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Noise, delocalization, and quantum diffusion in one-dimensional tight-binding models
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As an unusual type of anomalous diffusion behavior, namely (transient) superballistic transport, has been
experimentally observed recently, but it is not yet well understood. In this paper, we investigate the white noise
effect (in the Markov approximation) on quantum diffusion in one-dimensional tight-binding models with a
periodic, disordered, and quasiperiodic region of size L attached to two perfect lattices at both ends in which
the wave packet is initially located at the center of the sublattice. We find that in a completely localized system,
inducing noise could delocalize the system to a desirable diffusion phase. This controllable system may be used
to investigate the interplay of disorder and white noise, as well as to explore an exotic quantum phase.
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I. INTRODUCTION

Quantum diffusion in one-dimensional (1D) tight-binding
models has a rich background [1–3]. First, numerical evidence
was presented by Hufnagel et al. [4] to support the position that
the variance of a wave packet in 1D tight-binding models can
exhibit a superballistic increase (σ 2 = tν with 2 < ν � 3) for
parametrically large time intervals with the appropriate model.
They replaced the disordered part by a point source in which
anything emitted from it could move with a constant velocity
modeling the dynamics of a perfect lattice [4]. The model
explains this phenomenon, and its predictions were verified
numerically for various periodic, disordered, and quasiperiodic
systems. Then, superballistic diffusion of entanglement was
constructed in disordered spin chains [5]. Zhang et al. [6] found
a superballistic increase in variance σ 2 = tν with 3 < ν � 4.7
numerically, and they extended the interpretation given in
Ref. [4] to diffusion rates beyond cubic. The first experimental
observation of superballistic growth of the variance occurred
for optical wave packets in 2013 [7].

Fractal [1,8,9] and multifractal [10] analysis of the width of
a spreading wave packet revealed that for systems in which the
shape of the wave packet is preserved, the kth moment evolves
as tkβ with β = D

μ

2 /D�
2 , where in general t kβ is an optimal

lower bound, D
μ

2 is the correlation dimension of the spectral
measure μ (i.e., the local density of states), and D�

2 is the
correlation dimension of the (suitably averaged) eigenfunc-
tions. The (disorder or phase-averaged) diffusion exponent is
of particular physical importance because it characterizes the
low-temperature behavior of the direct conductivity as given
by Kubo’s formula in the relaxation-time approximation [11].

In this article we describe the system in universal terms, not
specific to matter waves, as manifested by the analogy between
the Schrödinger equation and the paraxial wave equation.
Hyper-diffusion is in fact a universal concept that should be
observable in a variety of systems beyond matter waves, such
as optics, sound waves, plasma, as well as conducting electron
transport in semiconductors [12]. Furthermore, fundamentally,
once such temporal acceleration causes high velocities to be
reached, the relativistic effects have to be included. These
ideas have opened a range of exciting possibilities. However, in
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view of the recent experiments on quantum walks of correlated
photons [13] and on localization with entangled photons [14], it
will be very interesting to determine whether the phenomenon
of hyper-transport occurs not only with entangled spin chains,
but with entangled photons as well [5].

Taking the decoherence problem into account, the effect
of temperature on wave-packet spreading is an essential
feature [15]. The theoretical description of relaxation and de-
coherence processes in open quantum systems often leads to a
non-Markovian dynamics, which is determined by pronounced
memory effects. The following can lead to long memory
times and to a failure of the Markovian approximation [16]:
(i) strong system-environment couplings, correlations, and
entanglement in the initial state; (ii) interactions with en-
vironments at low temperatures and with spin baths; (iii)
finite reservoirs; and (iv) transport processes in nanostructures.
However, since we intend here to investigate the effect of
white noise on super-ballistic diffusion in 1D tight-binding
lattices, we do not deal with these restrictions; we can use the
Markov approximation and the Lindblad equation. In strong
system-environment couplings, we can also use a similar
method called Non-Markovian generalization of the Lindblad
theory of open quantum systems [16,17].

In this work, we examined the noise effect on the
quantum wave-packet dynamics in several nonuniform 1D
tight-binding lattices, where a sublattice with on-site potential
is embedded in a lattice with uniform potential, irrespective of
whether the sublattice on-site potential is periodic, disordered,
or quasiperiodic (some cases were studied in the absence
of any environment in Refs. [4,6]). We found the threshold
values of the white noise strength, beyond which quantum
superballistic diffusion does not occur (in the disordered
case, the observed disappearance of super-ballistic diffusion
is based on a fixed number of realizations of the sublattice).
Such threshold values for the disappearance of quantum
super-ballistic diffusion should be one of the key elements
in real experimental studies, where environment and noise
have a significant dephasing effect. Furthermore, based on
our numerical studies, we predict that the quantum diffusion
exponent can be tuned extensively via the amount of induced
white noise. Thus, we can manually induce noise in a system
to drive it to a desired diffusion rate. The results must be
within reach of present-day cold-atom experiments.
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FIG. 1. Schematic of the 1D lattice. The red circles (central part)
represent sites with on-site potential, while the green circles (in the
left and right parts) represent sites without any on-site potential.

II. THE SYSTEM

A. The lattice

In this work, we examine quantum wave-packet dynamics
in several nonuniform 1D tight-binding lattices, where a
sublattice with on-site potential is embedded in a uniform
lattice without on-site potential (see Fig. 1). Assume the
following 1D tight-binding Hamiltonian:

H = −�i,j (tij c
†
i cj + t∗ij c

†
j ci) + �iVic

†
i ci , (1)

where tij is the tunneling rate from site i to site j , and we set
tij = t∗ij = −1, where i = j ± 1 and tij = t∗ij = 0 elsewhere.

c
†
i and cj are the usual creation and annihilation operators,

Vi represents the dimensionless on-site potential scaled by a
tunneling rate, and the sublattice of length 2L + 1 is located
at the center of the perfect lattice.

The on-site potential is as follows:

Vi =
{

0 if ri /∈ [−L,L],
Wi,

where Wi can be periodic, semiperiodic, or disordered.
At time zero, a localized wave packet was launched in

the sublattice’s center, with ρm,n = δc,c, where c denotes the
central site in the lattice. This initial state was a coherent
superposition of many quasimomentum eigenstates. We have
used the master equation of Lindblad form, which can be
written as

∂ρ

∂t
= Lρ = − i

h̄
[H,ρ]

+
∑

i

1

2
γiMi(2AiρA

†
i − ρA

†
i Ai − A

†
i Aiρ)

+
∑

i

1

2
γiNi(2AiρA

†
i − ρA

†
i Ai − A

†
i Aiρ), (2)

where H is a Hermitian, ρ is the density matrix, Mi and Ni are
real dimensionless non-negative c numbers (either of which
can be larger), and Ai are arbitrary dimensionless operators.
The coefficient 1

2γi is a positive damping rate, and it could in
principle be absorbed into the other two coefficients, which
would then acquire its dimension of inverse time. If a master
equation is of Lindblad form, the time evolution is completely
consistent with quantum mechanics. In particular, this means
that (i) the solution for the density operator is always a
positive-definite operator, i.e., no negative probabilities occur,
and (ii) the trace of ρ is time-independent, so that probability
is conserved.

Therefore, the new Lindblad equation for white noise can
be rewritten as

∂ρ

∂t
= Lρ = − i

h̄
[H,ρ]

+�
∑

i

(2AiρA
†
i − ρA

†
i Ai − A

†
i Aiρ), (3)

where � denotes the noise intensity. We assume that the
interaction of the system with the environment is dominated
by white noise captured within the Haken-Strobl model
(pure dephasing) [18]. The dephasing term damps all the
off-diagonal entries of the density matrix via the generators
Ai = |i〉〈i|, suppressing a superposition of localized states at
a rate �i , which is called the dephasing rate. Note that the
pure-dephasing (Haken-Strobl) model is a simplified but useful
model that has been used successfully in numerous studies in
quantum optics, quantum-information science, physical chem-
istry, and condensed-matter physics. Its prediction becomes
more realistic when the system is interacting with a thermal
bath at high temperatures, where its effects can be modeled by
white noise [19].

B. Measuring the spreading of the wave packet

We measure the spreading of the wave packet by its
variance. The variance of the wave packet is defined as

variance ≡ σ 2 ≡
∑

n

n2|ψn|2, (4)

where n is the lattice site index, and ψn depicts a normalized
time-evolving wave packet.

III. COMPUTATION CASES

A. Periodic case

We choose a periodic on-site potential in the sublattice, i.e.,
we let Wi = 0.5(−1)i . The time dependence of the variance
of the wave packet σ 2(t) for a sublattice potential intensity
V = 0.5 is shown in Fig. 2. The spreading of the wave packet
in the absence of any noise is shown in Fig. 2(a). We study the
effect of the white noise with small noise intensity � = 0.01
in Fig. 2(b). As can be seen, the white noise reduces the
diffusion exponent by 0.05. If we increase the noise intensity to
� = 0.04 [see Fig. 2(c)], the white noise reduces the diffusion
exponent to 1.90, which means that in this case the diffusion
rate is changed from the super-ballistic to the sub-ballistic
regime. Increasing the noise intensity further to � = 0.1 [as
can be seen in Fig. 2(d)] can decrease the diffusion exponent by
0.37 with respect to the noise-free case. It is seen that the white
noise suppresses the diffusion significantly for all the above
cases. However, if we increase the sublattice potential intensity
to V = 1.5, the white noise affects the diffusion differently. In
the absence of any noise, when we set the sublattice potential
intensity to V = 1.5, it appears that the diffusion exponent
increases to 2.09 [see Fig. 3(a)]. The effect of white noise
with small noise intensity � = 0.01 changes dramatically from
what can be seen in Fig. 2(b). We see that the white noise has
a counterintuitive effect on the diffusion rate. Here noise is no
longer a nuisance to be avoided, rather it improves the diffusion
exponent by 0.10 [see Fig. 3(b)]. This bizarre behavior is due to
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FIG. 2. Time dependence of the variance of the wave packet (σ 2)
for a periodic potential with a sublattice potential intensity, V = 0.5
(with L = 10, where 2L + 1 is the size of the sublattice). From the
top left to the bottom right for noise intensity � = 0, 0.01, 0.04, and
0.1, respectively, here and in all the other figures, the dashed lines
represent power-law fitting. All quantities are dimensionless.

the fact that the white noise has delocalized some of the system
states. More importantly, the delocalized states are found to
separate energy domains corresponding to two distinct types
of localized states: the usual localized states centered at sites
in the sublattice, and new states that are localized at the
contact with the perfect lattice (these new states were termed
antilocalized states [20]). The antilocalized states are expected
to play a special role in improving the diffusion rate. When
noise intensity � increases from 0.01 to 0.04 [see Fig. 3(c)], the
diffusion exponent decreases a little (0.02). Here the stochastic
resonance between the matter-wave antilocalized states and the
white noise becomes less than what we see in Fig. 3(b). So the
system’s diffusion gets a little slower with respect to the case
with smaller noise intensity. Increasing the noise intensity to
� = 0.1 makes the stochastic resonance between the system’s
antilocalized states and the white noise disappear. As can be
seen in Fig. 3(d), this decreases the diffusion exponent more
and leads to a regime change in the system’s diffusion from
super-ballistic to sub-ballistic.

B. Disordered case

We choose a disordered on-site potential in the sublattice,
i.e., we let the Wi take +V or −V randomly. Therefore,
we obtain slightly different results of σ 2(t) from different
disorder realizations in [−L,L]. Finally, we present the result
of σ 2(t) after first averaging them over 50 different disorder
realizations. The time dependence of the averaged variance of

. . .

. . .

. . .

. . .

FIG. 3. Same as Fig. 2 for a periodic potential with a sublattice
potential intensity V = 1.5.

the wave packet σ 2(t) for sublattice potential intensity V = 0.5
is shown in Fig. 4. The spreading of the wave packet in the
absence of any noise is shown in Fig. 4(a). We also study the
effect of white noise with small noise intensity � = 0.01, and

FIG. 4. Same as Fig. 2 for a disordered sublattice with a sublattice
potential intensity V = 0.5.
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FIG. 5. Same as Fig. 2 for a disordered sublattice with a sublattice
potential intensity V = 0.8.

it can be seen from Fig. 4(b) that the white noise reduces the
diffusion exponent by 0.07. If we increase the noise intensity to
� = 0.04 [see Fig. 4(c)], the white noise reduces the diffusion
exponent to 1.94. This means that in this case, the diffusion rate
is changed from the super-ballistic to the sub-ballistic regime.
A further increase in the noise intensity to � = 0.1 [as can be
seen in Fig. 4(d)] can decrease the diffusion exponent by 0.51
with respect to the noise-free case.

In the absence of any noise when we set the sublattice
potential intensity to V = 0.8, it appears that the diffusion
exponent increases to 2.33 [see Fig. 5(a)]. If we induce small
noise intensity � = 0.01, it decreases the diffusion exponent
by 0.07 [see Fig. 5(b)]. When noise intensity � increases
from 0.01 to 0.04, the diffusion exponent decreases more
[see Fig. 5(c)]. Increasing the noise intensity to � = 0.1
reduces the diffusion exponent to 1.80 [see Fig. 5(d)]. This
means that in this case, the diffusion changes from super-
ballistic (hyper-diffusion) diffusion to sub-ballistic diffusion.
Because in a disordered sublattice there is higher intrinsic
disorder with respect to the periodic case, there is no stochastic
resonance between the system’s antilocalized states and the
white noise. Therefore, inducing white noise to the system
cannot reduce the total noise of the system, so the white noise
plays its usual suppression role here.

C. Quasiperiodic case

A quasiperiodic potential is intermediate between a truly
random potential, which may cause localization in 1D systems,
and periodic potentials, which lead to energy bands and
extended states [21]. Quasiperiodic systems possess intriguing
energy spectra and eigenstate structure [22–24].

1. Fibonacci case

The other sublattice’s potential that we will consider here
is the simplest model of a quasicrystal, called the diagonal
model. It is obtained when Wi has two possible values, which
we denote by WA and WB , following the Fibonacci sequence
(FS). The FS is built as follows: consider two letters, A

and B, and the substitution rules, A → B and B → AB: if
one defines the first generation sequence as F1 = A and the
second one as F2 = B, the subsequent chains are generated
using the two previous rules. For instance, F3 = AB: starting
with an A, we construct the following sequences: A, B, AB,
BAB, ABBAB, BABABBAB, and so on. Each generation
obtained by iteration of the rules is labeled with an index
l: The number of letters in each generation l is given by
the Fibonacci numbers F (l) of generation l, which satisfy
F (l) =F (l − 1) + F (l − 2) with the initial condition F (0) = 1,

F (1) = 1. It is well known that a Fibonacci lattice yields
singular continuous energy spectra and critical eigenstates
(that are neither localized nor extended) [22–25].

Here the sublattice has 55 sites, and we choose the
sublattice Fibonacci potential with intensity V = 0.5. If we
set WA = +0.5 and WB = −0.5 in the absence of any noise,
it appears that the diffusion exponent increases to a high
amount of 2.79 [see Fig. 6(a)]. If we induce a small noise
intensity � = 0.01, it decreases the diffusion exponent by
0.24 [see Fig. 6(b)]. When the noise intensity � increases
from 0.01 to 0.04, the diffusion exponent decreases more
[see Fig. 6(c)]. Increasing the noise intensity to � = 0.1
reduces the diffusion exponent to 1.94 [see Fig. 6(d)]. This

. . . . . . . .

. . . . . . . .

FIG. 6. Same as Fig. 2 for a Fibonacci sublattice with a sublattice
potential intensity V = 0.5 (with sublattice size 2L + 1 = 55). It
is evident that the saturation point is much higher than cases with
L = 10).
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means that in this case, the diffusion changes from super-
ballistic diffusion (hyper-diffusion) to sub-ballistic diffusion.

In the Fibonacci case, the intrinsic disorder is higher than
the periodic case but still smaller than the disordered case.
Yet there is no stochastic resonance between the system’s
antilocalized states. Therefore, the white noise suppresses the
diffusion here. We see that the diffusion exponent can be tuned
by changing �.

2. Harper case

We now turn to a noninteracting Harper sublattice [26] with
an Aubry-Andre Hamiltonian [27],

H = J
∑

i

(|wi〉〈wi+1| + |wi+1〉〈wi |)

+

∑

i∈[−L,L]

cos(2πβ + φ)|wi〉〈wi |, (5)

where |wi〉 is the Wannier state localized at the lattice site i,
J is the site-to-site tunneling energy, and 
 is the strength of
the potential.

β = k2/k1 is the ratio of the two lattice wave numbers, and
φ is an arbitrary phase (we set φ = 0). For a rational β, the
above equation can be solved by Bloch’s theorem, although
its value is very limited since the coefficients in Fourier space
of the solution form a dense set. For irrational β, the spectrum
depends on the value of 
/J . We have studied it for 
/J = 0.5
(see Fig. 7), 
/J = 1.5 (see Fig. 8), and 
/J = 2.5
(see Fig. 9). In the experiment, the two relevant energies J and

 can be controlled independently by changing the heights of
the primary and secondary sublattice potentials, respectively.
For a maximally incommensurate ratio β = (

√
5 − 1)/2, the

. . . . . .

. . . . . .

FIG. 7. Same as Fig. 2 for a Harper sublattice with a sublattice
potential with 
/J = 0.5.

. . . . . .

. . . . . .

FIG. 8. Same as Fig. 2 for a Harper sublattice with a sublattice
potential with 
/J = 1.5.

model exhibits a sharp transition from extended to localized
states at 
/J = 2 [27]. In Fig. 7, we present the diffusion
rate for the Harper potential for 
/J = 0.5 in the absence
of any noise. It turns out that the diffusion rate increases

FIG. 9. Same as Fig. 2 for a Harper sublattice with a sublattice
potential with 
/J = 2.5.
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to σ 2 = t2.1 [see Fig. 7(a)]. If we induce small noise inten-
sity � = 0.01, it decreases the diffusion exponent by 0.04
[see Fig. 7(b)]. When noise intensity � increases from 0.01 to
0.04, the white noise reduces the diffusion exponent to 1.91
[see Fig. 7(c)]. This means that in this case, the diffusion
changes from super-ballistic diffusion (hyper-diffusion) to
sub-ballistic diffusion. Increasing the noise intensity to � =
0.1 [as can be seen in Fig. 7(d)] can decrease the diffusion
exponent by 0.42 with respect to the noise-free case.

In the Harper case for 
/J = 0.5, the intrinsic disorder is
higher than the periodic case but smaller than the disordered
and Fibonacci cases. Hence there is no stochastic resonance
between the system’s antilocalized states and the white noise.
Therefore, the white noise suppresses the diffusion rate.

It is worth mentioning that β controls the transition
from periodic to quasiperiodic sequences. Thus, the present
approach also leads to the possibility of studying the electronic
properties as a function of such a parameter. Furthermore, it
can be proven that the parameter β can also be related to
a magnetic field, as happens in the Harper potential. In that
case, instead of having a constant magnetic field in space, one
has a space-modulated magnetic field [28]. In real systems, the
changes in β are simple to study using many different devices,
since its effect is only a change in the sequence of the binary
potential. For example, one can use microwaves in a cavity, a
dielectric superlattice, or a space-modulated magnetic field in
a semiconductor [29].

If we set 
/J = 1.5, the white noise effects would be
different. In the absence of any noise, it appears that the
diffusion exponent increases to 2.16 [see Fig. 8(a)]. The effect
of white noise with small noise intensity � = 0.01 changes
dramatically from what we have seen in Fig. 7(b). The white
noise delocalizes some of the system states and shows its
counterintuitive effect again, and it improves the diffusion
exponent [see Fig. 8(b)]. When noise intensity � increases
from 0.01 to 0.04 [see Fig. 8(c)], the diffusion exponent is still
higher than the case in the absence of the noise.

As can be seen in Fig. 8(d), increasing the noise intensity to
� = 0.1 reduces the damping effect on the diffusion, making
the stochastic resonance between the system’s antilocalized
states and the white noise smaller.

For 
/J = 2.5 in the absence of any noise, it appears
that the diffusion exponent is as low as 0.65 [see Fig. 9(a)].
The white noise with small noise intensity � = 0.01 does
not change the first subdiffusion region. But as time goes on,
the white noise delocalizes some of the system states and
drives the system’s subdiffusion (0 < ν < 1) to sub-ballistic
diffusion (1 < ν < 2) instantly [see Fig. 9(b)]. When the
noise intensity � increases from 0.01 to 0.04 [see Fig. 9(c)],
first there is no change in the diffusion rate, but then the
white noise delocalizes some of the system states and causes
the system to diffuse almost ballistically. The stochastic
resonance between the matter-wave antilocalized states and
the white noise then becomes higher than what can be seen in
Fig. 9(b). So the system’s diffusion becomes faster compared
to the smaller noise intensity. Increasing the noise intensity
to � = 0.1 enhances the stochastic resonance between the
system’s antilocalized states and the white noise, such that
it changes the system’s diffusion from subdiffusion to the
super-ballistic regime instantly [see Fig. 9(d)].

IV. FINITE-SIZE EFFECT

We study the variance of the wave packet for finite-size
lattices. As can be seen in all the figures, the variance is
saturated at a point that is different for different lattices. It
is notable that in the Fibonacci case with WA = +0.5 and
WB = −0.5 [see Fig. 6(a)], we find a diffusion exponent 2.79
in the absence of noise, while this diffusion exponent is
considerably larger than that found in [6]. This means that
sometimes the finite size could improve the diffusion rate
significantly. This can be explained via the structure of the
underlying eigenstates. There has been a great deal of research
on the finite-size effect in different physical systems [30–37].
The finite-size effect in the absence of coupling with the
environment is manifested in Fig. 10(a). As we increase the
size of the lattice, the final saturation point gets higher. Due
to practical limits, we cannot solve the master equation for
large lattices. But as we know from the Schrödinger equation’s
solution for much bigger lattices (in the absence of any noise),
this finite-size effect is usually just at the point of saturation
and the diffusion exponent. So our results will be different
for other lattice and sublattice site numbers. In the laboratory,
however, even a lattice with 200 sites is usually big enough for
many experiments. In the calculation of the finite-size effect
in systems under the influence of white noise [see Figs. 10(b)–
10(d)], we can see that as we increase the noise intensity, it
dampens the fluctuation more and more until eventually there
is none [see Fig. 10(d)]. As the lattice size increases from 200
to 600 sites in a periodic sublattice, the final saturation point
becomes higher. We have studied other potentials as well in
which the lattice size changes the saturation point in all cases.
So, this long-time limit must be characterized by localization

. . . . . . . .

. . . .. . . .

FIG. 10. Same as Fig. 2, showing the finite-size effect on periodic
sublattices with different lattice sizes (200, 300, 400, 500, and 600).
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due to the finite-size effect. The white noise does not change
the total saturation point because it is a finite-size effect.

V. LOCALIZATION TO DELOCALIZATION
TRANSITION

The localization to delocalization transition has long-
established background [38–40]. However, the subject has
attracted more attention recently [41,42]. Yamada studied
delocalization in one-dimensional tight-binding models with
fractal disorder [43]. Such models with an ergodic and station-
ary random potential have a positive Lyapunov exponent of
a wave function with probability 1 (Goldsheid-Molchanov-
Pastur theorem). A survey was performed of some of the
mathematical results and techniques for Schrödinger operators
with random and quasiperiodic potentials in Refs. [44,45]. The
existence of the positive Lyapunov exponent is a necessary
and sufficient condition for a pure point set spectrum of the
operators, and all the eigenfunctions then exhibit exponential
decay in the thermodynamic limit. Kotani’s theory states that if
the potential sequence is nondeterministic under the following
conditions: (i) stationarity, (ii) ergodicity, (iii) integrability,
then there is no absolutely continuous (a.c.) spectrum of the op-
erators. These theorems can be proven true for continuous and
discrete one-dimensional disordered systems (1DDSs) [46].
Usually in the presence of a background noise, an increased
effort put into controlling a system stabilizes its behavior.
In rare cases, increased control of the system can lead to a
looser response and, therefore, to a poorer performance [47].
For example, here we consider a triangular potential with
Wi ∈ (W1 = Vmin, . . . ,WN/2 = Vmax, . . . ,V1 = Wmin), where
N is the total number of sites in the sublattice (an odd number),
and Vmax (Vmin) is the biggest (smallest) on-site potential.

FIG. 11. Same as Fig. 2 for a sublattice with a triangular potential
(with L = 10 but a larger perfect lattice) for more time steps.

Keeping a quantum system in a given instantaneous
eigenstate is a control problem [48]. As can be seen in
Fig. 11(a), in the absence of any noise (the increased control of
the system) this Hamiltonian generates localization, and this
is a manifestation of Anderson localization [see Fig. 11(a)]
because, as is shown, the saturation point is far beyond the
amount that is dictated by the finite-size effect [see Figs. 11(b)–
11(d)]. When we induce small noise intensity � = 0.01 to
the system (causing the system to destabilize its behavior),
it takes some time for the white noise to delocalize some of
the system states, and this drives the system to sub-diffusion
very smoothly. Then at some time step suddenly stochastic
resonance occurs and the system changes its diffusion regime
instantly to the super-ballistic regime [see Fig. 11(b)]. If we
increase the noise intensity to � = 0.04 [see Fig. 11(c)], the
white noise delocalizing effect is similar to the latter case, but
stochastic resonance occurs earlier with respect to the latter
case. Increasing the noise intensity further to � = 0.1 [as can
be seen in Fig. 11(d)] results in earlier stochastic resonance
with respect to the former cases. As can be seen here, stochastic
resonance can have an increasing effect on the diffusion rate at
certain points. Further assessment of this stochastic resonance
is presented in the next section. Here the finite size and the
stochastic resonance are correlated.

VI. SIGNS OF STOCHASTIC RESONANCE

The process whereby noise operates on the quantum
system enhancing the response to an external noisy signal
has been termed stochastic resonance. Upon decreasing the
temperature, quantum tunneling becomes increasingly impor-
tant [49]. Above a crossover noise intensity, noise-activated
transitions dominate over quantum tunneling events. The
effects of quantum noise then result in a quantum correction
factor of the classical rate of activation. As noise intensity
is decreased below a threshold, tunneling transitions prevail.
The quantum noise could be characterized by the temperature
of the thermal bath and by the coupling strength of the
system to the environment. In the absence of driving, at
sufficiently high noise intensity the damping effects are so
strong that quantum coherence is completely suppressed by
incoherent tunneling transitions. We try to find the coherent
tunneling transitions between adjacent sites on the border
of the sublattice and the perfect lattice. We define the coherent
tunneling rate (CTR) as the norm of the off-diagonal element of
the density matrix between two adjacent sites on the border of
the sublattice and the perfect lattice (ρm,m+1). First we look at
the coherent tunneling transitions (CTTs) in systems in which
noise decreases the diffusion rate. Here in the absence of any
noise, the CTR is fluctuating in all time periods [see Fig. 12(a)].
As the noise increases, the fluctuation in the CTR becomes
damped sooner [see Figs. 9(b)–9(d)], and by increasing the
noise intensity the coherency will be killed very soon; this
is the usual decoherence effect of the white noise. However,
in the systems in which noise enhances the diffusion rate or
delocalizes a completely localized system, it has a different
role. In the triangular potential, increasing the noise intensity
has various effects on the CTT (see Fig. 13). In the absence of
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FIG. 12. Coherent tunneling rate between adjacent sites in the
border of the sublattice and a perfect lattice for a constant potential
with a sublattice potential intensity V = 1.0 (with L = 10). The plots
from top left to bottom right show cases with noise intensity � = 0,
0.01, 0.04, and 0.1, respectively. All quantities are dimensionless.

any noise, the CTR is zero. As noise increases, the CTR shifts
to later time steps, and the duration of the coherency increases
significantly.

.

.

.

.

.

FIG. 13. Same as Fig. 12 for a sublattice with a triangular
potential (with L = 10 and a larger perfect lattice). The green line (a),
red line (b), blue line (c), and brown line (d) represent noise intensity
� = 0, 0.01, 0.04, and 0.1, respectively.

VII. CALCULATION METHOD

For a tight-binding Hamiltonian with N sites, the number
of elements in the density matrix is N2, and solving the
master equation by numerical integration involves use of
superoperators of size N2×N2. We used a sparse matrix format
in which not all of the N4 elements need to be stored in
the memory. However, the time required to evolve a quantum
system according to the master equation still increases rapidly
as a function of the system size. In particular, the amount of
RAM that is needed becomes larger and larger. Consequently,
solving the master equation is practical only for relatively
small systems: N � 1000. We used Scipy [50] (an open source
Python library used for scientific computing and technical
computing) for integrating and parsing the matrices. With
regard to the precision in the value of the exponents, we should
mention that in all the cases, the standard error of coefficients
for the regression is less than 0.002.

VIII. DISCUSSION

To explain the appearance of superballistic diffusion, a
simple probabilistic model called the point-source model
was introduced in Ref. [4]. The disordered sublattice can
be replaced by a point source that radiates the probability
with a constant velocity v, simulating the dynamics of the
perfect lattice. At t = 0, all of the probability is trapped
inside the point source, and as time passes, the probability
of finding the particle in the sublattice decays exponentially
as PL(t) = exp(−λt2), where λ is the probability decay rate.
When t is small, Zhang et al. argued that the exponential
decay of the probability of finding the particle in the sublattice
can be approximated as PL(t) = exp(−λtα) ≈ 1 − λtα , where
γ ≈ α + 2 [6]. If α = 0, there is no decay, If α = 1, then
an exact exponential decay occurs. In their own article, they
mentioned a big difference between an analytic calculation
(γ ≈ 4.3) and a numerical one (γ ≈ 4.7).

Recently, Nguyen et al. showed that the nonlinear fitting
extension of the point-source model in the form that was
introduced in Ref. [6] is unable to explain super-ballistic
diffusion when the diffusion rate is faster than cubic, so
there is no correct explanation for super-ballistic exponents
when the diffusion rate is faster than cubic [51]. Therefore,
a comprehensive interpretation is needed of super-ballistic
exponents with a diffusion rate that is faster than cubic.

For a long time, noise was considered to be only a source
of disorder, or a nuisance to be avoided. This view has
been changing due to several phenomena that illustrate the
constructive facets of noise. Among them, the most widely
studied is the phenomenon of stochastic resonance, where
the addition of noise to a system enhances its response to
a periodic force [52–58]. This counterintuitive aspect of noise
has been found in a wide variety of situations, including
bistable [59] and monostable [60] systems, nondynamical
elements with [61] and without [62] threshold, pattern-forming
systems [63], and state-dependent noise in the presence of a
stationary fluctuating input [64].

In this work, we studied the effect of white noise on
the diffusion of a wave packet in a 1D lattice. White noise
has different roles in these lattices. Usually it suppresses
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diffusion, but in some cases not only does it not suppress
diffusion, it will actually improve it. There is a special
case in which a system was localized, and the white noise
delocalized it and even changed it to a superballistic diffusion
regime. For the white noise effect on these tight-binding
Hamiltonians, there is no numerical or analytic explanation
nor an interpretation available. The role of the suppression
of the white noise could be interpreted by increasing the
energy band mismatch between the sublattice and the rest of
the uniform lattice, and via the structure of the underlying
eigenstates. White noise leads to frequent changes in the
quantum system’s instantaneous eigenstate. In Ref. [52], the
interplay between externally added noise and the intrinsic
noise of the system that relaxes fast toward a stationary state
was analyzed theoretically. It was found that increasing the
intensity of the external noise can reduce the total noise of
the system. The reduction in output noise is due to the fact
that the system is driven into states with lower intrinsic noise,
where the confinement effort is effectively greater. Here the
intrinsic noise of the system is the noise within the Hamiltonian
eigenstates, as in Refs. [65,66], and the external noise is the
induced white noise.

The addition of white noise enhances the diffusion rate in
some cases and suppresses it in others. We believe that when
noise has a counterintuitive aspect (enhancement), there is
some stochastic resonance between the matter-wave states and
the white noise. Therefore, whenever this resonance occurs,
the noise enhances the diffusion; otherwise it suppresses it.
The type of potential and its intensity affects the occurrence of
stochastic resonance. We have assessed many different cases
showing that the potential type, its intensity, and the noise
intensity together have some correlation with stochastic reso-
nance. The potential should be nested within a large enough
perfect lattice, and its intensity should be between certain val-
ues (with respect to the noise intensity), but its structure could
vary. In this paper, we used the triangular potential to present
super-ballistic diffusion. However, even with a fixed-valued
potential, we observed the localization-to-delocalization tran-
sition, which still exhibits sub-ballistic diffusion.
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Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien,
Science 329, 1500 (2010).

[14] A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and
B. E. A. Saleh, Phys. Rev. A 86, 040302 (2012).

[15] P. E. Grabowski, A. Markmann, I. V. Morozov, I. A. Valuev,
C. A. Fichtl, D. F. Richards, V. S. Batista, F. R. Graziani, and
M. S. Murillo, Phys. Rev. E 87, 063104 (2013).

[16] H.-P. Breuer, Phys. Rev. A 75, 022103 (2007).
[17] A. Shabani, J. Roden, and K. B. Whaley, Phys. Rev. Lett. 112,

113601 (2014).
[18] H. Haken and G. Strobl, Eur. Phys. J. A 262, 135 (1973).
[19] L. Novo, M. Mohseni, and Y. Omar, Sci. Rep. 6, 18142 (2016).
[20] J. Heinrichs, Phys. Rev. B 51, 5699 (1995).

[21] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D.
Siggia, Phys. Rev. Lett. 50, 1873 (1983).

[22] G. Y. Oh and M. H. Lee, Phys. Rev. B 48, 12465 (1993).
[23] M. Dulea, M. Severin, and R. Riklund, Phys. Rev. B 42, 3680

(1990).
[24] G. Gumbs and M. K. Ali, Phys. Rev. Lett. 60, 1081 (1988).
[25] M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50,

1870 (1983).
[26] P. G. Harper, Proc. Phys. Soc. London, Sect. A 68, 879

(1955).
[27] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.

Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,
Nature (London) 453, 895 (2008).
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