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Magnetic eigenmaps for community detection in directed networks
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Communities in directed networks have often been characterized as regions with a high density of links,
or as sets of nodes with certain patterns of connection. Our approach for community detection combines the
optimization of a quality function and a spectral clustering of a deformation of the combinatorial Laplacian, the
so-called magnetic Laplacian. The eigenfunctions of the magnetic Laplacian, which we call magnetic eigenmaps,
incorporate structural information. Hence, using the magnetic eigenmaps, dense communities including directed
cycles can be revealed as well as “role” communities in networks with a running flow, usually discovered
thanks to mixture models. Furthermore, in the spirit of the Markov stability method, an approach for studying
communities at different energy levels in the network is put forward, based on a quantum mechanical system at
finite temperature.
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I. INTRODUCTION

The investigation of network structure has been performed
with the help of a wealth of techniques [1] with various advan-
tages, a famous example being modularity optimization [2,3]
in undirected networks. One of the main disadvantages that
some of these methods have to face is the resolution limit.
In particular, extensions of modularity for changing the
resolution limit have been developed [4], whereas other related
methods are inspired from statistical physics. Indeed, a general
framework was developed in [5], and later, a specific Potts
model was explained to have no resolution limit [6]. On the
other hand, among the community detection methods, the
discrete Laplacians in undirected networks [7,8] have also
been used in order to unravel the graph structures. A common
feature of these definitions of communities is that they rely on
the density of links in the network. Notwithstanding, it is useful
to remind one here that finding an optimal graph partition
is known to be in general an NP-hard problem, given the
combinatorial nature of the problem, and therefore heuristic
methods are necessary.

Recently, the community structure of complex networks
has been studied with the help of several dynamical pro-
cesses [9,10]. For instance, flow communities are detected
in the information theory based framework “Infomap” of [10].
In this dynamical paradigm, the “Markov stability” method
uses a dynamical process governed by a random walk or a
continuous time Kolmogorov equation to unravel the network
geometry at different scales [11,12]. An asset of this method is
that it naturally contains previous methods such as modularity
optimization and Fiedler partitioning. As a matter of fact,
time evolution allows one to span different scales, since at
different times the eigenmodes of the dynamics have another
relative importance. These eigenmodes incorporate structural
information.
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The importance of diffusion processes for investigating net-
work structure has been highlighted in recent works [9,12,13].
Furthermore, these approaches have emphasized the relevance
of a different type of community structure: the flow-based
communities, which are intuitively defined as the structures
retaining the diffusion for a certain period of time. Nonetheless,
while the diffusion processes on networks are increasingly
understood in the case of undirected networks, there has been
less focus in the past on diffusion on directed networks.
Many of the networks of interest in biology, internet, or
social sciences are directed and have attracted attention in
the physics literature [14–18]. In dynamical frameworks,
where the existence of a stationary distribution is crucial,
directed networks are explored thanks to a random walk
with teleportation as, for instance, in the Markov stability
framework [12], the Infomap method [10], or in the definition
of the LinkRank method [16]. A natural question is, can we
spare the use of a random walk with teleportation?

Although alternative approaches to Markovian processes
have also been studied in [19], we propose here a method
based on quantum mechanics to uncover communities in
directed networks. Our approach relies on a deformation of
the combinatorial Laplacian suited to directed graphs and
does not fit into the theory of Markov processes. More
explicitly, the magnetic Laplacian [20–22] is a generalization
of the combinatorial Laplacian to a line bundle, and can be
understood as describing the dynamics of a free quantum
mechanical particle on a graph under the influence of magnetic
fluxes passing through the cycles in the network. It is widely
known in the physics community that the presence of a
magnetic flux can be detected in quantum mechanics thanks to
the Aharonov-Bohm effect [23]. Whereas the combinatorial
Laplacian was designed long ago as a discrete differential
operator, it has been used only more recently for community
detection in networks [7,8,24]. Similarly, the magnetic Lapla-
cian is a well-known object in mathematical and condensed
matter physics [20,21], however, to the best of our knowledge,
it has never been used for community detection in directed
networks, apart from the purely theoretical work [25]. As a
matter of fact, the major asset of our quantum mechanical
approach over dynamical frameworks relying on random walks
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TABLE I. Summary of the community detection methods using the magnetic eigenmaps χθ,�.

Flux

Energy λ� Finite temperature 1/β Flow

Illustration

Correlation x�,θ (i,j ) = Re[χθ,�(i)T θ
i→jχ

∗
θ,�(j )] xβ,θ (i,j ) = Re[T θ

i→j (ρβ )
i,j

] ξθ,0(i,j ) = Re[χθ,0(i)χ∗
θ,0(j )]

Adj. matrix X�,θ (i,j ) = x�,θ (i,j ) + |x�,θ (i,j )| Xβ,θ (i,j ) = x�,β (i,j ) + |x�,β (i,j )| 	θ,0(i,j ) = ξθ,0(i,j ) + |ξθ,0(i,j )|

or Kolmogorov equations is that the generator of the dynamics
can be here a complex valued Hermitian operator. Actually,
the question of the existence of a stationary distribution is
irrelevant in our case.

In Sec. II, the properties of the magnetic Laplacian will be
reviewed with a particular emphasis on its connection to the
network topology. Then, the so-called flux communities will be
introduced in Sec. III, and a method for uncovering them will
be discussed in Sec. IV. Subsequently, a multiscale method for
studying flux communities will be proposed in Sec. V, while
the results will be illustrated on artificial and real-life networks
in Sec. VI. An analog of the spectral clustering method in the
complex domain will be introduced in Sec. VII as a tool to
uncover role communities in directed networks with a running
flow. Finally, the paper will end with some conclusions in
Sec. VIII.

A summary of the different methods that we propose is
included in Table I.

Notation. In the sequel, a directed network will be consid-
ered, with its set of nodes V and links E. An undirected link
between i and j will be denoted by {i,j}, while a directed link
will be written [i,j ].

II. MAGNETIC LAPLACIAN AND LINE BUNDLES

A conventional manner to study the structure of directed
networks is to symmetrize its weight matrix in order to make
the network undirected so that a spectral method, based on the
combinatorial Laplacian

(L̂Cψ)(i) =
∑

j

ws(i,j )[ψ(i) − ψ(j )],

can be used to partition the network. In general, the function
of the nodes ψ is taken to be real valued. Another approach
consists in defining an analog of the PageRank random
walk on the network, where the walker follows exclusively
the edge directions. For technical reasons, a teleportation
parameter has to be added so that a stationary distribution
can be defined, if the network is not strongly connected and
aperiodic. In this paper, we consider an intermediate possibility
which uses the symmetrization of the weights by keeping
relevant information about the edge directions in an edge flow
1-form. Indeed, decomposing the weight matrix, we define
the symmetrized weight ws(i,j ) = [w(i,j ) + w(j,i)]/2 and
the skew-symmetric nondimensional function of the oriented
links a(i,j ), satisfying a(i,j ) = 1 if i → j , a(i,j ) = −1 if
j → i, and a(i,j ) = 0 if {i,j} is reciprocal. Separating the
asymmetric part of the weight matrix was already proposed

in [26]; however, no similar deformation of the combinatorial
Laplacian was proposed earlier in the literature.

A. Magnetic Laplacian

As a consequence of these elementary remarks, we propose
to describe the Hamiltonian of our quantum mechanical system
as the Hamiltonian of a free charged particle on an undirected
network in presence of a space varying magnetic field, given
by the so-called “magnetic Laplacian” [20–22],

(L̂a,iθψ)(i) =
∑

j

ws(i,j )
[
ψ(i) − T θ

j→iψ(j )
]
, (1)

with T θ
j→i = exp [iθa(j,i)], depending on a real deformation

parameter θ interpreted as the electric charge of a particle.
Obviously, the combinatorial Laplacian of the symmetrized
weight matrix is recovered if either θ = 0 or a = 0, i.e., L̂C =
L̂a,0 = L̂0,θ . The dynamics is invariant under θ → θ + 2π ,
and therefore the parameter θ is interpreted as being an
angle, as illustrated in Fig. 1. We may call this version of
electrodynamics “compact electrodynamics.”

The self-adjoint operator Ĥ = L̂a,iθ is actually positive
semidefinite and can be understood as a deformation of the
combinatorial Laplacian on the undirected graph. More details
are given in Appendix A 1. Furthermore, it is a special case
of vector bundle Laplacian [27,28]. Indeed, the factor T θ

j→i =
exp [iθa(j,i)] is interpreted as a unitary parallel transporter.
Although the magnetic Laplacian was already present in the
physics literature long ago, it can be also understood in the
“connection Laplacian” framework of Singer and Wu [29,30],
but for the case of a complex unitary representation of U (1)
instead of real representations of SO(d), as explained in
Appendix A 2. Incidentally, Cucuringu has recently proposed a
ranking algorithm based on a U (1) connection Laplacian [31].

i j

ψ (i) T θ
i→jψ (i)

T θ
i→j

θ

FIG. 1. Parallel transport along a directed cycle (here a triangle is
chosen as an example), and an illustration of the effect of a transport
along a directed link. It is intuitively clear that T θ

i→j assigns a rotation
to a directed link.
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B. Discrete Hodge theory and gauge transformations

The customary gauge transformation a′ = a + dh of a
magnetic Laplacian, for a discrete gradient dh(i,j ) = h(j ) −
h(i), gives a unitary equivalent operator

L̂a′,iθ = e−iθh ◦ L̂a,iθ ◦ eiθh, (2)

which obviously shares the same spectrum. Graph gauge
theory has been already discussed, for instance in [32], where
no explicit application to directed networks was presented.

The magnetic Laplacian is closely related to the topology of
the network and we will take advantage of this feature in order
to uncover various types of community structures. Actually, the
topology of graphs and simplicial complexes has been shown
to incorporate relevant information about data. Here, because
electromagnetism is associated to the gauge group U (1), the
relevant topological structures uncovered are the cycles. In this
spirit, we can perform the Hodge decomposition [33] of the
edge flow

a = aH + dha + d�ωa = aM + dha,

where aH is the harmonic component related to the existence
of magnetic flux through undirected k cycles (k > 3) in the
network and d�ωa is a coexact form related to a magnetic flux
through the undirected triangles of the graph. This Hodge
decomposition allows one to consider components of the
edge flow related to cycles in the network. Incidentally, these
topologically nontrivial components actually play an important
role in the nonperturbative dynamics of gauge theories [34].

An asset of our description is that the magnetic Laplacian
will emphasize the importance of groups of nodes organized as
a directed cycle, which is actually a structure causing problems
when the directed network is explored by means of a random
walk.

III. AHARONOV-BOHM EFFECT AND FLUX
COMMUNITIES

A. Directed networks and Aharonov-Bohm phases

Considering the Schrödinger equation on a network with
the magnetic Laplacian as Hamiltonian, we can write the
conservation of probabilities in terms of the divergence
of a probability current. Indeed, the time evolution of the
probability distribution pt (i) = |ψ(i,t)|2 on the network is
governed by

∂

∂t
pt (i) =

∑
j

ws(i,j )Jt (i,j ), (3)

with the real-valued and gauge-invariant probability current

Jt (i,j ) = 2 Im
[
ψ(i,t)T θ

i→jψ
∗(j,t)

]
, (4)

where T θ
i→jψ(i,t) is the value of ψ at node i and time t ,

transported at node j .
Although we do not have here a diffusionlike dynamics, (3)

governs the time evolution of a probability. Nevertheless,
we are interested in the phase correlations of the nodes and
therefore we are going to study the real part in (4) instead
of the imaginary part. Incidentally, since we are going to
consider first the case where the state ψ is an eigenstate of
the magnetic Laplacian, we will not consider the associated

probability current (4). Let us consider the orthonormal basis
of functions on the nodes 〈δi |δj 〉 = δi,j , localized on a specific
node (δi,j is the Kronecker delta). The matrix elements of the
magnetic Laplacian are

〈δi |L̂a,iθ |δj 〉 =
N−1∑
�=0

λ�χθ,�(i)χ∗
θ,�(j ), (5)

where χθ,� is the eigenfunction associated to the eigenvalue
λ�, satisfying λ0 � λ1 � λ2 � . . . . In this paper these eigen-
functions are called the magnetic eigenmaps.

Actually, it is well known that the eigenfunctions χθ,�

are stationary states, i.e., their probability density does not
evolve in time. In fact, the right-hand side of (3) vanishes.
Nevertheless, in general, the real part of the same matrix
elements can be interesting. Let us first assume that the
eigenvalue λ� is nondegenerate. Hence, we want to find the
partition which maximizes the following correlation due to
the magnetic field:

x
(a)
�,θ (i,j ) = Re

[
χθ,�(i)T θ

i→jχ
∗
θ,�(j )

]
, (6)

which can be negative. Therefore, we introduce the following
matrix with positive matrix elements:

X
(a)
θ,�(i,j ) = |χθ,�(i)χ∗

θ,�(j )| + x
(a)
θ,�(i,j ) (7)

for all i,j ∈ V such that {i,j} ∈ E, and X
(a)
�,θ (i,j ) = 0 other-

wise. The matrix elements X
(a)
�,θ (i,j ) may be understood as link

weights, and they are gauge invariant, i.e., the correlation is
the same if either a = aM + dh or aM are used to compute it.
Hence, we have

X
(a)
θ,�(i,j ) = X

(aM)
θ,� (i,j ).

For the sake of simplicity, we will now omit the superscript
indicating the dependence on a and merely write Xθ,� = X

(a)
θ,�.

Let us explain the definition of the correlation of (6) with
the example of Fig. 1. First of all, finding the eigenvector
of the magnetic Laplacian with the lowest eigenvalue can be
formulated as the following optimization problems:

min
χ

〈χ|L̂a,iθχ〉 such that 〈χ|χ〉 = 1

≡ min
χ

∑
{i,j}∈E

ws(i,j )|(Da,iθχ)(i,j )|2 such that 〈χ|χ〉 = 1,

(8)

where the covariant derivative is defined as

(Da,θχ)(i,j ) = eiθa(i,j )/2χ(j ) − e−iθa(i,j )/2χ(i).

Notice that the covariance property of this gradient under the
transformation a′ = a + dh reads

(Da′,θχ)(i,j ) = e−iθ[h(i)+h(j )]/2(Da,θ e
iθhχ)(i,j ).

In analogy with the case of the combinatorial Lapla-
cian, the solution to this minimization problem will satisfy
(Da,iθχ)(i,j ) ≈ 0. Let us explain why the weight x

(a)
0,θ (i,j )

is large if [i,j ] is part of a directed cycle with an example.
More precisely, in the case of the directed triangle of
Fig. 1, if the lowest energy eigenfunction χθ,0 should satisfy
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(Da,iθχθ,0)(i,j ) = 0 for the three links, then

χθ,0(3) = eiθχθ,0(2),

χθ,0(2) = eiθχθ,0(1),

χθ,0(1) = eiθχθ,0(3). (9)

Hence, exp (i3θ ) = 1, so θ should be selected as θ = 2π/3.
Indeed, in that case we have

χθ,0(1)T θ
1→2χ

∗
θ,0(2) = χθ,0(1)eiθχ∗

θ,0(2)

= [χθ,0(1)eiθ ][eiθχθ,0(1)]∗

= |χθ,0(1)|2.
Since this is valid for the directed links 1 → 2, 2 → 3, and
3 → 1, the correlations (6) between subsequent nodes in the
triangle are maximal, i.e.,

x
(a)
0,θ (1,2) = x

(a)
0,θ (2,3) = x

(a)
0,θ (3,1) = |χθ,0(1)|2.

Hence, this triangle will be considered as a flux community.
In the case of an eigenspace of dimension larger than one,

i.e., when λ� is degenerate, the relevant matrix element is

P(�)
i,j T

θ
i→j , where P̂

(�)
is the projector on this eigenspace. Hence,

we define in this case

Xθ,�(i,j ) = ∣∣P(�)
i,j

∣∣ + Re
(
P(�)

i,j T
θ
i→j

)
,

for all i,j ∈ V such that {i,j} ∈ E and X�,θ (i,j ) = 0 other-
wise. In practice, eigenspaces are rarely exactly degenerate.
However, some eigenvalues may be approximately equal if
a threshold is defined. The same issue arises in the case
of spectral clustering of the combinatorial Laplacian. In
order to circumvent this difficulty, it is possible to avoid the
computation of the eigenvalues and use a method based on a
stability criterion with respect to a change in a parameter as
in [11]. A similar idea can be used here, as explained in Sec. V.

Let us explain now why choosing special values of θ may
be interesting. We shall focus on the first eigenvector with the
smallest eigenvalue, the minimizer of (8). Considering again
the example of the directed triangle illustrated in Fig. 1 and
combining the three equations of (9), we find the condition of
flux quantization

T θ
1→2T

θ
2→3T

θ
3→1 = 1,

i.e., exp [iθ�(1,2,3)] = 1 with �(1,2,3) = a(1,2) + a(2,3) +
a(3,1). There is a similar relation for directed n cycles,
which is called “consistency” in the case of connection graphs
in [30]. Therefore, if the links are in only one direction,
i.e., a(i,j ) = ±1, and not reciprocal, then θ is taken such
that θ�(1,2,3, . . . ,n) = 0 mod 2π . This means that we can
choose the parameter θ to take quantized values,

θ = 2πk

n
,

k

n
/∈ Z,

in order to detect n cycles with constant phase differences.
A trivial consequence is that the value Xθ,�(i,j ), on an edge
which is not part of a flux community, will be suppressed.
Hence, the unitary factor in (6) implementing the parallel trans-
port on the line bundle is fundamentally important. In quantum
mechanics, for instance in the case of Abrikosov vortices in
type II superconductors, it is well known that the magnetic

g = 0

Max imaginary part
g = 1/4g = 1/3

g = 2/5

Signed
g = 1/2

g Structures

0 dense clusters

1/4 2, 4, 3-cycles

1/3 3, 2-cycles

2/5 3-cycles

FIG. 2. Different particular values of the electric charge θ = 2πg.
The lower half circle corresponds to a network with opposite link
directions.

flux is quantized. We have here an analogous condition on
the product of the “electric” charge and the magnetic flux.
Moreover, in order to detect communities of the size given by
a multiple of n, i.e., communities of a given magnetic flux, we
prescribe to choose the quantized charge θ = 2π/n, as shown
in Fig. 2. In the sequel, we will define the coupling constant

g = θ

2π
.

B. Normalized magnetic Laplacian

The magnetic Laplacian was originally constructed in the
case of a quantum particle on a lattice where, of course,
the degree of the nodes is constant. Real-life networks often
have an inhomogeneous degree distribution.Instead of the
magnetic Laplacian of (1), it may be interesting to use a degree
normalized version

L̂N
a,iθ = deg−1/2

s ◦L̂a,iθ ◦ deg−1/2
s , (10)

with the degree degs (i) = ∑
j ws(i,j ) associated to the sym-

metrized weight. The normalization can be understood as
changing the definition of the covariant derivative by Da,θ →
DN

a,θ = Da,θ ◦ deg−1/2
s , which can be alternatively understood

as a change of measure [35] or reweighting the inner product
〈ψ |ψ ′〉0,N �

∑
i∈V degs (i)ψ∗(i)ψ ′(i), so that nodes with a

large degree have a larger weight. Loosely speaking, the upshot
is that nodes with a large degree are effectively considered
as a set of several nodes with a smaller degree. Notice that
this construction is similar to the normalized version of the
combinatorial Laplacian.

IV. CLUSTERING THE AUTOCORRELATION OF
THE MAGNETIC EIGENMAPS

Our proposal can be summarized as follows: from the
directed network, a weighted undirected graph is constructed,
so that the weights of the links emphasize certain structures
describing flux communities. This novel weighted network
can then be studied with a community detection method.
In this paper, we propose the use of undirected modularity;
however, other methods could be used as well, with possibly
different outcomes.

A. Directed networks and g �= 0

Fixing a partition of the network C constituted of commu-
nities c ∈ C, we propose to cluster the network by maximizing

Pθ,�(C) =
∑
c∈C

∑
i,j∈c

[Xθ,�(i,j ) − pθ,�(i,j )],
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SignedDirected

⇐⇒ (+)

or ⇐⇒ (−)

FIG. 3. The magnetic Laplacian with θ = π is equivalent to
a signed Laplacian of the undirected signed network obtained as
illustrated above.

with the configuration null model pθ,�(i,j ) = kikj /2m, with
ki = ∑

j Xθ,�(i,j ) and 2m = ∑
i ki . As a consequence, it

is possible to use a generalized Louvain method [36] to
find the optimal partition based on the following customary
formulation in terms of matrices:

Pθ,�(C) = Tr(HT [Xθ,� − pθ,�]H), (11)

where H ∈ RN×|C| is an indicator matrix of the communities
in the partition, whose element Hi,j = 1 if node i belongs to
community j and Hi,j = 0 otherwise. Finding the partition
maximizing the quality function (11) is possible thanks to a
greedy optimization algorithm.1

B. Undirected networks and g = 0

In the case of an undirected graph, i.e., a = 0, this
spectral clustering method yields the condition ϕθ,�(i) ≈
ϕθ,�(j ) mod 2π for any i and j in the same cluster, where
ϕθ,� = phase(χθ,�). Therefore, because the eigenvectors can
be made real, this procedure is equivalent to the grouping of
nodes in two communities according to sgn(χ�), which is the
so-called Fiedler partition. Moreover, in the case a = 0, the
matrix elements in (7) reduce simply to

X
(0)
0,�=0(i,j ) ∝ δ({i,j} ∈ E),

for any node i and j , so that X
(0)
0,�=0 is a binarized form of

the symmetrized weight matrix ws. Therefore, optimizing the
modularity of the similarity matrix elements (7) using (11)
is equivalent to the modularity optimization of the undirected
graph defined as the binarized skeleton of the directed network.

C. Signed Laplacian and g = 1/2

For an electric charge θ = π , the magnetic Laplacian is
actually equal to a so-called signed Laplacian [37], associated
to a specific signed network. Indeed, the parallel transporter
is then real T π

j→i = exp [iπa(j,i)] = T π
i→j , so that T π

j→i = 1
if the link [i,j ] is reciprocal, and T π

j→i = −1 if the link [i,j ]
is only in one direction. In fact, the peculiar value θ = π

can be treated as a signed network where all reciprocal links
are positive, whereas all other links are negative (see Fig. 3).
Therefore, our community detection method will uncover
predominantly the regions of reciprocal edges, i.e., 2-cycles.

1We used the code called GENLOUVAIN, used in [4], available at
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain.

D. The particular case g = 1/4

Considering for simplicity a nondegenerate eigenvalue λ�,
we study the particular case g = 1/4, so that the parallel
transporter is pure imaginary T

π/2
j→i = ia(j,i). Indeed, this case

corresponds to the maximal deformation of the combinatorial
Laplacian in the complex domain. The understanding of the
importance of the edge directions is made easier because
a(i,j ) = ±1 indicates the directions of [i,j ] ∈ E. We pretend
that most of the effect of the edge directions is encoded in this
difference of Aharonov-Bohm phases, that we have to compare
with the sign of a(i,j ) indicating the directionality. Actually,
the matrix elements of (7) satisfy

Xπ/2,�(i,j )

|χθ,�(i)||χθ,�(j )| = 1 + a(i,j ) sin[�ϕπ/2,�(i,j )], (12)

with the phase difference �ϕπ/2,�(i,j ) = ϕπ/2,�(j ) − ϕπ/2,�(i).
Let us discuss the interest of this particular expression. If
there is a directed edge from i to j , i.e., a(i,j ) = 1, then the
value of (12) will be large if the phase difference is small, i.e.,
0 � �ϕπ/2,�(i,j ) < π . A large value of Xπ/2,�(i,j ) is expected
if the nodes i and j belong to the same flux community.
Otherwise, if the phase difference is too large, the value of (12)
will be smaller and it will be more likely that the nodes i and
j belong to different flux communities. Hence, the value of
the charge θ = π/2 is plausibly going to be the most robust
choice for uncovering flux communities of different sizes. In
the sequel, this value will always be chosen in the absence
of reciprocal links. In the presence of reciprocal links, i.e.,
2-cycles, the choice θ = π/2 seems to give a large relative
weight to the links satisfying a(i,j ) = 0. If, for instance, we
want to give more importance to directed 3-cycles, the choice
θ = π/2 may not be appropriate (actually, in real-life networks
directed triangles, and more generally motifs, are thought to
be very important for our understanding of social or biological
networks).

E. Emphasis of reciprocal links and 3-cycles

Recently, community detection techniques emphasizing the
important of specific local structures have been proposed.
For instance, it has been suggested to improve the methods
relying on the density of links by incorporating information
about triangles in the network [38,39]. Furthermore, directed
triangles in directed graphs were shown to be relevant for
community detection in [40,41].

The edge flow 1-form was defined so that a(i,j ) = ±1 on a
directed link, and a(i,j ) = 0 on a reciprocal link. Let us denote
the electric charge θ = 2πg. It is clear that only the product
2πga(i,j ) is important, and we have shown that, for efficiency,
the value of the charge has to be a ratio of integers. Choosing
g > 1/2 is equivalent to a flip of the directions of the directed
links, and therefore, we restrict ourselves to g < 1/2. Actually,
structures such as directed n-cycles will be emphasized by
a choice g = k/n. In practice, we assume that directed n-
cycles with n � 5 constitute the most significant structures
in the context of community detection. Incidentally, directed
triangles seem to incorporate a lot of information as explained
in the recent papers [40,41].
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FANUEL, ALAÍZ, AND SUYKENS PHYSICAL REVIEW E 95, 022302 (2017)

FIG. 4. Partitions of an artificial network with a reciprocal link
for g = 1/4, with the normalized magnetic Laplacian and for � = 0
(left), � = 1 (center), and � = 2 (right).

The choice that we recommend for networks without
reciprocal links is g = 1/4, because it corresponds to the
deformation of the combinatorial Laplacian with maximal
imaginary part. We observe empirically that, if reciprocal
links are present, the value g = 1/4 will give a relatively
large weight to reciprocal links, since they are associated to
directed 2-cycles, as illustrated in Fig. 4, where the reciprocal
link is more emphasized than the two directed triangles of the
network.

To avoid the emphasis of reciprocal links, the solution may
be to choose g = k/n < 1/2 with k � 1, so that the edge flow
on the directed links is effectively rescaled by the positive
constant k. Heuristically, the result is that a(i,j ) → ã(i,j ) =
ka(i,j ) on a directed link, and a(i,j ) = 0 on a reciprocal
link. Restricting ourselves to n � 5 and g < 1/2, we then
recommend to choose g = 2/5. The results of this choice of
an artificial network is displayed in Fig. 5, where the directed
triangles are more emphasized than the reciprocal link. The
structures found with different g values are summarized in
Fig. 2.

Another network with a planted structure and including
reciprocal links was proposed in [40].2 Our method with g =
2/5 is able to uncover the so-called “anomalous” community
constituted of a set of six nodes connected by many directed
triangles, while the rest of the network is randomly generated,
as illustrated in Fig. 6.

V. FLUX COMMUNITIES AT FINITE TEMPERATURE

The methods of the previous section rely on the computation
of the spectrum of the magnetic Laplacian. We may expect that
the larger the eigenvalue, the finer the structure detected. The
exploration of the multiscale structure of the network may
be performed by considering the same quantum mechanical
problem but at finite temperature, the latter parameter being
used as a scale parameter.

A. Density operator

Let us recall the basics of quantum mechanics at finite tem-
perature [42]. Consider a directed network and a Hamiltonian
operator on the complex valued functions of the nodes. The
Hamiltonian Ĥ defines a mixed state representing a statistical
distribution of excitations at a certain temperature T = 1/β,

2Available at https://github.com/arbenson/tensor-sc.

FIG. 5. Partitions of an artificial network with a reciprocal link
for g = 2/5, with the normalized magnetic Laplacian and for � = 0
(left), � = 1 (center), and � = 2 (right).

given by the so-called density operator (or density matrix), i.e.,

ρ̂β = e−βĤ

Z(β)
, with Z(β) = Tr(e−βĤ ). (13)

This is well known to be analogous to quantum mechanics with
imaginary time. The statistical mixture is easily understood
using the spectral representation of the Hamiltonian in Dirac
notation,

ρ̂β =
N−1∑
�=0

e−βλ�

Z(β)
|χ�〉〈χ�|,

where the coefficient of each term in the sum is a probability
representing the proportion of the eigenvector |χ�〉 in the mixed
state. For simplicity, the eigenvalues are sorted in ascending
order.

B. Correlation at finite temperature

We choose the Hamiltonian to be the positive semidefinite
magnetic Laplacian Ĥ = L̂a,iθ . Let us define the matrix

1

2

3

4

5

6

FIG. 6. Example of a directed network with a planted com-
munity [40] and reciprocal edges. The numbered nodes (1–6) are
part of many directed triangles. The rest of the nodes follow an
Erdòs-Rényi pattern. Our method (� = 0 and g = 2/5) detects this
planted community and includes two other nodes which are also part
of directed cycles. The same “anomalous” community is detected for
� = 0 and g = 1/3.
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FIG. 7. Comparison of our methods for � = 0 and g = 1/4. The normalized magnetic Laplacian of (10) (first plot from the left) may
allow one to uncover communities in networks with an inhomogeneous degree distribution, whereas the not normalized partition (second plot)
collapses together two of the smallest communities. The third plot corresponds to spectral clustering based on the normalized combinatorial
Laplacian (Fiedler partition). Directed modularity [15] (fourth plot) does not uncover the same communities.

elements (ρβ)
i,j

= 〈δi |ρ̂β |δj 〉. Incidentally, the matrix ele-
ments of the density operator are proportional to the Euclidean
time Feynman propagator K(j → i,β) = 〈δi |e−βĤ |δj 〉, be-
tween the node j and i (for a reference, see [42]).

The connection with the approach of the previous section
is more clear when writing

T θ
i→j (ρβ)i,j =

N−1∑
�=0

e−βλ�

Z(β)

[
χθ,�(i)T θ

i→jχ
∗
θ,�(j )

]
,

which is a weighted sum of the correlations appearing in (5) for
each eigenspace. Therefore we introduce the positive matrix
elements at inverse temperature β,

Xβ,θ (i,j ) = |(ρβ)i,j | + Re[T θ
i→j

(
ρβ

)
i,j

].

In the low temperature limit, we obtain the correlation (7)
corresponding to the lowest energy state � = 0, i.e.,

lim
β→∞

Xβ,θ (i,j ) = X�=0,θ (i,j ).

As a consequence, Xβ,θ can be viewed as the weighted
similarity matrix of an undirected network. As before, the
quality function of a partition is simply chosen to be the
modularity

Pβ,θ (C) =
∑
c∈C

∑
i,j∈c

[Xβ,θ (i,j ) − pβ,θ (i,j )],

with the null model pβ,θ (i,j ) chosen to be the configuration
model.

VI. FLUX COMMUNITIES IN ARTIFICIAL AND
REAL-LIFE NETWORKS

Let us first study the effect of the normalization on an
artificial example. The results obtained using the normalized
and un-normalized magnetic Laplacians are compared on an
example with flux communities of different sizes, illustrated
in Fig. 7, where the normalized method is able to distinguish
all the communities.

Flow communities are often defined as structures retaining
the flow of a dynamical process [12]. Here, the dynamics is
not given by a Markov process, so our interpretation leads
us to name them “flux” communities. A typical example
is depicted in Fig. 8. This toy directed network has been
studied using LinkRank (directed modularity) [16], Markov

stability [12], and Infomap [10], and it is constituted of four
flux communities, which are directed cycles. The difficulty
in detecting them is because the edges interconnecting the
groups have a double weight, so that a clustering based
on the symmetrized weight matrix will find four different
communities of nodes connected by those strong links. In
[16], this network is studied in order to describe an example
where the directed modularity definition of [15] is unable
to discover the communities. These structures are, however,
highlighted by the information theory framework of [10],
whereas the Markov stability framework is able to uncover
them using a random walk with teleportation as a means to
explore the network.

In the framework proposed in this paper, communities
are associated to a certain flux and this flux is related to a
certain structure of the network. The variation of the flux
is controlled by the quantized coupling constant and allows
one to uncover communities of different types. Let us use the
finite temperature method on the network of Fig. 8. Using this
method for g = 1/4, we uncover two types of communities
for the low energy states depicted in Fig. 9. Since the
weights are not equal in this network, the normalized magnetic
Laplacian (10) is used. First of all, at high temperature,

FIG. 8. A directed network with flux communities. The network
is formed by four groups of four nodes forming a directed cycle
with unit weights. These groups are connected by edges of weight 2,
displayed in bold. The four directed cycles with nodes of the same
color form four flux communities of four nodes.
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FIG. 9. The communities uncovered by our method for g = 1/4
and using the normalized magnetic Laplacian (1). At low β, the four
strongly connected groups (top left) form the stable partition marked
as •, while at large β, i.e., low temperature, the method uncovers four
flux communities (top right), which is denoted by •. The variation
of information (bottom) can be used in order to detect the change of
partition.

we obtain four other groups of four nodes, which are more
connected (see left plot of Fig. 9). This partition is easily
uncovered in the absence of edge directions. Secondly, at a
lower temperature, we detect four communities which are
the 4-cycles illustrated in the right plot of Fig. 9. They
constitute flux communities, and they are also obtained in
Refs. [10,12,16]. The robustness of the finite temperature
method under a slight perturbation of the network is studied
in Appendix C.

Actually, directed modularity optimization discovers only
the partition of the strongly connected groups. Infomap [10],
based on a random walk, is able to uncover the partition of the
flux communities, and the Markov stability framework [12]
finds it as well for a certain Markov time scale.

In order to study the same network level by level, the
eigenvalues of the magnetic Laplacian are needed. The
spectrum of the magnetic Laplacian provides an indication
about the quality of the communities obtained. If the gap
between the lowest energy level and the first excited levels
is small, the significance of the community found at the first
excited level is expected to be high. This is analogous to
the well-known interpretation of spectral clustering using the
combinatorial Laplacian. Incidentally, we can observe that the
spectrum of the combinatorial Laplacian in Fig. 10, built using
ws as the affinity matrix, is qualitatively different from the
spectrum of the magnetic Laplacian. Noticeably, in the case of
a connected network, there is no information about community
structure encoded in the eigenvector of minimal eigenvalue
of the combinatorial Laplacian. The same is not true for the
magnetic Laplacian. In particular, the smallest eigenvalue of
the magnetic Laplacian does not vanish in general and can be

2 4 6 8 10 12 14 16
0

1

2

3

4

g = 1/4

g = 0

FIG. 10. Spectrum of the magnetic and combinatorial Laplacian
for the network of Fig. 8. Clearly, in the magnetic Laplacian the gap
between the ground state and the first excited state is small, with
respect to the gap between the two excited levels.

degenerate, i.e., the eigenspace can be of dimension greater
than one. This degeneracy is intuitively very natural since in
quantum mechanics in the continuum the so-called Landau
levels are infinitely degenerate.

A. Comparison with directed modularity

We can compare the results given by the maximization of
directed modularity with our method based on the normalized
magnetic Laplacian on the two previous artificial networks.
The first example in Fig. 9 shows how our method is able to
detect communities allowing a magnetic flux (right partition
of Fig. 9), whereas directed modularity relies more on relative
edge density, obtaining the left partition of Fig. 9. In the second
example of Fig. 7, our method discovers all flux communities
(first plot of Fig. 7), while directed modularity gives a different
partition (fourth plot of Fig. 7).

B. A real-file example

To illustrate the result of our method, we study the neuronal
network of the Caenorhabditis elegans nematode [43,44],3

constituted of 277 neurons. In Fig. 11, the communities found
for different values of the electric charge g are visualized,
using the physical spatial coordinates as positions of the
neurons. Qualitatively, the partitions found in Fig. 11 for
the lowest energy level are similar to the partition found by
optimizing the directed modularity. However, one may observe
that our method seems to group into the same community
the neurons appearing in the middle of the figure (i.e.,
AVM, ALMR, ALML, BDUR, BDUL, PDER, PDEL, PVDR,
PVDL, and PVM), whereas directed modularity separates
them into different communities.

VII. SPECTRAL CLUSTERING IN THE COMPLEX PLANE
AND FLOW COMMUNITIES

In the previous section, the importance of directed cycles
for detecting dense communities was emphasized. There are,
however, many networks whose structure resides more in the

3Data obtained from http://www.dynamic-connectome.org/.
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FIG. 11. Communities in the C. elegans directed network found by optimizing (11), using the magnetic Laplacian for � = 0 and g = 1/3
(top left), g = 2/5 (top right), and g = 1/4 (bottom left). The communities found using directed modularity are also shown (bottom right). The
nodes are displayed according to the physical positions of the neurons; units are centimeters. In each figure, the nodes in the same community
share the same color.

flow of link directions. The magnetic eigenmaps can also reveal
such features.

Let us consider a directed network such that its edge flow
a = ah,

ah = dh, (14)

is a pure gradient, i.e., an exact 1-form satisfying ah(i,j ) =
h(j ) − h(i) for any link {i,j}. Incidentally, in the language
of combinatorial Hodge theory [33], a = ah is a consistent
ranking. Based on the gauge covariance property (2), it is
straightforward to prove that the eigenvalues and eigenvec-
tors of the magnetic Laplacian L̂dh,iθ are in one to one
correspondence with the eigenvalues and eigenvectors of the
combinatorial Laplacian, i.e.,

L̂dh,iθ = e−iθh ◦ L̂C ◦ eiθh. (15)

Actually, the function h, defined on the nodes, is a potential
whose gradient gives the edge flow. In particular, in the case
of a connected directed network, the lowest energy state of the
magnetic Laplacian (15) is simply given by

χθ,0(i) = e−iθh(i)χ0,0(i), with χ0,0(i) = const,

where χ0,0 is the constant eigenvector of the combinatorial
Laplacian. In this case, we propose to assign two nodes i and
j in the same community if

phase[χθ,0(i)] ≈ phase[χθ,0(j )],

which corresponds to a spectral clustering in the complex plane
of the eigenfunction of lowest energy. Hence, the communities
are the groups of nodes with the same potential h.

A. Communities with a running flow

In real-life networks, the edge flow rarely satisfies the
exactness condition (14), and therefore, the eigenvectors of
L̂a,iθ and L̂C are not exactly in one to one correspondence.
Nevertheless, it is still instructive to study the lowest energy
state of L̂a,iθ , i.e., the first magnetic eigenmap.

An example network where the lowest eigenvector of
magnetic Laplacian is able to uncover a community structure
is given in Fig. 12. It is composed of three groups of ten nodes.
Within each group there is a uniform probability 0.5 that two
nodes are connected. There is also a probability 0.5 that a node

FIG. 12. Directed network with a flow running between three sets
of nodes. The nodes within each group are not strongly connected.
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FANUEL, ALAÍZ, AND SUYKENS PHYSICAL REVIEW E 95, 022302 (2017)

+

10 20

10

20

FIG. 13. Phase of the lowest eigenvector χθ,0 (left) and the matrix
	

(a)
θ,0 as a function of the vertex number (right), for g = 1/4 and the

network of Fig. 12.

connects with a node from another group. However, 90% of
the connections between the groups point in the direction of
the flow. A similar network was actually proposed in [45]. The
communities can be detected thanks to mixture models [46],
whereas directed modularity is expected to fail. Actually, this
type of community structure is associated to the role played
by each node in the network, and hence this feature is in the
same spirit as the so-called role-based similarity [13,47].

The phase of the lowest eigenvector is depicted in Fig. 13.
Indeed, the phase of χθ,0 is almost piecewise constant.

A similar situation happens for the word adjacency directed
network of Fig. 14, which was constructed from an English
text [48].4 The network is built by collecting adjacent nouns
and adjectives in the novel David Copperfield. Hence, a
directed link points from a word to another adjacent word, if
the first one appears before the second. From the structure of
English, we can expect a certain flow structure in the network.
Indeed, the phase of the first eigenmaps separates the nouns
from the adjectives.

The difficulty of discovering these type of communities
using the phase of the first eigenvector of the magnetic
Laplacian is that the number of communities has to be guessed.
In order to circumvent this problem, we propose the definition
of a quality function. Actually, the correlations

ξ
(a)
θ,0(i,j ) = Re[χθ,0(i)χ∗

θ,0(j )],

for any nodes i and j , incorporate the information necessary
to find the flow communities in the network. Hence, we define
the positive matrix elements

	
(a)
θ,0(i,j ) = |χθ,0(i)χ∗

θ,0(j )| + ξ
(a)
θ,0(i,j ), (16)

which define another weighted similarity matrix. The matrix
	

(a)
θ,0 corresponds to another network containing the same

nodes but with new weighted undirected links. The corre-
lation 	

(a)
θ,0 differs from X

(a)
θ,0 only by the parallel transport

factor. Noticeably, this matrix is not invariant under a gauge
transformation a → a + dh.

4Data obtained from http://www-personal.umich.edu/mejn/
netdata/.
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FIG. 14. The phase of the first magnetic eigenmaps for the
word adjacency network and g = 2/5, clearly separating the nouns
(denoted as •) from the adjectives (denoted as •), represented on a
circle.

B. Optimization of a quality function

A modularity optimization procedure on 	
(a)
θ,0 allows one to

uncover the three flow communities of Fig. 12, depicted with
different colors. For simplicity, we used the Newman-Girvan
modularity [2] with the configuration model, although actually
we could have chosen another method in order to partition the
undirected network associated to 	

(a)
θ,0.
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Team ID Pos. Team ID Pos.

Penn State 1 1st Wisconsin 7 3rd

NorthWestern 2 3rd Illinois 8 11th

Ohio State 3 1st MichiganState 9 9th

Minnesota 4 7th Purdue 10 8th

Michigan 5 3rd Indiana 11 10th

Iowa 6 3rd

FIG. 15. Comparison of the partition provided by our method
(top left), based on the modularity optimization of (16) for flow
communities of the un-normalized magnetic Laplacian for g = 1/4
and � = 0, with the partition of directed modularity (top right) in the
Big Ten football network. The table (bottom) includes the list of the
teams, their IDs, and associated positions in the ranking.
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To compare this method with directed modularity on
another network, we now examine a real-life example used
in [15] representing the Big Ten football network. In the
directed network of Fig. 15, our method based on the opti-
mization of the modularity of (16) gives three communities.
However, directed modularity gives only two communities.
In our method, there are two communities of teams shared
with the directed modularity approach; however, the team of
Minnesota (number 4) is singled out because its number of
successes equals its number of defeats. Therefore, the partition
found by our method seems to be consistent with the intuition.

VIII. CONCLUSIONS

Link directions in complex networks may contain relevant
information. Accounting for this information may be done in
various manners; for example, several dynamical processes
may be imagined to explore the geometry of the networks. In
the past, much effort was devoted to the study of the geometri-
cal structure of networks in terms of density “clusters.” On the
contrary, we have been interested here in other local structures
which are also related to the topology of the networks, where
the word “topology” is understood in the mathematical sense.

In particular, the use of the complex valued magnetic
Laplacian for the problem of community detection in a directed
network was studied in this paper. The method was strongly
inspired by quantum physics, and it generalizes known results
to the complex domain. A striking feature of the magnetic
Laplacian is that it is related to the topology of the network.
Indeed, there is a strong relationship between discrete Hodge
theory and the results presented in this paper. As we have
illustrated with several experiments, this approach allows one
to unveil communities on directed graphs based either on
cycles (flux communities) or on the role of the different nodes.

It is expected that different deformations of the combina-
torial Laplacian may be relevant to answer other questions
of interest for the study of complex networks. For example,
a natural challenge is to have an analogous approach for
undirected networks, through the definition of another discrete
quantum mechanical Hamiltonian in place of the magnetic
Laplacian. We leave this question for a further investigation.

Finally, it would be interesting to define a framework
in which the different approaches can be objectively com-
pared. This is not a trivial task, since for example some
preliminary results over the Lancichinetti–Fortunato–Radicchi
benchmark [45] show that our method at large temperature
allows one to detect the communities with exactly the same
precision as directed modularity (a perfect or almost perfect
classification). This is not surprising, since the communities
of these benchmarks are densely connected and they do not
contain a priori the type of structures detected by our method.
Hence, when we suppress the effect of the magnetic field, we
get an approach qualitatively similar to directed modularity.
Finding a nontrivial benchmark with known directed structures
is therefore an interesting line of future work.
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APPENDIX A: RELATION WITH PREVIOUS WORK

1. Discrete vector bundle Laplacian

From a gauge theory perspective, each of the factors
exp [iθa(i,j )/2] may be understood intuitively as a unitary
“parallel transport” along the edge from i to the midpoint
between i and j . A parallel transport is an isomorphism
between the fibers of a vector bundle. Hence, the magnetic
Laplacian (1) has a covariance property [21] under a →
a + dh. Let us outline this idea.

In Ref. [27], Kenyon defines a vector bundle VG on a graph
as the choice of a vector space Vv , called fiber, for each vertex
v ∈ V . Here, for simplicity we choose Vv to be isomorphic
to C. A section of the vertex bundle is in fact given by one
complex number for each vertex, hence it is a 0-form in �0.

Furthermore, Kenyon extends the construction to the edge
space, so that there is a fiber isomorphic to C, for each edge. If
the edges are oriented, a 1-form is a section of the edge bundle,
i.e., a skew symmetric function of �1 in our notations. Then, it
is possible to define a connection isomorphism φve = φ−1

ev for
each edge e = [v,v′] and vertex at the boundary of the edge.
In our case, we choose

φje = eiθa(i,j )/2, for e = [i,j ].

Still, following [27], we introduce the map d : �0 → �1

(dψ)(e) = φjeψ(j ) − φjeψ(i).

Subsequently, the operator d� : �1 → �0 is introduced by

(d�ω)(i) =
∑

j |e={i,j}
ws(e)φejω(e).

Hence, d� is the adjoint of d only if φve = φ∗
ev = φ−1

ev .
However, because we wish a self-adjoint Laplacian, the
construction of the Laplacian of [27] as d�d is the one of this
paper only if φ∗

ev = φ−1
ev , leading to the magnetic Laplacian

of (1) and studied in [20–22].

2. Connection Laplacian

Let us outline the relation between the discrete connection
Laplacian [29] and the magnetic Laplacian. Since U (1) and
SO(2) are isomorphic, another definition of the magnetic
Laplacian can be

(L̂a,θψ)(i) =
∑

j

ws(i,j )
[
ψ(i) − ρθ

j→iψ(j )
]
,
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with the matrix of the lowest dimensional representation of
SO(2),

ρθ
j→i = eiθa(j,i)m

=
(

cos θa(j,i) − sin θa(j,i)

sin θa(j,i) cos θa(j,i)

)

with the skew-symmetric matrix

m =
(

0 −1

1 0

)
,

while a(i,j ) takes the values 0, −1, or +1.
A major difference with respect to Ref. [29] is that, here,

we choose the representation of U (1) in order to detect specific
structures in a directed network, whereas Singer and Wu
simply build from a dataset an undirected network with a
matrix of O(d) on each link. The question of choosing a
representation of O(d) is therefore not relevant.

APPENDIX B: COMPUTATIONAL ASPECTS

The methods presented here include two steps. The methods
focusing on individual eigenvectors require the computation
of the smallest eigenvalue. Because we have noticed that the
normalized magnetic Laplacian L̂N

a,iθ was empirically more
successful, we can merely compute the maximal eigenvalues
of the following operator Ŝa,iθ = I − L̂N

a,iθ , for instance,
thanks to the power method. The matrix exponential (13)
can be computed thanks to a Padé approximant method (see,
for instance, the scaling and squaring method [49]). For
the maximization of the quality functions, we rely on the
generalized Louvain method [4,36].
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FIG. 16. The communities uncovered by our method for g =
1/4 and using the normalized magnetic Laplacian of (1). The
points • correspond to the first partition (top left), the strongly
connected communities, • to the second partition (top center), the flux
communities, and • to the third one (top right), the flux communities
for T ≈ 0. The red directed link in the network is the flipped link
compared to Fig. 8. The variation of information is also included
(bottom).

APPENDIX C: ROBUSTNESS OF THE FINITE
TEMPERATURE METHOD

In order to test the robustness of the partitions found in
the network of Fig. 8, we have simply slightly modified the
direction of one link of weight 1 in one of the 4-cycles of this
network, which is marked in red in Fig. 16. Hence, one of the
four 4-cycles is broken. As a result, we find at high temperature
the same partition as in the case of Fig. 8, which is due to the
presence of the links of weight 2. In that case, the cycles are
broken. At lower temperature, the stable partition is given by
groups containing the three unbroken 4-cycles, showing that
the method reacts well when one 4-cycle is perturbed. Finally,
at a very small temperature, where the importance of the flux is
the largest, another partition preserving the cycles is obtained,
with a fourth community found at the perturbed link.

[1] M. A. Porter, J.-P. Onnela, and P. J. Mucha, Communities in
networks, Notices Am. Math. Soc. 56, 1082 (2009).

[2] M. E. J. Newman and M. Girvan, Finding and evaluating
community structure in networks, Phys. Rev. E 69, 026113
(2004).

[3] M. E. J. Newman, Modularity and community struc-
ture in networks, Proc. Natl. Acad. Sci. USA 103, 8577
(2006).

[4] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela, Community structure in time-dependent, multiscale,
and multiplex networks, Science 328, 876 (2010).

[5] J. Reichardt and S. Bornholdt, Statistical mechanics of commu-
nity detection, Phys. Rev. E 74, 016110 (2006).

[6] V. A. Traag, P. Van Dooren, and Y. Nesterov, Narrow scope
for resolution-limit-free community detection, Phys. Rev. E 84,
016114 (2011).

[7] F. Chung, Spectral Graph Theory (American Mathematical
Society, Providence, 1997).

[8] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput.
17, 395 (2007).

[9] J. C. Delvenne, R. Lambiotte, and L. E. C. Rocha, Diffusion
on networked systems is a question of time or structure, Nat.
Commun. 6, 7366 (2015).

[10] M. Rosvall and C. T. Bergstrom, Maps of random walls on
complex networks reveal community structure, Proc. Natl. Acad.
Sci. USA 105, 1118 (2008).

[11] J. C. Delvenne, S. N. Yaliraki, and M. Barahona, Stability of
graph communities across time scales, Proc. Natl. Acad. Sci.
USA 107, 12755 (2008).

[12] R. Lambiotte, J. C. Delvenne, and M. Barahona, Random walks,
Markov processes and the multiscale modular organization of
complex networks, IEEE Trans. Netw. Sci. Eng. 1, 76 (2014).

022302-12

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1103/PhysRevE.84.016114
https://doi.org/10.1103/PhysRevE.84.016114
https://doi.org/10.1103/PhysRevE.84.016114
https://doi.org/10.1103/PhysRevE.84.016114
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1038/ncomms8366
https://doi.org/10.1038/ncomms8366
https://doi.org/10.1038/ncomms8366
https://doi.org/10.1038/ncomms8366
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1109/TNSE.2015.2391998
https://doi.org/10.1109/TNSE.2015.2391998
https://doi.org/10.1109/TNSE.2015.2391998
https://doi.org/10.1109/TNSE.2015.2391998


MAGNETIC EIGENMAPS FOR COMMUNITY DETECTION IN . . . PHYSICAL REVIEW E 95, 022302 (2017)

[13] M. Beguerisse-Dı́az, G. Garduño-Hernández, B. Vangelov,
S. N. Yaliraki, and M. Barahona, Interest communities and flow
roles in directed networks: The Twitter network of the UK riots,
J. R. Soc. Interface 11, 20140940 (2014).

[14] A. Arenas, J. Duch, A. Fernandez, and S. Gomez, Size reduction
of complex networks preserving modularity, New J. Phys. 9, 176
(2007).

[15] E. A. Leicht and M. E. J. Newman, Community Structure in
Directed Networks, Phys. Rev. Lett. 100, 118703 (2008).

[16] Y. Kim, S.-W. Son, and H. Jeong, LinkRank: Finding commu-
nities in directed networks, Phys. Rev. E 81, 016103 (2010).

[17] F. D. Malliaros and M. Vazirgiannis, Clustering and community
detection in directed networks: A survey, Phys. Rep. 533, 95
(2013).

[18] S. Fortunato, Community detection in graphs, Phys. Rep. 486,
75 (2010).

[19] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R.
Lambiotte, Memory in network flows and its effects on spreading
dynamics and community detection, Nat. Commun. 5, 4630
(2014).

[20] G. Berkolaiko, Nodal count of graph eigenfunctions via mag-
netic perturbations, Anal. PDE 6, 1213 (2013).

[21] Y. Colin de Verdière, Magnetic interpretation of the nodal defect
on graphs, Anal. PDE 6, 1235 (2013).

[22] M. A. Shubin, Discrete magnetic Laplacian, Commun. Math.
Phys. 164, 259 (1994).

[23] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485 (1959).

[24] J. Shi and J. Malik, Normalized cuts and image segmentation,
IEEE Trans. Pattern Anal. Mach. Intell. 22, 888 (2000).

[25] C. Lange, S. Liu, N. Peyerimhoff, and O. Post, Frustration index
and Cheeger inequalities for discrete and continuous magnetic
Laplacians, Calc. Var. Partial Diff. Eq. 54, 4165 (2015).

[26] Y. Li and Z.-L. Zhang, Digraph Laplacian and the degree of
asymmetry, Int. Math. 8, 381 (2012).

[27] R. Kenyon, Spanning forests and the vector bundle Laplacian,
Ann. Probab. 39, 1983 (2011).

[28] R. Forman, Determinants of Laplacians on graphs, Topology 32,
35 (1993).

[29] A. Singer and H. T. Wu, Vector diffusion maps and the
connection Laplacian, Commun, Pure Appl, Math. 65, 1067
(2012).

[30] F. Chung and W. Zhao, Ranking and sparsifying a connection
graph, in Proceedings of the WAW, Lecture Notes in Computer
Science Vol. 7323 (Springer-Verlag, Berlin, 2012), pp. 66–77.

[31] M. Cucuringu, Sync-rank: Robust ranking, constrained ranking
and rank aggregation via eigenvector and sdp synchronization,
IEEE Trans. Netw. Sci. Eng. 3, 58 (2016).

[32] F. R. K. Chung and S. Sternberg, Laplacian and vibrational
spectra for homogeneous graphs, J. Graph Theory 16, 605
(1992).

[33] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye, Statistical ranking
and combinatorial Hodge theory, Math. Program. 127, 203
(2011).

[34] M. Fanuel and J. Govaerts, Dressed fermions, modular transfor-
mations and bosonization in the compactified Schwinger model,
J. Phys. A: Math. Theor. 45, 035401 (2012).

[35] P. Blanchard and D. Volchenkov, Random Walks and Diffusions
on Graphs and Databases: An Introduction (Springer, New
York, 2011).

[36] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
Fast unfolding of communities in large networks, J. Stat. Mech.
(2008) P10008.

[37] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W.
De Luca, and S. Albayrak, Spectral analysis of signed graphs
for clustering, prediction and visualization, in Proceedings of the
2010 SIAM International Conference on Data Mining (SIAM,
2010), pp. 559–570.

[38] B. Serrour, A. Arenas, and S. Gómez, Detecting communities
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