of agents in a network is approximated by taking one
representative agent for each degree class. For more details
on the HMF approximations and other approximations of
the dynamics on a complex network, the reader is referred
to [2]. For application of the HMF approximation for different
models, the interested reader is referred to [3–6]. These two
mean field approaches are based on the average influence of
the different groups considered and provide a deterministic
approximation of the dynamics. They share the property of
averaging out the details of the underlying structure of the
interactions.
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In this paper we present an alternative to the usual mean
field approaches by keeping some stochasticity in the HMF
approximation. In the HMF approximation, one uses degree-
block variables to estimate the dynamics. This is only one
of many possible choices to introduce a heterogeneity in the
mean field approach. Alternatively, one can group the agents
by community or by any relevant criteria instead of by degree.
An HMF approximation can then be obtained by using block
variables, where the blocks depend on the grouping criteria.
This procedure does not imply a deterministic approximation
and some stochasticity can be conserved in the coarse-grained
approximation; we will refer to this approximation as the
stochastic HMF (SHMF) approximation.

As an example, we apply the SHMF approximation
procedure to the problem of language evolution. Language
is a defining property of humanity and is at the center
of human interactions. The study of language dynamics is
very important to better understand the formation of human
cultures. In particular, the dynamics of language contacts and
the formation of new dialects, pidgins, or creoles can shed light
on the mechanisms underlying the formation and evolution of
sociocultural groups (see, for example, [7]). Language is a
complex adaptive system [8,9] and can be described at many
different scales [10,11]. It seems that the different scales of
language evolution should be accounted for in a better way
than it has previously been done. In fact, at the interaction
scale languages are highly variable, whereas at the population
scale languages are relatively stable and change on a slow
time scale. In order to better understand the link between these
two time scales a coarsening procedure such as the SHMF
approximation is needed.

Here we focus on the specific instance of the utterance
selection model (USM) for language change [12] and derive
an SHMF approximation of it. The USM is a stochastic
agent-based model describing the evolution of a population
interacting by stochastically producing utterances and learning
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from them. Although there exists a wide range of models of
language evolution (see [13]), we find the USM particularly
appealing in that it can describe the process of language
both at the time scale of individual interactions and at the
time scale of the population. The USM has been applied
to evaluate the theory of Trudgill of the emergence of
New Zealand English [14]. Under appropriate assumptions,
this model is analytically tractable and a wide range of
results is available. The main results on the dynamics of the
USM have been obtained in [12,15,16] and we review them
below.

In [12], continuous time limits at the interaction level have
been obtained using the Kramers-Moyal (KM) expansion and
provide an analytical tool to study the marginal distribution
of a representative agent in a population. However, in order
to obtain this continuous time limit, one has to restrict the
parameter space to simplify the mathematics. In order to fully
characterize the behavior of the model, this restriction on
parameters has to be overcome.

In [15], modifications of the USM are investigated in order
to characterize under what circumstances language change
trajectories follow a so-called S curve. Linguistic corpora
studies [17,18] have shown that language change trajectories
typically follow S curves.

Finally, in [16] the scaling law for the time needed to achieve
consensus is obtained and numerically validated. This paper
is one of the few considering parameter values outside the
range in which the results of [12] are valid. In this paper we
extend and improve previously known results by obtaining
a continuous time limit of the USM at the interaction time
scale, which does not suffer from any parameter restriction.
We also obtain a coarse-grained SHMF approximation of the
USM, clarifying the conditions under which a consensus can
be achieved in this model.

The remainder of this paper is organized as follows. In
Sec. II we discuss the coarse-graining problem and clarify
our strategy to obtain a SHMF approximation of the USM.
In Sec. III we recall the definition of the USM and some
known results. In Sec. IV we derive a weak-noise stochastic
differential equation (SDE) generalizing the continuous time
limit obtained in [12] and compare the numerical efficiency
of different numerical algorithms. This shows that for two
agents, the system mainly behaves in a deterministic manner
for short times, but the stochastic effects become relevant in
long time scales. In Sec. V we derive the SHMF approxi-
mation of the USM and apply it to regular and star-shaped
networks to validate it. This allows us to obtain a mean field
characterization of the noise-driven phase transition separating
the conditions under which a consensus can or cannot be
formed at the population level. The analysis reveals a finite-size
effect, justifying the fact that in a small population it is easier
to create conventions. In Sec. VI we summarize the main
results of this research and discuss possible future research
directions. This paper is complemented by three appendixes.
In Appendix A we rederive the continuous time limit obtained
in [12] for completeness. In Appendix B the USM is linked
with the Wright-Fisher (WF) process and technical details
about the SDE are provided. Finally, in Appendix C details on
numerical methods used to numerically integrate the SHMF
approximation equations are provided.
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FIG. 1. Illustration of the two time scales of the problem. Here
tint represents the time of one interaction and tG represents the time
of one network update.

II. TIME SCALE SEPARATION AND COARSE-GRAINING
PROBLEM

In this section we discuss the time scale separation problem
inherent in every agent-based model and set out the approach
taken in this paper. In order to simplify the discussion, we
consider the case in which agents are associated with vertices
V of a static network G. Assuming pairwise interactions, such
a system possesses two natural time scales: an interaction time
scale tint and a network time scale tG . Imagine that a clock,
associated with tint, ticks at every new interaction (assuming
sequential updates) and that another clock, associated with tG ,
ticks when all the edges of the graph have been updated. Then,
on average, the interaction clock ticks E times between two
ticks of the network clock, where E is the number of edges of
the graph. This situation is illustrated in Fig. 1.

If the number of edges E is large, the time scale separation
between tint and tG increases. In fact, the relationship between
these two time scales is

tint ≈ 1

E
tG . (1)

In the limit when E → ∞ the dynamics at the interaction
level can be considered as continuous, since tint → 0. This
stimulates the need to develop continuous time limits of the
dynamics at the agent level in order to derive a population
level approximation of the dynamics. If the network is finite,
we expect some finite-size effects to occur, modifying the
dynamics.

As we have mentioned, we aim to obtain a coarse-grained
approximation of the dynamics of an agent-based model
(ABM) and we intend for this approximation to be continuous
in the network time tG for large enough network. There are
therefore two problems that need to be solved: the coarse-
graining problem and the continuous time limit problem.

In Fig. 2 we provide an illustration of this problem. We
want to derive a continuous in time (tG) population-based
model (PBM) starting from a discrete in time ABM. One
can first coarsen the problem and then obtain a continuous
time limit or do the opposite. In this paper we will do both
in a single step. As mentioned in Fig. 2, for the USM the
only approximation that has been studied is a continuous in
time approximation at the agent level in the form of a KM
expansion leading to a Fokker-Planck (FP) equation (see [12]
and Appendix A for details). This approximation suffers from
parameter restrictions and cannot be easily coarse grained. It is
not clear how one can in general approximate the other arrows
for the USM. In this paper we provide both an alternative to the
KM expansion, obtaining a continuous time limit at the agent
level without parameters restrictions, and a methodology to
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FIG. 2. Illustration of the coarsening problem by a continuous
time approximation. The discrete models are on the left. Agent-based
models are on top; their evolution depends on tint and on the bottom
the population models evolve according to tG . For the USM, it is
known how to obtain a continuous time limit at the agent level using
the Kramers-Moyal expansion. The other arrows are not clear. In this
paper we will take the diagonal approach.

derive a continuous in time population-based approximation
in the form of a SHMF approximation.

III. UTTERANCE SELECTION MODEL

We now recall the definition of the USM. The USM [12]
is a stochastic ABM of language evolution based on an
evolutionary theory of language change due to Croft [19]. This
model is not limited to the cultural evolution of languages but
can be interpreted as a general model of cultural evolution.

In the USM, N agents are represented as nodes of a static
network G = (V,E), where V is the set of vertices and E
the set of edges along which the agents interact. We assume
this network to be undirected and weighted by a probability
distribution G(ij ) representing the probability that agent i ∈ V
interacts with agent j ∈ V . In order to model the cultural
evolution of a trait, the USM assumes that a particular trait can
be instantiated in V equivalent variants. The state of an agent is
characterized by a probability distribution x over the possible
V variants of the cultural trait, which can be interpreted as
the agent’s belief of the frequency with which the variants
should be used. In other words, x models the agent’s idiolect
and cannot be accessed by other agents. Since x is a discrete
probability distribution it belongs to

PV :=
{

x ∈ [0,1]V |
V∑

v=1

xv = 1

}
. (2)

In order to communicate, an agent produces an utterance u ∈
PV from a production process U (u := Ux), which takes the
form of an empirical distribution of a biased sample of length
L of the agent’s belief distribution or idiolect. The length
of the utterance L controls the amount of variability in the
speech, since when L is large, the utterances are long and the
induced noise small. The biasing process models production
errors and/or innovation and is encoded through a stochastic
matrix M . The updating (or learning) rule is formed by the
weighted average of a process of self-monitoring S (weighted
by 1 − h(ij )) and a process of accommodation A (weighted by
h(ij )). h(ij ) is called the attention parameter. The process of
self-monitoring aims at reducing the difference between x(i)

and u(i) of an agent i and the accommodation process aims
at reducing the difference between x(i) and the utterance u(j )

of a neighboring agent j . The model is completed by a small
parameter λ modeling the rate of learning.

x(i) x(j)

u(i)

u(j)h(ij)

h(ji)

U

U

FIG. 3. Structure of the USM interaction. On the (ij ) edge,
the agents use their internal beliefs x(i) to produce an utterance
u(i) through the process U , which depends on the matrix M . The
utterances are then used to update the internal beliefs depending on a
weighting parameter h(ij ).

An interaction time step of the USM can be divided into
three substeps: social interaction, utterance production, and
retention. A simulation run of the USM iterates such an
interaction time step ET times, where E is the number of
edges of the network and T is the final time of the simulation
in tG units. The three substeps of an interaction time step are
defined below.

(i) Social interaction. The social interaction is simply
modeled by choosing a pair of speakers i,j with the prescribed
probability G(ij ). In this paper we only consider the case where
G(ij ) = 1

E
, that is, the uniform distribution. Furthermore, in

order to be closer to the discussion about time scales of Sec. II,
instead of randomly sampling the edges, we randomly order
them and go through them in sequence in such a way that when
a network update is complete, all the edges have been updated
exactly once.

(ii) Utterance production. The production phase is illus-
trated in Fig. 3 by the U operator. It occurs at a specified time
tint. The two chosen agents generate an utterance u(i).

The sampling process is done by using a multinomial
sampling M and the biasing process is done through the
introduction of a mutation matrix M , which is column
stochastic. Note that the ordering of the sampling and the
biasing processes matters. We therefore have the two possible
definitions of the utterance empirical frequency vector u(i):

ubs ∼ 1

L
M(L,Mx), (3a)

usb ∼ 1

L
MM(L,x). (3b)

In [12], the rule (3a) was chosen to model the utterance
process. We argue in Appendix B that the other choice (3b)
is more natural and leads to a well-posed SDE, whereas the
choice (3b) leads to an ill-posed SDE. In [12], the differences
between these two choices are lost during the derivation of the
continuous time limit. If the specific rule is not specified, we
use the notation Ux = u without a subscript.

The different utterances produced during a communication
event form an utterance pool on which the retention phase is
based.

(iii) Retention. The retention rule, or updating rule, is a rule
to compute x(i)(t + 1), where t is measured in tint units. This
is the short-time-scale updating rule. An agent i then revises
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state x(i) using

δx(i)(t) = λ[(1 − h(ij ))S(x(i)(t),u(i)(t))

+h(ij )A(x(i)(t),u(j )(t))], (4)

where δx(i)(t) = x(i)(t + 1) − x(i)(t). In this description, the
utterance vectors u are stochastic vectors. We define the self-
monitoring process S and the accommodation process A as

S(x(i)(t),u(i)(t)) := u(i)(t) − x(i)(t),
(5)

A(x(i)(t),u(j )(t)) := u(j )(t) − x(i)(t).

These two processes are driven by probability matching,
since they compare the empirical frequencies u with their
belief probability distribution x until they match. The term
probability matching is widely used by evolutionary lin-
guists to express situations in which speakers adapt their
speech distribution to the speech distribution they hear. If
the probability distributions are equal, then those terms
vanish. Some variants of the USM use a different definition
for the self-monitoring and accommodation processes. In [15],
the influence of misperception is investigated. This is outside
the scope of this paper, but extending our results to these more
general cases is in principle possible. In this paper we restrict
the discussion to the original choice of probability matching.

The relative weight of these two functions is given by a
parameter h(ij ) ∈ [0,1] and λ > 0 is a usually small positive
parameter. For simplicity, we assume that h(ij ) = h, that is, the
attention parameter does not depend on the identity of agents.

The complete mathematical definition of the discrete USM
is then given by Eqs. (3)–(5). The USM contains two sources
of randomness: The first is contained in the distribution G(ij ),
which controls the way in which the edges are updated; the
second is contained in the utterance process U , which controls
the noisy interaction between agents. In order to characterize
the model, one is interested in the statistical behavior, which
can be studied through approximations. Continuous time limits
deal with the noisy utterance process, while coarse-graining
approximations deal with the social noise.

In [12], a FP equation has been obtained as an agent-level
continuous time limit of the USM using the KM expansion.
In Appendix A we recall this procedure and show that the
required scaling assumptions [Eq. (A7)] significantly restrict
the application of this approximation. In the next section, we
derive an alternative continuous time limit of the USM based
on a normal approximation of the multinomial distribution
(diffusion approximation), which does not suffer from any
parameter restriction and generalizes the result obtained with
the KM expansion.

IV. STOCHASTIC DIFFERENTIAL EQUATION
CONTINUOUS TIME LIMITS

In this section we develop the first main contribution of
this paper, that is, we derive a continuous time limit of the
USM that captures the dynamics of the USM over the full
range of parameters. The limit is derived at the interaction
time scale tint and generalizes the FP equation obtained by the
KM expansion.

In the rest of this section, we first obtain approximations
of the utterance production process. We then derive the weak-
noise SDE continuous time limit of the USM. Finally, we test
the different approximations against the discrete USM and
against the deterministic limit obtained by the KM expansion
with scaling λ ∝ δt on a very simple network and argue that
the weak noise should not be neglected.

A. Approximations of the multinomial distribution

The USM utterance production mechanism given in Eq. (3)
relies on a multinomial sampling and a biasing procedure. In
order to obtain a weak-noise SDE continuous time limit of the
USM, we need (i) to approximate the sampling process in a
continuous-in-L manner and (ii) to decouple the parameters
and the source of noise to relate the noise to a Wiener process.
To do so, assume that we want to approximate a random vector

z ∼ 1

L
M(L, y), (6)

where L is an integer and �y ∈ PV , by a vector w. First note
that the expectation value and covariance matrix of z are given
by

E(z) = y, (7a)

cov(z,z) = 1

L
[diag( y) − y yT ]. (7b)

A possible continuous-in-L analog to the multinomial dis-
tribution is given by the Dirichlet distribution D of parameter
L y and we can approximate z by

wD( y) ∼ D(L y). (8)

This approximation is continuous in L but does not decouple
the parameter and the noise source. The good property of this
approximation is that w is a discrete probability distribution.

In order to decouple the source of noise from the parameter
y, one can use the normal approximation of the multinomial
distribution. This leads to an approximation

wN ( y) ∼ E(z) + [cov(z,z)]1/2N (0,I)

∼ y + 1√
L

D( y)N (0,I), (9)

where the square root has to be taken in the Cholesky sense
and the matrix D( y) is the square root in the Cholesky sense of
diag( y) − y yT . A definition of a square root in the Cholesky
sense is given in Definition 1 in Appendix B and the possible
forms of the matrix D( y) are given in Appendix B.

The normal approximation given by Eq. (9) both is
continuous in L and decouples the source of noise and the
parameter y. This permits a connection with Wiener processes
as will be shown below.

The drawback of the normal approximation is that wN is
not a discrete probability distribution vector in general. This
is a consequence of the fact that the normal approximation
is unbounded, whereas the multinomial and the Dirichlet
distribution are bounded. We also have to note that this
approximation is only valid if L is sufficiently large and y is
not close to the boundaries of the domain. These assumptions
are not always satisfied, but we will assume them anyway.
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With these limitations in mind, one can now provide a
continuous approximation of the utterance production process
and introduce the biasing process through the matrix M . For
the Dirichlet approximation and for the normal approximation,
one can approximate the continuous-in-L utterance vector as

uT
bs = wT (Mx), T ∈ {D,N } (10a)

uT
sb = MwT (x), T ∈ {D,N }, (10b)

where x is the belief distribution state vector. The index bs

stands for first biasing and then sampling and the index sb for
the reverse ordering.

We will show in Sec. IV B that under the normal ap-
proximation the order of application of the sampling and
the biasing processes matters. This is connected to the fact
that the continuous-in-L utterance vector obtained under this
approximation does not always represent a discrete probability
distribution. For the normal approximation, the continuous-in-
L utterance vectors are given by

uN
bs = Mx + 1√

L
D(Mx)ξ , (11a)

uN
sb = Mx + 1√

L
MD(x)ξ , (11b)

where ξ ∼ N (0,I).
Remark 1. It is mentioned in Appendix A that one usually

assumes that the off-diagonal terms of M are small [of
O((δt)1/2) or smaller]. In that case, one can show in general
that

D(Mx) = D(x) + O(‖M − I‖∞), (12a)

MD(x) = D(x) + O(‖M − I‖∞). (12b)

As a consequence, in the derivation of a continuous time
equation, the influence of the matrix M in the noise term can be
neglected and the ordering between sampling and biasing no
longer matters. Note that using the Dirichlet approximation
produces a vector uD representing a discrete probability
distribution under both orderings. This is also true for the
discrete USM.

B. Weak-noise SDE limit

We have now collected all the partial results needed to
derive continuous time limits of the USM and in particular a
weak-noise SDE continuous time limit based upon the normal
approximation. The derivation of the continuous time limits
is now fairly straightforward; all that needs to be done is
to put the continuous-in-L approximations of the utterance
vector into Eq. (4), average over the possible interactions of an
agent (average over its neighbors), and scale λ = δt to obtain
a continuous time limit.

For the Dirichlet approximation such an approximation
is obtained by introducing the random vector uD defined
in Eq. (10a), with either the biasing-sampling order or the
reverse order, into (4), summing the contribution of all the
neighbors of an agent i, and introducing the scaling λ = dt . We

obtain

ẋ(i) =
∑
j �=i

G(ij )[(1 − h)(uD,(i) − x(i))

+h(uD,(j ) − x(i))]. (13)

This is the first continuous time equation we consider. This
is an SDE in the sense that the vectors uD,(i) and uD,(j ) are
stochastic vectors, but it is not a usual SDE, since the noise is
not related to a Wiener process and cannot be analyzed in the
framework of SDEs. We use this formulation in the numerical
experiments as an accurate continuous time limit of the USM,
since the random vector produced always represents a discrete
probability distribution.

The derivation of the continuous time limit based on the nor-
mal approximation is obtained in a way similar to the Dirichlet
approximation. We introduce the normal approximation (11)
into Eq. (4), sum the contribution of all the neighbors of an
agent i, and introduce the scaling λ = dt . Letting dt → 0, we
obtain the following two equations depending on the ordering
choice between the biasing and the sampling processes:

dx(i) =
∑
j �=i

G(ij )

[
[(1 − h)(M − I )x(i) + h(Mx(j ) − x(i))]dt

+
(

1 − h√
L

D(Mx(i))dξ
(i)
t + h√

L
D(Mx(j ))dξ

(j )
t

)]
(14a)

or

dx(i) =
∑
j �=i

G(ij )

[
[(1 − h)(M − I )x(i) + h(Mx(j ) − x(i))]dt

+
(

1 − h√
L

MD(x(i))dξ
(i)
t + h√

L
MD(x(j ))dξ

(j )
t

)]
,

(14b)

where dξ t = √
dtdW t ∼ N (0,dt2 I). This noise is weaker

than a usual Gaussian noise dW t by a factor
√

dt . We call
this limit a weak-noise SDE. This approximation is a diffusion
approximation taking into account all the sources of noise
in an interaction, that is, the noise originating from the two
utterances produced. This is different from the continuous time
limit obtained in [12], where only the noise of the speaker is
taken into account. Note that a deterministic limit is obtained
by neglecting the noise terms in (14a) in which case the
solution of the KM expansion when λ = δt is recovered. This
approximation therefore generalizes the KM expansion.

The coefficient of the noise scales as
√

dt and vanishes in
the continuous time limit in agreement with the FP derivation.
We argue that the noise term of Eq. (14) should not be neglected
for two reasons. First, since the white noise dW t scales as√

dt , the noise term scales as dt and can be argued to be of the
same order of magnitude as the drift term. Second, the drift
term has the property of becoming very small for long times,
because x(i) and x(j ) converge towards each other and they
jointly converge toward a vector b such that (M − I )b = 0.
As a result, even a weak noise becomes important in the long
time as soon as the drift term becomes of order

√
dt . Therefore,

022308-5
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we expect the noise to be important on a long time scale, but
negligible on a short time scale. This will be verified with
numerical simulations.

We argue that Eq. (14a) is ill posed and that Eq. (14b) is well
posed. We recall a problem is said to be well posed if it has a
unique solution and if small changes in initial conditions leads
to small changes of the solution (stability). From Eqs. (14a)
and (14b) it is not straightforward to decide whether or not
they are well posed. A detailed discussion of a special case
of these equations is treated in Appendix B and explains the
origin of the ill-posed nature of Eq. (14a). In the following we
will work with the continuous time limit (14b).

If we consider the scaling (A7) instead of scaling only λ,
the corresponding SDE reads

dx(i) =
∑
j �=i

G(ij )

[
[(M̄ − I )x(i) + h̄(x(j ) − x(i))]dt

+ 1√
L

D(x(i))dW (i)
t

]
, (15)

where W (i)
t is a standard vectorial Wiener process and dW (i)

t

is a white noise. Equation (15) is the stochastic counterpart
of the FP equation obtained in [12] using the Itô convention.
The deterministic limit corresponds to scaling only λ, which is
consistent with the FP equation derived by the KM expansion
in [12]. In this limit, the noise of agent j becomes irrelevant
and can be neglected.

Remark 2. Equation (15) is the same for the two possible
orderings of the production, due to Remark 1. In other words,
with the scaling used in [12], the two orderings become
equivalent.

C. Numerical experiments

We now perform some numerical experiments to validate
the continuous time limits derived above. We consider a
network of two connected agents 1 and 2 for simplicity. The
probability G(12) that they interact is 1. This is the smallest
network where interaction is possible. We also consider for
simplicity the case of two variants V = 2. We compare the
weak-noise SDE (14b) with the deterministic limit given by
Eq. (14b) in which the noise is neglected. To obtain better
insight into the dynamics, we consider the difference between
the idiolects of the two agents, that is, we consider the variable

z := x(1) − x(2). The deterministic evolution of z is given by

ż = [(1 − 2h)M − I ]z := Az. (16)

We choose the formulation of Eq. (14b), since the other
ordering of sampling and biasing is shown to be ill posed in
Appendix B. The matrix A := [(1 − 2h)M − I ] is negative
definite unless h = 0 and M = I , in which case A = 0 and
the difference is conserved. The consequence of this equation
is that the behavior of the two agents will converge as soon
as there are either mutations M �= I or interactions h �= 0 or
both. If h = 0 and M �= I , the convergence between the two
agents is driven by the self-monitoring process. In fact, if
there is mutation, there exists a vector x that minimizes the
self-monitoring term and every agent will converge towards
this particular idiolect, since the mutation matrix is the same
for all agents. If h �= 0 and M = I , then it is the interaction
process that drives the convergence between the two agents.
The greater the parameter h, the faster the convergence.

For this simple case, we compare the behavior of the weak-
noise SDE, the Dirichlet approximation, and the deterministic
limit. As we discussed in Sec. IV A, the normal approximation
does not ensure that the utterance vector u is bounded. This
leads to numerical difficulties and various numerical strategies
have been proposed. We review them in Appendix C. For the
weak-noise SDE, we consider two different implementations:
the external limiter (EL) and the backward implicit split step
(BISS) implementation (see [20] and Appendix C).

For the parameters used in the simulation, we used short
utterances L = 2 and a symmetric mutation matrix M defined
as

M :=
[

1 − q q

q 1 − q

]
, (17)

where q = 0.001 is a mutation parameter. The initial condition
is set to x

(1)
1 (0) = 0.2 and x

(2)
1 (0) = 0.6. This gives an initial

difference z(0) = 0.4. In the simulation h is varied from 0 to
1 and the statistics is performed on 100 trajectories for each
value of h. The results are given in Fig. 4.

In Fig. 4 we display the results for the different algorithm
for a short time T = 1 and for a long time T = 100, where
T := 28δt for continuous time limits and λ = δt for the USM.
Changing the value of λ in the USM therefore changes the
time scale of the problem. Results are displayed in Fig. 4.
For T = 1 we observe that all the different algorithms agree
well with the deterministic limit as shown in the first and third
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FIG. 4. Comparison of models for the USM and continuous time limits. The red horizontal line represents the initial error z(0). The dashed
black line represents the solution of the deterministic limit. We display the average over 100 simulations and the corresponding variances. The
continuous time limits have to be compared with the discrete USM displayed in red stars. The first panel shows the averaged z at time T = 1,
the second panel the averaged z at time T = 100, the third panel the variance of z at time T = 1, and the fourth panel the variance of z at time
T = 100.
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panels of Fig. 4. For longer times, however, the deterministic
limit no longer agrees with the USM and its limits as shown
in the second panel of Fig. 4. This is due to the fact that after
a long time, the deterministic part of (14b) tends to 0 and the
noise starts to contribute significantly to the dynamics. This
is a numerical justification that the noise term has to be kept.
The target curve in the second panel of Fig. 4 corresponds
to the USM discrete solution displayed as red stars. We see
that the Dirichlet approximation and the BISS implementation
agree well with the discrete USM, but the EL algorithm fails to
capture the dynamics. The introduction of a control function
that modifies the normal approximation leads to a better
approximation. Therefore, we will use the BISS algorithm
for other numerical experiments.

Note that the variance of all models vanishes for h = 0.5,
since in this case the dynamics of the variable z is always
deterministic. For small values of h, the coupling is weak
between the two agents and, as a consequence, the variance
is larger for small values of h than for high values of h. The
variance of the BISS algorithm slightly underestimates the
variance of the USM and the Dirichlet approximation. This
is a feature of this approximation and a consequence of the
chosen control function given by Eq. (C6).

These numerical simulations show that the noise term has
to be kept to accurately capture the behavior of the discrete
USM. Recall that the deterministic limit corresponds to the
KM expansion with the scaling λ = δt . The influence of the
weak-noise has to be kept and the KM analysis is insufficient
to capture this dynamics.

In the next section we discuss the coarse-graining procedure
and explain how to obtain a SHMF approximation of the USM.

V. HETEROGENEOUS MEAN FIELD

The main result of this paper is the derivation of a coarse-
grained approximation of the USM in the form of a SHMF
approximation, which is based on the idea that the behavior
of the complete network can be approximated by a smaller
network of classes of agents grouped according to a relevant
property. The SHMF approximation we present in this paper
is based on grouping by degree, similarly to what is done
in [6], but another grouping choice can be made. This grouping
technique allows a coarse-graining procedure and the time
scale of the approximation obtained is tG instead of tint, that
is, we obtain an approximation at the population level, thus
realizing the diagonal arrow of Fig. 2.

The main advantage of this approach is to keep the
stochasticity of the model, while throwing away much of
the network structure. The approximation obtained takes
the form of a system of SDEs capturing the behavior
of the entire ABM. With this approximation, the influence
of the different parameters on the population behavior can be
analyzed. In the rest of this section, we discuss the network
and the state space reduction induced by a HMF approach,
derive the SHMF approximation of the USM, and apply it
to simple network topologies. We leave the discussion of
complicated topologies for future work and focus in this paper
on regular and star-shaped networks. In the case of regular
networks, there is a single class of nodes and the SHMF
approximation reduces the dynamics to a single SDE. This

SDE is of the same form as a Wright-Fisher (WF) diffusion
process (see Appendix A) and known results about this process
can be applied. We also compare trajectories of the discrete
USM with those of the SHMF approximation to qualitatively
validate the approximation. Unfortunately, it is not possible to
provide a good analysis of pathwise convergence of the SHMF
approximation to the USM, since the sources of noise are of
different natures. We then discuss the results for a star-shaped
network. This example illustrates the robustness of the SHMF
approximation for a very heterogeneous network.

A. Graph and state space reduction

We now describe the graph and state space reduction
induced by an SHMF approximation. The idea is to group
the nodes according the relevant property. This partition of
the nodes in classes implies the existence of an equivalence
relation, where the elements of the node partition are equiv-
alence classes. In this paper we group the nodes by degree.
This grouping is common in HMF approximations (see, for
example, [6]). Note that other groupings are possible; one can
group all the nodes and obtain a mean field approximation or
one can group nodes by communities. In each case, a partition
in equivalence classes is implied.

In this paper, we group the nodes by degree κ , that is, we
introduce the equivalence relation ∼κ defined as

i ∼κ j if κ(i) = κ(j ),

where κ(i) is the degree of node i. We set κ(i) = k and then
denote the corresponding equivalence class by [k]. The nodes
of the reduced graph are given by the classes [k] and are given
a weight Nk representing the number of nodes contributing to
the class [k]. Links between degree classes [k] and [k′] exist
whenever there is a link connecting a node of degree k to a
node of degree k′ in the original network. These directed links
are weighted by p(k′|k), which represents the probability that a
node of degree k is connected to a node of degree k′. Note that
in general p(k′|k) �= p(k|k′) and that self-links are possible,
since different nodes of the same degree can be connected
together.

Example. The reduced graph of a regular network (a
network in which all nodes have the same degree) is a single
node with a connection to itself (see the left panel of Fig. 5).
The reduced graph of a star-shaped network has two connected
nodes, but no connection to itself, since in this topology the
node of one class always interacts with nodes of the other class
(see the right panel of Fig. 5).

In the SHMF approximation, each degree classes is de-
scribed by a single belief distribution x(k) ∈ PV defined as

x(k) := 1

Nk

∑
i∈[k]

x(i), x(k) ∈ PV ,

where Nk is the number of agents of degree k in the network.
If there are K classes, the dimension of the state space is
K(V − 1), since PV is of dimension V − 1 because of the
normalization constraint. In the original model, the dimension
of the state space is N (V − 1). If K  N , the SHMF
approximation significantly reduces the dimension of the state
space.
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FIG. 5. Illustration of the network reduction for regular networks (left) and star-shaped networks (right). In each panel the left part is the
original network and the right part is the reduced network.

B. Derivation of the stochastic heterogeneous mean
field approximation

We can now derive the SHMF approximation of the USM.
This is where the work done in previous sections, in particular
the continuous-in-L normal approximation of Sec. IV A, pays
off. The SHMF approximation uses a time unit corresponding
to the network time tG . The core idea of the approximation is to
consider a class of nodes as a single agent, which corresponds
to the vertical arrow between Disc. ABM and Disc. PBM in
Fig. 2, and to use the continuous time limit obtained in the
previous section to implement the horizontal arrow between
Disc. PBM and Cont. PBM in Fig. 2. To do so, we group
all the agents belonging to the same degree class and ask
them to produce all the utterances they have to utter during a
complete network update and consider the results as a single
class utterance of length Lk := kL

E
Nk . At each network time

step, all degree classes exchange their class utterance with
the other degree classes. A weight p(k′|k) is given to these
utterances, proportional to the probability that the two degree
classes are connected. Since Lk is usually large, the normal
approximation, which fails in the two-agent case, is now
justified by the central limit theorem and one can use it to
approximate the average utterance by

u(k) = M

(
x(k) + 1√

Lk

D(x(k))ξ (k)

)
, (18)

where M is the production error, or mutation, matrix and
D(x) is a Cholesky square root of the covariance matrix of a
multinomial distribution (see Appendix B) and ξ (k) ∼ N (0,I)
is a normally distributed random vector.

We assume that G(ij ) = 1
E
δi↔j , that is, the probability to

pick an edge is uniform. The averaged change of a degree class
[k] at the network level is given by

δx(k) = λ
(1 − h)k

E
(u(k) − x(k))

+ λ
hk

E

∑
k′

p(k′|k)(u(k′) − x(k)), (19)

where p(k′|k) is the probability that a node of degree k is
connected to a node of degree k′ and E is the number of edges
of the network.

Introducing the degree k utterance (18) into Eq. (19) and
introducing the scaling dt = 1

E
, which is motivated by the fact

that the interaction time is much faster than the network time
(see Fig. 1), gives the SDE

dx(k) = λ

[
(1 − h)k(Mx(k) − x(k))

+hk
∑
k′

p(k′|k)(Mx(k′) − x(k))

]
dt

+ λ

[
(1 − h)

√
k

LNk

MD(x(k))dW (k)
t

+hk
∑
k′

p(k′|k)
1√

Lk′Nk′
MD(x(k′))dW (k′)

t

]
, (20)

where the time is measured in tG units. Equation (20) is the
continuous time SHMF approximation of the USM. The first
two terms describe the influence of the self-monitoring and
accommodation processes and the last two terms model the
corresponding noises. There is one such equation for each
degree class [k].

This approximation greatly reduces the number of degrees
of freedom whenever K  N , where K is the number of
equivalence classes [k]. The number of agents Nk in a class
[k] only enters Eq. (20) as a parameter of the noise coefficients.
The noises are therefore dependent on the size of the network.
For large networks, the contribution of the noise is small and
vanishes in the limit of infinite networks. In other words, the
global stochastic dynamics of the model is a finite-size effect.
The parameter L also controls the amplitude of the noise. The
shorter the utterance, the larger the noise. This justifies the
interpretation of L as describing the variability of a speaker.

In the SHMF approximation, we are throwing away a
great deal of information about the topology of the network,
conserving only the different degree classes. If we model the
social interaction by randomly ordering the edges and going
through them exactly once at each network time, the nodes
with a large number of neighbors interact more often than
nodes with a small number of neighbors. As a result, we expect
the evolution of the different classes of nodes to evolve on a
different time scale. In Eq. (20) the time scale difference is
encoded in the dependence on k of the dynamics of x(k).

We expect the SHMF approximation to be a good ap-
proximation if the number of agents in each degree class is
sufficiently large for the normal approximation to hold and if
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the nodes forming a class are well connected. Both of these
conditions are satisfied for regular networks. A limiting case
is given by star-shaped networks, in which there is no direct
connection between nodes of degree 1 and where there is a
single node of degree N − 1. In this case, both conditions
are violated and we show that the SHMF approximation
nevertheless captures well the dynamics of the system.

In the following we apply the SHMF approximation to
regular networks and to star-shaped networks. The regular
network analysis allows us to study in detail the influence of
the different parameters and the star-shaped network illustrates
the robustness of the method.

C. Regular networks and the Wright-Fisher SDE

The case of regular networks is particularly interesting,
since its SHMF approximation takes the form of a WF
diffusion, which has been widely studied, much is known about
the behavior of this process and we can apply this knowledge
to the study of the SHMF approximation of the USM. The
left panel of Fig. 5 illustrates the type of network we are
considering, together with the reduced network of degree class
on which the SHMF approximation is defined.

For simplicity, we restrict the discussion to the case of two
variants V = 2 and we choose a mutation matrix M of the
form (17), with q = 10−3. The Cholesky square root D(x)
is given by Eq. (B9b). Under these assumptions, the SHMF
approximation of the regular network is given by

dx
(k)
1 = kλ

(
x ′(k)

1 − x
(k)
1

)
dt

+ λ(1 − 2q)

√
k

LN

√
x

(k)
1

(
1 − x

(k)
1

)
dW

(k)
t

= −γ

(
x

(k)
1 − 1

2

)
dt + σ

√
x

(k)
1

(
1 − x

(k)
1

)
dW

(k)
t , (21)

where x′ = Mx and x
(k)
2 = 1 − x

(k)
1 to conserve probability.

We also introduced γ = 2qkλ and σ = λ(1 − 2q)
√

k
LN

. The
time has to be measured in tG units.

In order to simplify the discussion, we scale the time
variable as t ′ := λktG . With this scaling, Eq. (21) can be
rewritten as

dx
(k)
1 = −γ ′

(
x

(k)
1 − 1

2

)
dt ′ + σ ′

√
x

(k)
1

(
1 − x

(k)
1

)
dW

(k)
t ′ ,

(22)
where

γ ′ = 2q,

σ ′ = (1 − 2q)

√
λ

LN
.

(23)

Equation (22) is a WF process, as discussed in Appendix B.
This process occurs in many different contexts such as
population genetics and economics (see, for example, [21]).
The type of noise occurring in Eq. (22) can be found in
another model for language change in which an age-structured
population is considered (see [22]).

The three relevant parameters controlling the dynamics are
λk, q, and r := λ

LN
. The time scale evolution is controlled by

the product λk of the learning rate and the degree of the class.

This is expected, since λ models the amplitude of change
at each time step and since an agent of degree k interacts
k times during a single network update. The parameter q

models the influence of error production and innovations. If
q = 0, then there is no error and no innovation. In this case,
λ′ = 0 and σ ′ = √

r . In other words, the dynamics is only
driven by noise and the boundaries are absorbing. Once the
population reaches a consensus, the state of the system no
longer changes. The other extreme case is when q = 1

2 . In this
case, the multiplication by M in (18) randomizes the output and
the noise information is lost. In this case, the noise coefficient
σ ′ vanishes and the dynamics is driven by the drift term and
the solution deterministically goes to x

(k)
1 = 1

2 . The parameter
r controls the size of the noise and is proportional to λ and
inversely proportional to N and L. When r is large the noise
dominates the dynamics and the solution is pushed towards
the boundary of the domain; when r is small the drift term
dominates the dynamics and the solution is pushed towards
the center of the domain. Therefore, we expect a change of
the stationary distribution shape between a U-shaped and a
bell-shaped distribution by varying r and q.

We can now take advantage of the WF form of the SHMF
approximation of the regular network for which the stationary
distribution is known and takes the form of a Beta distribution
(see, for example, [12]). For long times, the probability p∗(x)
that a trajectory reaches a certain value x is given by

p∗(x) = 2
�

(
γ

σ 2 + 1
2

)
�

(
γ

σ 2

) + �
(

1
2

) [4x(1 − x)](γ /σ 2−1). (24)

For more than two variants, one can generalize this formula.
The resulting Dirichlet distribution can be found in [23]. In
our case, the single parameter of this distribution is given by

γ

σ 2
= 2q

(1 − 2q)2r
. (25)

We see that this parameter only depends on q and r , as
expected. The distribution (24) changes from a bell-shaped
distribution for σ 2 > γ to a U-shaped distribution for σ 2 < γ ,
with a transition when σ 2 = γ . In the bell-shaped regime,
there is no convention emerging and the agents are probability
matching and the dynamics is dominated by the deterministic
term. In the U-shaped regime, conventions emerge, but are not
stable unless q = 0, in which case the distribution degenerates
to the discrete probability mass function weighting only x = 0
and 1. From Eq. (25) one obtains the critical value for q∗(r)
given by

q∗(r) = r

1 + 2r + √
1 + 4r

, (26)

which behaves as q∗(r) ∝ r
2 , when r → 0.

Figure 6 summarizes the behavior of regular graphs.
The exact critical value q∗ and its asymptotic behavior are
displayed, separating the parameter space into regions of
U-shaped and bell-shaped stationary distributions. Since the
parameter r is inversely proportional to N , this phase diagram
is the signature of a finite-size effect. For an infinite graph, the
distribution is always bell shaped and no convention can ever
globally emerge.
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FIG. 6. Illustration of the critical parameter q∗(r) separating
the bell-shaped and the U-shaped domain. The red curve is the
approximate behavior. For illustration, we display the positions of the
two examples considered in this section (regular network of degree 3
for N = 10 and 100 agents).

For a fixed parameter q, decreasing the parameter r leads
to a phase transition from a U-shaped to a bell-shaped
distribution. We recall that r is proportional to λ and inversely
proportional to N and L.

The parameter k, representing the degree of the regular
graph, only contributes to the λk time scale parameter and
therefore has no influence on the shape of the station-
ary distribution of the averaged system. For the numerical
simulations, we choose regular networks of degree k = 3.
The agents choose between V = 2 variants and produce
utterances of length L = 2 for T = 104 network updates. For
the other parameters, we choose h = 0.5 and q = 0.001. We
then change the number of agents from N = 10 to N = 100,
which corresponds to values of r = 200 and 2000, respectively.
With these parameters, the critical values of the mutation
parameter are q∗ ≈ 2.475 × 10−3 and 2.498 × 10−4. These
values are plotted in Fig. 6. Since the chosen value of q < q∗
for N = 10, we expect a U-shaped distribution and since
q > q∗ for N = 100, we expect a bell-shaped distribution.

Results for the trajectories of the discrete USM and for the
corresponding SHMF approximation are displayed in Fig. 7.
The results of the SHMF approximation are in good qualitative
agreement with the results of the discrete USM and can
therefore be used to characterize the behavior of the system.

In order to validate the SHMF approximation of the USM,
we computed the stationary distribution of the discrete USM
and compared the results with the analytical prediction of
its SHMF approximation. The results displayed in Fig. 8 are
excellent already with relatively few statistics of 1000 trajecto-
ries. Since the computation of the stationary distribution of the
discrete USM is time consuming and due to the symmetry of
the dynamics, we augmented the statistics by considering both
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FIG. 7. Comparison between the discrete USM (left column)
and the SHMF approximation limit of it (right column). For these
simulations, the parameters are h = 0.5, λ = 0.1, V = 2, L = 2,
T = 104, and q = 0.001 and the number of agents is 10 in the top
row and 100 in the bottom row. The regular graph is of degree k = 3.
At the beginning of the simulation, all agents share the convention to
use the variant v = 1.

x1 and x2 at the end of the simulation, since the two variants
are equivalent.

For regular networks, the parameter h does not play a role
in predicting the population-averaged stationary distribution.
This has been verified by performing the simulation for
different values of h (not shown). However, in [12] it is
shown that h does play a role in the marginal stationary
distribution; in other words, h has an influence on the stationary
distribution of higher-order moments, rather than on the
stationary distribution of the average behavior analyzed here.
In order to better understand the effect of h on the population
averaged stationary distribution, we now consider the case of
star-shaped networks.

D. Star-shaped networks

We now consider the case of a heterogeneous network,
namely, the star-shaped network. This kind of network is

x0         0.2         0.4        0.6         0.8         1

p(
x)

6

5

4

3

2

1

0

FIG. 8. Comparison between the stationary distribution of the
discrete USM on a regular network with the distribution predicted
by the SHMF approximation. Shown on the left is the stationary
distribution for 10 agents. On the right is the stationary distribution
for 100 agents.
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characterized by two classes of nodes, a central node of degree
N − 1 and N − 1 nodes of degree 1 connected to it. The right
panel of Fig. 5 illustrates this kind of network, together with
the reduced network used in the SHMF approximation.

For this kind of network, the SHMF approximation is
expected to fail to capture efficiently the dynamics. This is due
to the fact that the normal approximation is not well justified
for the central node labeled C in the right panel of Fig. 5.
Furthermore, all the degree one nodes interact through the
mediation of this poorly approximated node.

In order to simplify the notation, we introduce the quantities

σ1 = λ(1 − 2q)
1√

L(N − 1)
, γ1 = 2qλ,

σN = λ(1 − 2q)

√
(N − 1)

L
, γN = 2qλ(N − 1)

and we have the relations γN = (N − 1)γ1 and σN = (N −
1)σ1. With this notation, the SHMF formulation of the USM
for a star-shaped network of N agents reads

dx
(1)
1 =

[
γ1(1 − h)

(
1

2
− x

(1)
1

)
+ λh

(
x ′(N−1)

1 − x
(1)
1

)]
dt

+ (1 − h)σ1

√
x

(1)
1

(
1 − x

(1)
1

)
dW

(1)
t

+hσ1

√
x

(N−1)
1

(
1 − x

(N−1)
1

)
dW

(N−1)
t ,

dx
(N−1)
1 =

[
(1−h)γN

(
1

2
−x

(N−1)
1

)
+ λh

(
x ′(1)

1 −x
(N−1)
1

)]
dt

+ (1 − h)σN

√
x

(N−1)
1

(
1 − x

(N−1)
1

)
dW

(N−1)
t

+hσN

√
x

(1)
1

(
1 − x

(1)
1

)
dW

(1)
t , (27)

where x ′(i)
1 is the first component of Mx(i), i = 1,N − 1.

For Eq. (27) we do not have an analytical form for the
stationary distribution of x

(1)
1 and x

(N−1)
1 . However, the results

obtained for regular networks can be used to gain some insight
into this problem. For example, we observe that the noise
magnitude is much larger for the central node than for the
other nodes. This is a consequence of the time scale difference
between the two classes of nodes.

In order to illustrate the behavior of the star-shaped
network and, in particular, the influence of the h parameter,
we performed simulations of the star-shaped network for
parameters similar to those used for the regular network
case. We consider V = 2 variants that are used to produce
utterances of length L = 2; the mutation parameter entering
the symmetric mutation matrix M is fixed to q = 10−3. The
learning rate is λ = 0.1 and the simulation ends after T = 104

network time steps. For these parameters, we vary the number
of agents N = 10 or 100 and the parameter h = 0.9 and 0.1. In
these settings, we compare the behavior of the discrete USM
with the behavior of the corresponding SHMF approximation.

The results are displayed in Fig. 9. Figures 9(a)–9(d) show
the results for N = 10 agents and Figs. 9(e)–9(h) show the
results for N = 100 agents. Figures 9(a), 9(b), 9(e), and 9(f)
correspond to h = 0.9 and Figs. 9(c), 9(d), 9(g), and 9(h)
correspond to h = 0.1. We observe that between N = 10 and
100 there is a transition from a U-shaped to a bell-shaped
distribution. Since the critical value of q∗ is derived for the
regular network, this existence of a transition should be fairly
robust for different topologies. The exact value of q∗ is not
known for the star-shaped network case, but such a transition
is nevertheless expected.

We now discuss the influence of the h parameter. As
expected, the behavior of the central node is noisier than the
average of the other nodes. This is a consequence of the time
scale difference between the two classes of nodes. If h is
reduced, the coupling between the two classes of nodes is
weakened and the noise increases. The SHMF approximation
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FIG. 9. Comparison of time series of the discrete USM and of the SHMF approximation limit of it for the star-shaped network. For these
simulations, the parameters are λ = 0.1, V = 2, L = 2, T = 104, and q = 0.001. The top part of each graph displays the behavior of the degree
k = 1 nodes and the bottom part of each graph displays the behavior of the central node. The value of N is (a)–(d) 10 and (e)–(h) 100. The
first and third columns display the results of the USM and the second and fourth columns display the results of the SHMF approximation. In
the first two columns h = 0.9 and in the last two columns h = 0.1. At the beginning of the simulation, all agents share the convention to use
the variant v = 1.
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FIG. 10. Comparison between the discrete USM and its SHMF approximation limit for the star-shaped network. For these simulations, the
parameters are λ = 0.1, V = 2, L = 2, T = 4 × 103, and q = 0.001. The top part of each graph displays the distribution of the degree k = 1
nodes and the bottom part of each graph displays the distribution of the central node. In the top row the value of N is 10 and in the second
row the value of N is 100. The first and third columns display the results of the USM and the second and fourth columns display the results
of the SHMF approximation. In the first two columns h = 0.9 and in the last two columns h = 0.1. The red line is the solution of the mean
field approximation. It helps to see how the star-shaped network differs from the regular network case. The first two columns and the last two
columns have to be compared.

reproduces this behavior and therefore captures the effect of
h. However, it seems that the SHMF approximation converges
with a slower rate towards the stationary distribution. This
could be explained by the fact that in the discrete USM,
the edges are updated sequentially, whereas in the SHMF
approximation they are updated synchronously. The sequential
update might converge faster than the synchronous one,
as observed in Fig. 9. For large networks, the difference
between sequential and synchronous updates diminishes and
the convergence rates of the two approaches become more
similar. Even if the convergence rate of the USM and the
SHMF approximation might be different, the stationary state
should nevertheless be similar for both approaches. In order
to verify this prediction, we compare the numerical stationary
distribution of the USM and of the SHMF approximation in
the same conditions as in Fig. 9, computed at T = 4000.
We also compare the results with the predicted mean field
approximation corresponding to Eq. (21), where the degree
k has to be replaced by the averaged degree k̄ = 2 + 2/N

of star-shaped networks. Since the mean field stationary
distribution does not depend on k, we expect it to be a good
approximation if the coupling between the two classes of nodes
is strong enough.

In Fig. 10 we display the results for the stationary
distribution in the same settings as those used in Fig. 9.
The sampling is done at the final time tG = T , T = 4000.
To augment the statistics, we once again considered both x1

and x2 in the histograms, which artificially enforces symmetry
of the distributions.

For h = 0.9, we observe that the distributions of the two
degree classes are both in good agreement with the mean
field limit. For N = 10 [Figs. 10(a) and 10(b)], the SHMF
approximation underestimates the behavior at the boundary
of the domain. This might be due to a discretization error

effect. In fact, we know that the algorithm used converges
strongly (trajectorywise), but we do not know at what rate.
Since this rate can be arbitrarily slow, the results of the SHMF
approximation close to the boundary might not be reliable see
Appendix C for details). Apart from this effect, the results of
the USM and the SHMF approximation are in good agreement
with the mean field limit (red lines in Fig. 10). For h = 0.9
and N = 100 [Figs. 10(e) and 10(f)], the class of degree
k = 1 nodes follows, as expected, the mean field limit for
both the USM and the SHMF approximation. The behavior
of the central node is noisier and the comparison is less
straightforward. We observe that for the SHMF approximation
the effect of the noise manifests itself by an undersampling of
the peak of the distribution. This effect is less clear in the
USM case, but the results are quite noisy. We can conclude
that the SHMF approximation in this case is slightly better that
the mean field, which completely neglects the topology of the
graph.

For the weaker coupling h = 0.1, the dynamics becomes
more interesting. For N = 10 [Figs. 10(c) and 10(d)], the
agreement between the USM and the SHMF approximation
is good and the effect of the stronger noise is mainly seen at
the boundaries of the domain, where it is observed that the
central nodes spends more time close to the boundary than the
average degree k = 1 node. The discretization problems might
explain the undersampling of the SHMF approximation in the
boundary regions. Another explanation can be linked with the
network reduction itself. In fact, for star-shaped networks, it
is not clear whether the approximation should work at all,
since the normal approximation fails for the central node. For
N = 100 [Figs. 10(g) and 10(h)], the effect of the noise is
much clearer. Since the coupling is fairly weak, the time scale
difference between the classes of noise leads to a very noisy
behavior of the central node. As a result, the distribution of
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the central node flattens, while the behavior of the degree 1
nodes remains close to the mean field. We also observe an
oversampling effect of the peak for the degree 1 nodes. This
can be explained by the fact that in the absence of coupling,
the behavior of all the degree 1 agents becomes independent.
As a consequence of the central limit theorem, the variance
of their average behavior is reduced, explaining the stronger
peak observed. The results of the SHMF approximation
qualitatively capture the correct behavior and provide a better
prediction than the mean field approximation (red line in
Fig. 10). In this case, the very strong noise entering the
dynamics of the central node leads to greater numerical
errors (see Appendix C for details). Another explanation of
these differences lies in the difference in the variance of the
multinomial distribution and the BISS approximation of it. For
instance, in Fig. 4 it is shown that the variance of the BISS
approximation is smaller than the variance of the discrete
USM. Since the central node is the only node in this class,
the hypothesis based on the central limit theorem, needed to
justify the normal approximation, no longer holds. This is a
possible explanation of the disagreement of the USM and the
SHMF approximation results. Since the flattening effect is
seen in both simulations, we can nevertheless conclude that
the SHMF approximation captures the main characteristics of
the dynamics of the star-shaped network and in particular the
effect of h better than the mean field approximation (red line).

In this section we have shown that the SHMF approximation
is able to capture the dynamics of the USM on different
network structures and to reproduce both the trajectories and
the stationary distributions of the model. The results of the
star-shaped network are less convincing due to numerical
problems in the simulation of the SHMF approximation in
the presence of strong noise. This is the case, for example,
for N = 100 and h = 0.1. The search for better algorithms to
sample these trajectories is left for future work.

VI. CONCLUSION

In this paper we discussed the USM for language change
and its continuous time limits. In order to overcome the
parameter restrictions of the FP continuous time limit obtained
using the KM expansion, we have proposed a continuous time
limit based on the normal approximation of the multinomial
distribution. For two agents, this approximation leads to a
weak-noise SDE generalizing the KM expansion solution. We
argued that the weak noise should not be neglected for two
reasons: (i) The noise is heuristically of the same order of
magnitude as the drift term and (ii) the drift term vanishes in
long time simulations. The weak-noise limit also captures the
influence of the noise of both utterances, whereas the FP limit
of [12] neglects the influence of the noise of the incoming
utterance.

Using this continuous time limit, we derived a stochastic
version of the HMF approximation and applied it to regular and
star-shaped networks. This approximation allows us to study
the dynamics of the system at the level of the network instead
of at the level of the agents, which is a great improvement on
the analysis of agent-based models in that it provides analytical
tools to characterize the noise-driven phase transition and

therefore opens the door to exciting results, since the grouping
procedure can be done using different criteria.

For regular networks, the SHMF formulation turns out
to be a Jacobi process described by the WF diffusion SDE.
The analysis has shown that the dynamics is controlled by
three interdependent parameters λk, q, and r := λ

LN
and

only the last two parameters contribute to the stationary
distribution. The h parameter, weighting the self-monitoring
and the accommodation process in the USM, does not enter
the SHMF approximation. As a result, one can interpret this
fact as “prestigious” agents (large h) do not have a particular
influence on the dynamics. This is true as long as only the
attention parameter is taken into account. If a prestigious agent
influences the weighting of its variants, then the effect can
be large. This can be modeled, for example, by a preference
mechanism (see [24]). For regular networks, we computed the
critical value q∗(r) and obtained a phase diagram describing
the form of the stationary distribution. Such a distribution is
also expected on average for regular graphs, since the SHMF
approximation of regular networks can be interpreted as a
mean field approximation of any network. Since r is inversely
proportional to N , the functional dependence q∗ ∝ λ

2LN
is the

signature of a finite-size effect. For instance, the stationary
distribution of the averaged population transitions from a
U-shaped distribution to a bell-shaped distribution when N

increases. In the limit N → ∞, the noise term vanishes and the
solution exponentially decays to x = 1

2 . This case corresponds
to the deterministic limit obtained using the KM expansion and
only scaling λ = δt .

For star-shaped networks, a case where the SHMF approx-
imation is expected not to be a very good approximation,
the SHMF approximation still provides satisfying results,
capturing the time scale difference between the central node
and the outer nodes. This effect is not captured by the mean
field approximation (which corresponds to applying the results
from regular networks to star-shaped networks).

In the context of cultural evolution, the interesting regime
is when the stationary distribution is U shaped, which is the
signature of the creation of populationwide conventions that
can change. In our model, for large populations (for small
values of r), we have shown that a convention does not usually
emerge (the stationary distribution is bell shaped). This is
a signature of what is called by Nettle [25] the threshold
problem. This problem states that in large populations, it is
really difficult to change an established convention. Nettle
proposed a solution by using the social impact theory. In our
case, we can obtain populationwide conventions by increasing
r or decreasing q (see Fig. 6). In other words, one can explain
the emergence of new conventions in a large population if
the learning rate λ is sufficiently large or if the variability of
speech is sufficiently large, that is, if the utterance length L

is small. In both cases, the influence of errors is increased.
If q is very small, conventions emerge, but they are stable
and cultural change is rare. In fact, if q = 0 the boundaries
are exits according to Feller classification and conventions are
absorbing states.

The social impact theory relies on prestigious agents to
explain language change. In the USM, the way the influence
of a specific agent is encoded through the attention parameter
h. Since this parameter does not enter the mean field equation,
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our results suggests that an influential agent only has a
weak influence on the dynamics. However, if the prestige is
associated with the variant used by an influential agent, the
conclusion changes and this can have a tremendous influence
on the dynamics. In this case, the different variants are no
longer equivalent and the learning rule has to be adapted to
take this into account. Such a variant weighting can be encoded
either in the mutation matrix M if the variant is objectively, or
functionally, better or through the introduction of a preference
mechanism [24], which allows the agent to adapt one’s behav-
ior to the different variants. These modifications have a huge
impact on the dynamics of the system and remain to be studied.

In the USM, the influence of the topology can be studied
using the SHMF approximation. In this paper we have
provided a proof of principle and the complete analysis of
the influence of the network remains to be done. In [26], the
authors discussed the dynamics of a model of language change
in social networks using computer simulations. We believe that
our approach can complement and possibly explain the results
obtained in [26].

Left for future work is the study of the influence of the
topology of the network using the SHMF approximation and
the influence of nonconstant h(ij ) or asymmetric M , as well
as study the influence of different extensions of the USM,
such as the presence of preferences for a particular variant
and the influence of group membership (different behavior
depending on the identity of the interacting agents). The SHMF
approximation only characterizes the stationary distribution of
the population-averaged behavior. Extending this approach to
higher moments will complement the knowledge and provide
information on the dispersion around the averaged behavior.
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APPENDIX A: CONTINUOUS TIME LIMIT OF THE USM
USING THE KRAMERS-MOYAL EXPANSION

In this Appendix we provide the derivation of continuous
time limits of the USM using the KM expansion [27], similarly
to what was done in [12]. This method provides a FP equation
for the probability distribution p(x(i),t ; X (−i)) to find agent i

with an idiolect x(i) at time t , knowing the state of the rest
of the population X (−i). The exponent (−i) means all agents
except agent i. This is notation borrowed from game theory.
The time t has to be measured in tint units here.

The KM expansion of a stochastic process x(i) is given by

∂p

∂t
= −

V −1∑
v=1

∂

∂x
(i)
v

{βv(x(i))p}

+ 1

2

V −1∑
v=1

V −1∑
w=1

∂2

∂x
(i)
v ∂x

(i)
w

{βvw(x(i))p}

+ · · · , (A1)

where the jump moments are defined as

βv(x(i)) = lim
δt→0

〈
δx(i)

v (t)
〉

δt
, (A2)

βvw(x(i)) = lim
δt→0

〈
δx(i)

v (t)δx(i)
w (t)

〉
δt

. (A3)

Here the average is taken over utterance production and over
edges of the graph connected to agent i, which are the two
sources of randomness in the model.

In order to simplify a bit the presentation, we assume that
the off-diagonal terms of the matrix M are of order (δt)1/2 or
smaller. If this is the case, then one can write the condition

O(‖M − I‖∞) = O((δt)1/2). (A4)

This assumption was used in [12] and we only do it in
this appendix. We also introduce the notation x′ = Mx for
convenience.

Under assumption (A4) one can collect all the terms that
depend on the off-diagonal term of M in O(‖M − I‖∞). We
can then write the first two jump moments as〈

δx(i)
v

〉 =
∑
j �=i

G(ij )λ
[
(1 − h)

(
x ′(i)

v − x(i)
v

) + h
(
x ′(j )

v − x(i)
v

)]
(A5)

and

〈
δx(i)

v δx(i)
w

〉 =
∑
j �=i

G(ij )λ2

[
(1 − h)2

L
x(i)

v

(
δvw − x(i)

w

)

+ h2

L
x(j )

v

(
δvw − x(j )

w

)
+h(1 − h)

(
x(j )

w − x(i)
w

)(
x(j )

v − x(i)
v

)
+O(‖M − I‖∞)

]
. (A6)

Equation (A6) has been computed for the definition (3a) of
the utterances. The expression for the definition (3b) differs
from (A6) and can be computed easily.

In order to obtain a FP equation, scaling assumptions have
to be made to ensure that (A5) and (A6) are both of order δt

and that higher-order jump moments are of higher order. The
scaling chosen in [12] is given by

λ = (δt)1/2, (A7a)

Mvw = M̄vw(δt)1/2 for v �= w, (A7b)

h = h̄(δt)1/2. (A7c)

Equation (A7b) is equivalent to assumption (A4). This
scaling is the only one compatible with the KM expansion
leading to a FP equation with nonvanishing diffusion, given
the constraints on the parameters. In particular, if the constraint
that L is an integer is relaxed, another scaling would work. It
is given by

λ = δt, (A8a)

L = L̄δt. (A8b)
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The scaling of L means that the number of tokens in an
utterance tends to 0. Since L � 1, this is not possible.

The USM scaling is problematic since it requires one to
scale the h parameter and the off-diagonal terms of M , limiting
this continuous time limit to a small part of the parameter
space. The assumption that off-diagonal terms of M are small
corresponds to a small probability of innovation and is not
really problematic. The restriction on h is much stronger, since
it requires the accommodation process to be negligible with
respect to the self-monitoring process, which is usually not
justified.

The second scaling is not satisfying either since it requires
one to scale an integer quantity, namely, L. Therefore, none of
these approaches gives a satisfying FP equation.

If one does not want to scale either h or L, the only possible
scaling left is to scale λ ∝ δt . In this case, the KM expansion
is truncated after the first term and there is no diffusion term.
In other words, the continuous time limit is deterministic. The
KM expansion, therefore, predicts that the behavior of a single
agent on the tint time scale is deterministic, unless the attention
parameter h and the off-diagonal terms of M are small, in
which case we obtain a diffusive dynamics.

APPENDIX B: THE USM AND THE WRIGHT-FISHER
PROCESS

In this Appendix we present the WF stochastic process,
also called the Jacobi process, and connect it to the USM. We
then discuss the different available choices of choosing a noise
form in the resulting SDE.

1. Definition of the Wright-Fisher process

The WF models of population genetics [28,29] model the
biological transmission of alleles of genes between generations
of a population. This model gives rise to a stochastic process
described by the SDE

dxt = −λ(xt − b) + c
[
diag(xt ) − xt xT

t

]1/2
dW t , (B1)

where λ > 0, b ∈ PV , c is a positive constant, and the square
root of the matrix has to be taken in the Cholesky sense. Finally
dW t is a d-dimensional white noise. Here d is not necessarily
equal to the dimension V of xt , since the Cholesky square root
is not necessarily a square matrix. Note that one only needs to
consider the first V − 1 components of xt , since the last one
can be recovered using the conservation of probability.

Definition 1 (square root in the Cholesky sense). A matrix
D ∈ Rm×n is said to be a square root in the Cholesky sense of
a matrix A ∈ Rm×m if

DDT = A.

The square root in the Cholesky sense is not uniquely defined
and not necessarily a square matrix (see [30] for details).

The WF process (B1) satisfies a sum to unit constraint and
a non-negativity constraint. In [31] it is shown that there are
only a few stochastic processes that satisfy such a conservation
law. The WF process naturally arises from discrete processes
when characterized by a multinomial sampling process. This
is the case in the original discrete WF model as well as in the
USM. For instance, the matrix diag(xt ) − xt xT

t corresponds to

the covariance matrix of the normalized multinomial sampling
process. The WF stochastic process is sometimes called the
Jacobi process by mathematicians and economists [32–35],
because the infinitesimal generators of this process, obtained
as the eigenfunctions of the backward Kolmogorov equation,
are Jacobi polynomials.

We now discuss the form of the matrix D(x), which is the
square root of the matrix

A(x) := diag(xt ) − xt xT
t (B2)

in the Cholesky sense. This matrix is needed to complete
the formulation of the WF process (B1) and is also used in
the normal approximation (9) assumed in the derivation of
continuous time limits of the USM. We start with the special
case of V = 2 and discuss then the general case.

2. Form of D when V = 2

In the case V = 2, a vector x ∈ P2 is such that x2 = 1 − x1

and the matrix A(x) takes the simple form

A(x) = x1(1 − x1)

[
1 −1

−1 1

]
. (B3)

This matrix has many Cholesky square roots. We list three of
them here:

D1(x) := 1√
2

√
x1(1 − x1)

[
1 −1

−1 1

]
, (B4a)

D2(x) :=
√

x1(1 − x1)

[
1

−1

]
, (B4b)

D3(x) :=
[

(1 − x1)
√

x1 −x1
√

1 − x1

−(1 − x1)
√

x1 x1
√

1 − x1

]
. (B4c)

It is straightforward to check that these matrices are
Cholesky square roots of (B3). The matrix D1(x) is also a
square root of A(x) in the sense that D1(x)D1(x) = A(x). For
simplicity, the matrix D2(x) is usually chosen.

3. General case

If V > 2, then one can generalize the choices (B4b)
and (B4c), but the choice (B4a) is more difficult to generalize.
The choice (B4a) corresponds to a Cholesky square root that
is also a square root in the sense that D2

1 = A. Finding matrix
square roots is not an easy task and therefore this choice is
difficult to generalize.

The choice (B4b) takes into account the possible reaction
channels and considers one noise for each. For example, if
V = 3 then there are three mutation channels x1 ↔ x2, x1 ↔
x3, and x2 ↔ x3 and a possible Cholesky square root is given
by

D(x) :=
⎡
⎣

√
x1x2

√
x1x3 0

−√
x2x1 0

√
x2x3

0 −√
x3x1 −√

x3x2

⎤
⎦. (B5)

This can be generalized to an arbitrary number of variants.
The dimension of this matrix is V × (

V

2

)
,
(
V

2

)
is the binomial

coefficient. This is the formulation used, for example, in [20].
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The generalization of Eq. (B4c) is given by

{D(x)}vw := (δvw − xv)
√

xw. (B6)

This choice is associated with the multivariate Jacobi process
(see [33]).

All these choices are equivalent. In the context of SDEs,
they correspond to different trajectories of the same Wiener
process (see, for example, [30]).

4. The USM and the WF process

We now detail a case in which the USM is related to the WF
process. We consider a network of N = 2 agents using V = 2
variants. Given a mutation matrix M of the form

M :=
[

1 − m2 m1

m2 1 − m1

]
, (B7)

from Eq. (14) we obtain

dx(i) = G(i)

[
[(M − I )x(i)]dt +

(
1√
L

D(Mx(i))dξ (i)

)]
(B8a)

or

dx(i) = G(i)

[
[(M − I )x(i)]dt +

(
1√
L

MD(x(i))dξ (i)

)]
,

(B8b)

where the matrix D(x) is given by Eq. (B4b). We then have

D(Mx(i)) =
√

x
′(i)
1

(
1 − x

′(i)
1

)[ 1
−1

]
, (B9a)

MD(x(i)) = (1 − m1 − m2)
√

x
(i)
1

(
1 − x

(i)
1

)[ 1
−1

]
, (B9b)

where x ′
1 is the first component of x′ = Mx.

As stated in Sec. III the components of x(i) ∈ P2 are not
independent and it is sufficient to only consider the evolution
of the first components. We obtain

dx
(i)
1 = −γ (x(i)

1 − μ)dt + σsb

√
x

(i)
1

(
1 − x

(i)
1

)
dW

(i)
t ,

(B10a)

dx
(i)
1 = −γ (x(i)

1 − μ)dt + σbs

√
x

′(i)
1

(
1 − x

′(i)
1

)
dW

(i)
t ,

(B10b)

where

γ := −G(i)(m1 + m2),

μ := m2

m1 + m2
,

(B11)

σsb :=
√

dtG(i)

√
L

(1 − m1 − m2),

σbs :=
√

dtG(i)

√
L

.

We now discuss the influence of the ordering of sampling
and biasing on this weak-noise SDE. Since Eq. (B10) has to

satisfy the constraint that x1 ∈ [0,1], the SDE has to satisfy a
number of properties discussed in [31]. One of these properties
is that the noise coefficient has to vanish at the boundaries of
the interval, that is, at x1 = 1 and 0. The property is satisfied
by Eq. (B10a), but not by Eq. (B10b). One can therefore
conclude that Eq. (B10b) is ill posed, since it does not conserve
the probability. The well-posed character of Eq. (B10a)
then follows from the Yamada-Watanabe theorem [36]. This
theorem has to be used because the noise coefficient is
not a Lipschitz continuous function. Recall that a Lipschitz
continuous function f satisfies

‖f (x) − f (y)‖2 � CL|x − y| ∀x,y ∈ D(f ), (B12)

where CL is the Lipschitz constant and D(f ) is the domain
of f . This non-Lipschitz aspect of the noise coefficient
in Eq. (B10) is at the origin of numerical difficulties (see
Appendix C).

Under the normal approximation, the order of the sampling
and biasing processes matters. Sampling first and then biasing
is the only one that leads to a well-posed SDE. This order is also
more natural in a linguistic framework; it corresponds to first
sampling for the belief distribution x and then modifying the
output as a result of passing through the articulatory-auditory
channel. The other ordering corresponds to modifying the
belief distribution x and then sampling from the biased
distribution x′ = Mx without error. The origin of errors is
more difficult to justify in this case. The most natural ordering
is then also the mathematically preferred. Note that in the USM
and in the Dirichlet approximation, both orders are possible
and the restriction obtained here is intrinsically connected
with the normal approximation and its unbounded nature (see
Sec. IV A). The discussion about the well-posed character of
the equation has been done for two variants. Using the results
of [31], one can generalize the results to an arbitrary number
of variants and we arrive at the same conclusion that the only
ordering leading to a well-posed equation is sampling first and
then biasing. Another example in which the USM is linked
with the WF model is given by the SHMF approximation for
regular graphs given in Sec. V C.

APPENDIX C: NUMERICAL ALGORITHMS

In this Appendix we discuss the possible numerical
strategies to solve the WF SDE occurring as the SHMF
approximation of the regular network and how to extend the
results to the general SHMF equation. We consider the SDE

dxt = −γ (xt − μ)dt + σ
√

xt (1 − xt )dWt, (C1)

where xt is a realization of the stochastic process and dWt

a white noise. Equation (21) is of this form. This equation
can be shown to be well posed on [0,1] using a result of
Yamada and Watanabe [36]. One difficulty that arises with
this kind of SDE is linked with the non-Lipschitz aspect of the
multiplicative noise. Most of the usual proofs of convergence
rely on a Lipschitz condition (B12).

In order to accurately capture the trajectory of the stochastic
process, one needs a strongly convergent numerical method
(see [37] for details about the types of convergence). There is
a weaker notion of convergence, known as weak convergence,
that only requires convergence on average and not trajectory-
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wise. Obtaining weakly convergent methods is usually much
easier than obtaining strongly convergent methods.

In the rest of this appendix we discuss the performance of
different numerical methods for integrating Eq. (C1) and then
obtain a numerical method to integrate Eq. (20).

1. Wright-Fisher diffusion

We now discuss the different families of methods that have
been used to integrate Eq. (C1).

The first class of methods is the usual algorithms for SDE,
such as the Euler-Maruyama (EM) method or the Milstein
method. This class of methods fails to capture the correct
dynamics of Eq. (C1) due to the non-Lipschitz multiplicative
noise and the solution can leave the domain [0,1] of Eq. (C1).

The second class of methods introduces a min-max limiter


(x) = min[max(x,0),1] (C2)

to project the numerical solution back onto [0,1]. The resulting
methods are bounded and weakly convergent, but they are
not strongly convergent. One can apply this limiter under the
square root to get the internal limiter (IL) method (see [38]) or
to the complete update to get the external limiter (EL) method.

The third class of methods is based on the fact that Eq. (C1)
has an exact solution for particular values of the parameters.
Moro and Schurz proposed a splitting method based on this
idea (see [39]). The Moro-Schurz (MS) method has parameter
restrictions, which limit its applicability.

The fourth and last class of methods uses a control function
to keep the solution in the bounded domain. This idea is due
Milstein [40] and can be used alone [the balanced implicit
method (BIM); see [40]] or in conjunction with a splitting
method (the BISS method; see [20]). These methods can
be applied without restriction and can be shown to strongly
converge. However, the rate at which the method converges is
not known.

We now discuss the implementations of the different
methods. Let us introduce �t , a time increment, and �Wn,
the nth increment of a Wiener process. Then one can obtain
the discrete approximation xn ≈ x(tn = ndt) of the different
algorithms.

The EM method is given by

xn+1 = xn − γ (xn − μ)�t + σ
√

xn(1 − xn)�Wn.

This method does not converge at all and leads to unrealistic
results.

The IL method is defined as

xn+1 = xn − γ (xn − μ)�t + σ
√


(xn)[1 − 
(xn)]�Wn.

This method is not bounded, but is weakly convergent.
The EL method is defined as

xn+1 = 
[xn − γ (xn − μ)�t + σ
√

xn(1 − xn)�Wn].

This method is bounded and weakly convergent, but not
strongly convergent.

The MS method is based on the following splitting:

dy1 = σ 2

2

(
y1 − 1

2

)
dt + σ

√
y1(1 − y1)dWt, (C3a)

dy2 =
[
−γ (y2 − μ) − σ 2

2

(
y2 − 1

2

)]
dt. (C3b)

Equation (C3a) has an exact solution. At each time step,
Eq. (C3a) is solved analytically and serves as an initial
condition for Eq. (C3b), which is solved using a forward Euler
algorithm. This method is only bounded for certain parameters,
for which it is both weakly and strongly convergent.

The BIM is defined as

xn+1 = xn − γ (xn − μ)�t + σ
√

xn(1 − xn)�Wn

+ D(xn)(xn − xn+1),

where

D(xn) = d0(xn)�t + d1(xn)|�Wn| (C4)

is a control function. The convergence of this method depends
on the choice of d0 and d1. For good control functions, this
method is both weakly and strongly convergent. The limitation
of this method is that it is not always clear how to choose the
appropriate control functions.

The BISS method is based on the splitting

dy1 = σ
√

y1(1 − y1)dWt, (C5a)

dy2 = −γ (y2 − μ)dt (C5b)

and solves Eq. (C5a) using the BIM and Eq. (C5b) using a
forward Euler step. In the BIM step, the function d0(xn) ≡ 0
and

d1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ

√
1−ε
ε

if y < ε

σ

√
1−y

y
if ε � y < 1

2

σ
√

y

1−y
if 1

2 < y � 1 − ε

σ

√
1−ε
ε

if y > 1 − ε,

(C6)

where ε is a small tolerance parameter, defined in [20] as

ε = min(A�t,B�t,1 − A�t,1 − B�t) > 0

for �t small enough and where A = γμ and B = γ (1 − μ).
The discretization of Eq. (C5) takes the form

yn+1
∗ = yn

1 +
σ

√
yn

1

(
1 − yn

1

)
�Wn

1 + d1
(
yn

1

)∣∣�Wn

∣∣ , (C7a)

yn+1
1 = yn+1

∗ − γ
(
yn+1

∗ − μ
)
�t. (C7b)

This method is bounded and converges weakly and strongly
for all parameters if �t is chosen small enough.

The characteristics of the different methods are summarized
in Table I. The two best methods are the BIM and the BISS
method. We choose the BISS method because it is easier to
adapt to more complex dynamics such as the dynamics of
the SHMF approximation. The BIM could also be used; the
problem is that for more complex dynamics, a good control
function d0 is difficult to define. Since the convergence rate of
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TABLE I. Summary of the properties of the different numerical
methods available to solve the WF diffusion equation. We consider
whether the method produces a bounded result and is weakly
convergent or strongly convergent. In the case of convergence, we
specify whether on not there is a restriction on the parameters.

Weak Strong
Method Bounded convergence convergence No restriction

EM × × × ×
IL × √ × ×
EL

√ √ × ×
MS

√ √ √ ×
BIM

√ √ √ √
BISS

√ √ √ √

the BISS method is unknown, we expect numerical artifacts
close to the boundaries of the domain, where the Lipschitz
condition is not satisfied.

2. Numerical methods for the SHMF approximation of the USM

In Sec. I of this Appendix we recalled the numerical
methods available for solving the WF diffusion equation. For
the SHMF approximation of the USM (20), one needs to deal
with the noises of all neighboring degree classes. This can be
done by a splitting method inspired by the BISS algorithm.
We describe it for two variants V = 2. The idea is to split the

update between the utterance production (which is noisy) and
the deterministic learning rule. The continuous time version of
the normal approximation (18) is obtained by scaling 1

E
= dt .

The first component u1 is of the form

u1 = a + b

[
x1 + σk

√
x1(1 − x1)

�Wn

�t

]
, (C8)

where σk = (kLNk)−1/2, a = m1, and b = 1 − m1 − m2 for a
matrix M defined by Eq. (17).

The idea is to modify Eq. (C8) by introducing the control
function d1 of Eq. (C6), leading to the utterance production

un+1
1 = a + b

⎡
⎣xn

1 +
σk

√
xn

1

(
1 − xn

1

)
�Wn

�t

1 + d1(x1)
∣∣�Wn

∣∣
⎤
⎦ (C9a)

and the learning update given by Eq. (19)

x
(k),n+1
1 = x

(k),n
1 + λ(1 − h)k

(
u

(k),n+1
1 − x

(k),n
1

)
�t

+ λhk
∑
k′

p(k′|k)
(
u

(k′),n+1
1 − x

(k),n
1

)
�t. (C9b)

Equation (C9) is the BISS algorithm for the SHMF
approximation of the USM. This approximation ensures that
x1 ∈ [0,1] for all degree classes. The strong convergence
remains to be shown, but since the BISS method is strongly
convergent, we have good reason to think that this algorithm
conserves this property. For V > 2, the same idea can be used.
The only difficulty is to find an appropriate control function.
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[32] C. Gouriéroux and P. Valéry, http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.90.196&rep=rep1&type=pdf.

[33] C. Gourieroux and J. Jasiak, J. Econ. 131, 475 (2006).
[34] A. Kuznetsov, Solvable Markov processes, Ph.D. thesis, Uni-

versity of Toronto, 2004.
[35] S. Karlin and H. E. Taylor, A Second Course in Stochastic

Processes (Elsevier, Amsterdam, 1981).

[36] T. Yamada and S. Watanabe, J. Math. Kyoto Univ. 11, 155
(1971).

[37] P. E. Kloeden and E. Platen, Numerical Solution of Stochas-
tic Differential Equations, Stochastic Modelling and Applied
Probability Vol. 23 (Springer, Berlin, 1992).

[38] C. R. Doering, K. V. Sargsyan, and P. Smereka, Phys. Lett. A
344, 149 (2005).

[39] E. Moro and H. Schurz, SIAM J. Sci. Comput. 29, 1525
(2007).

[40] G. Milstein, E. Platen, and H. Schurz, SIAM J. Numer. Anal.
35, 1010 (1998).

022308-19

https://doi.org/10.1155/2014/603692
https://doi.org/10.1155/2014/603692
https://doi.org/10.1155/2014/603692
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.196&rep=rep1&type=pdf
https://doi.org/10.1016/j.jeconom.2005.01.014
https://doi.org/10.1016/j.jeconom.2005.01.014
https://doi.org/10.1016/j.jeconom.2005.01.014
https://doi.org/10.1016/j.jeconom.2005.01.014
https://doi.org/10.1215/kjm/1250523691
https://doi.org/10.1215/kjm/1250523691
https://doi.org/10.1215/kjm/1250523691
https://doi.org/10.1215/kjm/1250523691
https://doi.org/10.1016/j.physleta.2005.06.045
https://doi.org/10.1016/j.physleta.2005.06.045
https://doi.org/10.1016/j.physleta.2005.06.045
https://doi.org/10.1016/j.physleta.2005.06.045
https://doi.org/10.1137/05063725X
https://doi.org/10.1137/05063725X
https://doi.org/10.1137/05063725X
https://doi.org/10.1137/05063725X
https://doi.org/10.1137/S0036142994273525
https://doi.org/10.1137/S0036142994273525
https://doi.org/10.1137/S0036142994273525
https://doi.org/10.1137/S0036142994273525



