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Large-amplitude nonlinear normal modes of the discrete sine lattices

Valeri V. Smirnov* and Leonid I. Manevitch
Institute of Chemical Physics, RAS, 4 Kosygin Street, Moscow 119991, Russia

(Received 30 March 2016; revised manuscript received 25 November 2016; published 17 February 2017)

We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system
of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π ).
Although this model has numerous applications in different fields of physics, it was studied earlier in the
infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the
coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows
to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the
long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate
zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone
structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even
with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter
wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of
the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long
wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and
localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a
good agreement with obtained analytical predictions.
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I. INTRODUCTION

A wide class of physical models, the most known of
which is the Frenkel-Kontorova (FK) model [1,2], is based
on the dynamics of a pendulum. The physical applications
of the FK model comprise a wide spectrum of the problems
in the solid-state theory [1,3–8], the polymer physics [9],
and certain biological processes like the DNA dynamics and
denaturation [10] (more references may be found in Ref. [2]).
The common peculiarity of the mentioned models is the pres-
ence of the periodic on-site potential, while the inter-particle
interaction can be described by potentials with nonlinearities
of different types. Periodic interatomic potentials arise, in
particular, while dealing with magnetic systems, unzipping
the DNA molecule and oscillations of the flexible crystalline
polymers (see, e.g., Refs. [11–13], where the existence of the
highly localized soliton-like solution has been proved in the
framework of the sine-lattice model).

The lucky star of the Frenkel-Kontorova model is the
existence of the integrable continuum limit of the respective
equation of motion (sine-Gordon equation). Due to full
integrability of the latter, its spectra of the nonlinear periodic
and localized excitations have been studied in detail [14].
The continuum limit of the discrete model with the nonlinear
periodic interatomic interaction leads to the same sine-Gordon
equation with understandable restrictions on the wavelengths
(accounting the discreteness effects in the framework of ap-
proach introduced by Rosenau [15] leads to the improvement
of the long-wavelength approximation only).

The main goal of this article is the study of nonlinear normal
modes (NNMs) of discrete lattice with nonlinear on-site and
intersite interactions in the wide range of the oscillation
amplitudes and wavelengths. We propose a new semi-inverse
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asymptotic approach, which was successfully implemented for
two coupled pendulums in Ref. [16]. This approach allowed
us to reveal an extremely complex zone structure at the
large amplitudes that leads to multiple resonances between
NNMs with strongly different wave numbers. In particular, the
equations of motion obtained allow us to study the processes
of the resonant interaction of the NNMs and to formulate the
criterion of the modes’ stability at different amplitudes and
wave numbers of the oscillations. We also demonstrate that
such a process as a localization of oscillations in the chain
can be understood by considering the NNMs interaction in the
framework of the asymptotic analysis.

II. THE MODEL

We consider a finite chain of coupled particles with periodic
on-site and interparticle potentials; each of them is described
by a harmonic function with, generally speaking, different
periods. This system will be referred to as sine-lattice (SL),
in contrast to the classic FK system. Keeping in mind the
coincidence of the mathematical descriptions we will discuss
all results in terms of coupled pendulums. The energy of such
system may be written as follows:

H =
N∑

j=1

[
1

2

(
dqj

dt

)2

+ β

α2
{1 − cos [α(qj+1 − qj )]}

+ (1 − cos qj )

]
; j = 1, . . . ,N, (1)

where qj is the deviation of the j th pendulum, while β and α

are the parameters that specify the rigidity and the period
of interpendulum coupling. We use the periodic boundary
conditions as the most appropriate for the analysis of the chain
dynamics, i.e., we assume that qN+1 = q1 and q0 = qN .
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The respective equations of motion can be written as
follows:

d2qj

dt2
− β

α
{sin [α(qj+1 − qj )] − sin [α(qj − qj−1)]} + sin qj

= 0. (2)

Introducing the complex variables given by

�j = 1√
2

(
1√
ω

dqj

dt
+ i

√
ωqj

)
,

(3)

qj = −i√
2ω

(�j − �∗
j ),

dqj

dt
=

√
ω

2
(�j + �∗

j ),

and substituting them in Eq. (2), one can rewrite Eq. (2) as

i
d�j

dt
+ ω

2
(�j + cc),

+ 1

2ω

∞∑
k=0

1

(2k + 1)!

(
1

2ω

)k

{(�j − cc)2k+1

−β α2k[(�j+1 − �j − cc)2k+1

− (�j − �j−1 − cc)2k+1]} = 0, (4)

where the nonlinear terms in Eq. (2) are represented as the
series of their arguments and abbreviation “cc” corresponds to
the complex conjugates.

The semi-inverse resonance approach to the dynamic
analysis without any restrictions on the oscillation amplitudes
assumes that the considered system admits two timescales (fast
and slow). In the framework of this approach corresponding
small parameter as well as the frequency ω can be not presented
in starting equations of motion Eq. (2) and they have to be
determined later. In order to demonstrate these sentences one
can start from the stationary solution of Eq. (4):

�j = ϕje
iωt , (5)

where ϕj = const. Inserting solution Eq. (5) into Eq. (4) with
the further multiplying the latter on the factor exp(−iωt) and
integrating over the period 2π/ω leads to the transcendental
equations for the envelope function ϕj :

−ω

2
ϕj + 1√

2ω
J1

(√
2

ω
|ϕj |

)
ϕj

|ϕj |

− β

α
√

2ω

[
J1

(
α

√
2

ω
|ϕj+1 − ϕj |

)
ϕj+1 − ϕj

|ϕj+1 − ϕj |

− J1

(
α

√
2

ω
|ϕj − ϕj−1|

)
ϕj − ϕj−1

|ϕj − ϕj−1|
]

= 0, (6)

where J1 is the Bessel function of the first order.
It is easy to see that the procedure used above is somewhat

similar to the harmonic balance method, which is widely used
in the analysis of nonlinear oscillations [17].

In spite of the complexity of Eq. (6), one can directly check
that the simple expression

ϕj =
√

Xe−iκj (7)

with the wave number κ = 2πk/N (k is an integer, k � N/2)
satisfies it, if the frequency ω is the solution of the equation

−ω

2
+ 1√

2ωX

[
2
β

α
J1

(
2α

√
2

ω
X sin

κ

2

)
sin

κ

2
+ J1

(√
2

ω
X

)]
= 0. (8)

The latter equation is strongly simplified, if we use the
relationship between the modulus of complex function X and
the amplitude of oscillations Q, which results from definition
Eq. (3) of complex variable �:

X = ω

2
Q2.

Taking into account this relationship leads to the expression
for the NNMs’ frequency of the oscillations with the given
amplitude Q:

ω2 = 2

Q

[
2

β

α
J1

(
2 α Q sin

κ

2

)
sin

κ

2
+ J1(Q)

]
. (9)

Prior to the analysis of eigenfrequencies Eq. (9) one should
test the limiting case that corresponds to the oscillations of
a single pendulum. Really, if the coupling parameter β = 0,
Hamiltonian Eq. (1) describes a set of independent pendulums,
the oscillation frequency of which depends on the amplitude
Q. In such a case frequency Eq. (9) has the form:

ω =
√

2

Q
J1(Q). (10)

Equation (10) can be compared with the exact oscillation
frequency of pendulum:

ωe = π

2K[sin(Q/2)]
, (11)

where K is the complete elliptic integral of the first kind.
One can see from Fig. 1 that the agreement for all

amplitudes is excellent up to Q � 3π/4 and turns out to be
good enough even for Q = 9π/10.

In order to understand the origin of the frequencies
divergence one should notice that Eq. (6) is the limiting
stationary case of more commonly equation, which describes
a slow evolution of the envelope function ϕJ . The latter results
from the interaction of the NNMs with close frequencies (it
is an analog of the beating phenomenon in the linearized
system). The specific time of this evolution is determined by
the relative difference of the NNMs’ frequencies. Until these
values are small enough, the timescales may be separated well.
However, when the oscillation amplitude Q approaches its
maximum value π , the frequency rapidly diminishes and the
difference mentioned above turns out to be nonsmall. So, the
small parameter, which determines the timescale separation,
is related with the gap between NNMs frequencies. We will
demonstrate using this parameter at the analysis of the stability
of the NNMs.

Equation (9) describes the NNM “zone” structure, i.e., the
dispersion ratio for the SL model at the arbitrary oscillation
amplitude (excluding the vicinity of the “rotation limit”
Q = π ).

One should note that because of model Eq. (1) leads
to the discrete FK chain in the “long-wavelength” limit
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FIG. 1. Zone structure of the discrete FK chain with 20 particles
(coupling parameter β = 0.25). Dashed curves correspond to the
NNMs’ frequencies Eq. (12); the low-frequency zone-bounding mode
is shown by solid blue curve [see Eq. (10)]. Dashed red curve shows
the exact frequency of pendulum oscillations according to Eq. (11).

[α(qj+1 − qj ) � 1], Eq. (9) has to describe the respective
spectrum. Actually, considering the wave number κ as a
small value, one can expand the Bessel function as a power
series. The first term of Eq. (9) becomes 2αQ sin κ/2 and the
eigenfrequency is reduced as follows:

ω2 = 2

[
1

Q
J1(Q) + 2 β sin2 κ

2

]
. (12)

Figure 1 shows the zone structure for the FK chain with 20
particles under periodic boundary conditions.

The low-frequency mode, which bounds the zone, cor-
responds to the uniform oscillations of the chain or to the
oscillations of the single pendulum Eq. (10), while the high-
frequency bounding mode corresponds to the out-of-phase
pendulum oscillations (“π” mode). One can see that frequency
Eq. (12) is the monotonically increasing function of the wave
number κ , but the difference 	ω2 = ω2(κ = π ) − ω2(κ = 0)
does not depend on the amplitude of oscillations.

Figure 2 shows zone structure for the harmonically coupled
pendulums.

The comparison of Figs. 1 and 2 shows a cardinal distinction
between them. First, the width of the SL zone depends on the
amplitude of oscillations. It is more important that the dis-
persion relation at a fixed amplitude Q � π/2 (the threshold
value depends on the parameters α and β) is a nonmonotonic
function of the wave number. As a result, the frequency of
the zone bounding π mode turns out to be smaller than the
frequency of the uniform mode for large Q. In such a case
the multiple resonances occur in the vicinity of right edge of
the spectrum, and their existence is defined by nonmonotonic
character of the dispersion relation rather than by the length of
the chain. Figure 3 shows the dispersion relation for SL chain
with 20 pendulums and the oscillation amplitude Q = π/10
in comparison with the same for Q = 9π/10.

The structure of the NNMs zone for the SL chain has been
checked by the direct numerical integration of Eq. (2).

Figure 4 allows to compare the positions of the zone
bounding modes and some intermediate ones. One can see that

FIG. 2. The zone structure for the SL chain with 20 pendulums
under periodic boundary conditions. Light blue and light brown
curves correspond to the zone bounding uniform and π modes, re-
spectively. The coupling parameters β = 0.25, α = 1.2. The numbers
in the figure legend show the mode’s number.

the mutual positions of the modes correspond to the dispersion
relations that are shown in Fig. 3.

Due to nonmonotonic behavior of the dispersion relations at
the large amplitudes (Fig. 3), a multitude of the resonances can
exist for both the NNMs with the nearby wave numbers and
for the modes, the wave numbers of which differ significantly.
Moreover, an almost flat dispersion relation can be obtained
for the certain combination of the lattice parameters α and β.
In such a case the thermoconductivity of the system decreases
essentially due to the effective phonon scattering [18].

An initial excitation of general nature a priori contains
some combination of the modes with different amplitudes.
In contrast to a linear system, where any interaction between
normal modes is absent, the NNMs in the essentially nonlinear
systems can interact efficiently if the resonant conditions
occur [19]. Therefore, the problem of internal resonances is
very important for study of the dynamics of the sine-lattice.

Figures 5 show the “map” of resonantly interacting modes
for two amplitudes of the oscillations: Q = 3π/10 and

FIG. 3. The comparison of the dispersion relations for the SL
chain with 20 pendulums at the different oscillation amplitudes: black,
red and blue points correspond to the amplitudes Q = π/10, Q =
7π/10, and Q = 9π/10, respectively. The relative frequencies ω/ω0

(ω0 is the frequency of the uniform modes) are shown. The potential
parameters: β = 0.25, α = 1.2.
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FIG. 4. Fourier spectra of the oscillations of SL chain with eight
pendulums. Left panel shows the frequencies of the normal mode with
κ = 0, 3π/4, π (solid black, dot-dashed red, and dashed blue lines,
respectively) at the amplitude Q = π/10. Right panel shows the same
as left one at the amplitude Q = 9π/10. The potential parameters:
β = 0.25, α = 1.2

Q = 7π/10. The Figs. 5(a)–5(f) differ in the partial amplitudes
of interacting modes Q1 and Q2 at the constant sum of them:
Q = Q1 + Q2.

One can see that for a small amplitude Q, the resonantly
interacting modes have the close numbers: k1 � k2 for any
ratios of the partial amplitudes of the modes (Q1 and Q2

[see Fig. 5(i)]. In contrast to that, the oscillations with a
large amplitude [Fig. 5(iii)] do not contain the resonantly
interacting modes for small values Q2 and include the
multitude of resonant modes in the short wavelength domain

FIG. 6. The number of resonances vs. partial amplitude ratio for
total oscilllation amplitudes Q = 3π/10, π/2, 7π/10

of the spectrum. Figure 6 shows the number of resonances as a
function of the ratio Q2/Q1 for three values of the oscillation
amplitude: Q = 3/π/10, π/2, 7π/10.

There are at least two reasons for the importance of the
NNMs interactions. As it was shown early, the resonant
interaction of the NNMs leads to the localization effect (the
capture of the energy of oscillations in some domain of the
chain) [20–22]. The necessary condition of such localization
is the instability of one of interacting modes [23].

FIG. 5. Maps of resonances for two values of oscillation amplitudes: Q = π/2 (a–c) and Q = 7π/10 (d–f). k1 and k2 are the modes’
numbers. The panels (a–c) and (d–e) differ in the partial amplitudes of the modes Q1 and Q2. The red squares correspond to the modes the
frequencies of which differ not more than 5%.
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The second reason arises from the occurrence of the chaotic
regimes of the oscillations under conditions of internal non-
linear resonances [19,24–26]. As it was mentioned above, the
continuum approximation of Eq. (2) leads to the well-known
sine-Gordon equation, which corresponds to the integrable
system and does not allow any chaotic behavior. In contrast
with the latter the considered system is not an integrable
one. Taking into account the multitude of internal resonances,
one should expect the existence of the chaotic trajectories in
the phase space of the system. The chaotic trajectories arise
inside the stochastic layer nearby the separatrix passing via the
unstable singularity, which is formed when one of resonantly
interacting modes loses its stability [27].

Therefore, the stability of the NNMs is one of the key
problems of the dynamics of the system under consideration.

In order to analyze the stability of the NNMs we will use the
nonstationary extension of Eq. (6). Let us assume that the initial
conditions contain alongside with considered NNM (stationary
solution) a small perturbation corresponding to mode with
different wave number:

ϕj =
√

X(1 + εχj )eiκj = ϕj,0 + εχj , (13)

where ϕj,0 is the solution of stationary Eq. (6). In such a
case one should wait that Eq. (6) is not satisfied. It is easy
to understand that this envelope will have a large timescale
(in the comparison with the period of the carrier 2π/ω) if the

frequencies of the interacting modes turn out to be close. The
short discussion of the time separation procedure is presented
in the Appendix. As a result the time-dependent equations can
be written as follows:

i
∂ϕj

∂τ1
− ω

2
ϕj + 1√

2ω
J1

(√
2

ω
|ϕj |

)
ϕj

|ϕj |

− β

α
√

2ω

[
J1

(
α

√
2

ω
|ϕj+1 − ϕj |

)
ϕj+1 − ϕj

|ϕj+1 − ϕj |

− J1

(
α

√
2

ω
|ϕj − ϕj−1|

)
ϕj − ϕj−1

|ϕj − ϕj−1|
]

= 0. (14)

Assuming the function Eq. (13) in the form

ϕj =
√

X[eiκj + s(τ1)eiνj ]

=
√

X{eiκj + [u(τ1) + v(τ1)]eiνj }, (15)

where u and v are the real functions of the slow time τ1, one
can analyze the effect of the mode with wave number ν on the
NNM with wave number κ . Expanding Eq. (14) in the vicinity
of the NNM ϕ and keeping the perturbation of first order only,
one can obtain the equation for the real part of the function s

as follows:

∂2u

∂τ 2
1

+ �u = 0, (16)

where the parameter � is

� = 1

8ω sin κ
2

[
2
β

α
J1

(
2αQ sin

κ

2

)
(cos κ − cos ν) − 4βQJ2

(
2αQ sin

κ

2

)
sin2 ν

2
sin

κ

2
− QJ2(Q)

]2

− Q2 sin κ
2

8ω

[
2β(cos(κ − ν) − cos κ)J2

(
2Qα sin

κ

2

)
+ J2(Q)

]2

. (17)

The stability of the NNM is determined by the sign of the parameter �. If � > 0, the perturbation remains a small, but it
increases if � < 0. The parameter � depends on the lattice parameters α and β as well as on the amplitude Q. Let us determine
the coupling parameter β at the threshold of stability. Solving the equation

� = 0

with respect to β, one can obtain its critical value as follows:

βins = αQJ2(Q) sin κ
2

J1
(
2Qα sin κ

2

)
(cos κ − cos ν) − 4αQJ2

(
2Qα sin κ

2

)
sin2 κ

2 sin ν
2 cos

[
1
2 (κ − ν)

] . (18)

As it was shown earlier [20,22,28], the stability of the zone-
bounding mode with κ = 0 is important for the localization
of the oscillations. Namely, the lost of the stability of this
mode is the first step to stationary nonuniform distribution of
the oscillation energy along the chain. Assuming κ = 0 and
ν = 2π/N , one can obtain the instability threshold for the
zone-bonding mode as follows:

βins = 1

2

J2(Q)

sin2(π/N )
, (19)

which correlates well with the estimation of analogous
instability threshold for the Frenkel-Kontorova chain β =
(3Q/16π )2N2 in the small-amplitude limit [22].

The “instability map” of the zone-bounding mode for
the chain with N = 20 is shown in Fig. 7. One can see
that the instability threshold increases significantly while
the oscillation amplitude grows. It seems from the physical
viewpoint that a large coupling parameter has no sense. It
means that the large-amplitude uniform oscillations will be
unstable in the majority of the physical systems.

We will not consider the stability of other resonantly
interacting modes because due to the simpleness of Eq. (18)
this problem can be analyzed for any physical systems.

However, the lost of stability of the zone-bounding mode
does not imply the creation of the localized oscillation in the
chain. There is the second bifurcation after that the processes
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FIG. 7. Stability map of the zone-bounding mode with wave
number κ = 0 in the coordinates (Q, β). The blue and red domains
correspond to the stability and instability of the mode. The figure
legend shows the specific values of the parameter �. The boundary
between domains is marked by bright dashed line. The threshold of
the localization is shown as the black dashed curve (see text). The
length of chain is equal to 20 and parameter α = 1.25.

of the energy redistribution are forbidden [20]. This bifurcation
occurs when the energy of the unstable mode turns out to be
equal the energy of the mixed state of the stable and unstable
modes. Such a state corresponds to the limiting phase trajectory
(LPT), which describes the nonstationary dynamics of the
chain with the extremely large energy exchange between some
parts of the system. The motion of the pendula inside this parts
are closed to the coherent oscillations while the dynamics of
the pendula in different parts differ essentially. The process of
the energy exchange between these parts (clusters or coherent
domains) of the system is similar to the beating in the system of
two weakly coupled oscillators while the energy localization
is analogous of the energy capture of one of them.

In order to estimate the localization threshold one should
use the hamiltonian corresponding to Eq. (14):

Ha =
N∑

j=1

[
−ω

2
|ϕj |2 + β

α2

(
1 − J0(α

√
2

ω
|ϕj+1 − ϕj |)

)

+
(

1 − J0

(√
2

ω
|ϕj |

))]
. (20)

As it was mentioned above, the regimes with the energy
localization occurs when the NNMs with wave number κ = 0
and κ = 2π/N interact resonantly. Setting energy Eq. (20) of
the zone-bounding mode solution (ϕj = const) equal to the
energy of the mode mixture (ϕj ∼ 1 + exp(i2π/N )), one can
get the localization threshold of the coupling parameter as
follows:

βloc = α2

4

4J 2
0 (Q/2) − 4J0(Q) − QJ1(Q)

1 − J0[αQ sin (π/N )]
. (21)

The black dashed curve in Fig. 7 shows the value of the
localization threshold Eq. (21) for the chain with 20 pendula
and parameter α = 1.25. One can see that the localization
threshold βloc grows essentially slower than the value βins;
however, it reaches a large enough values for the large
oscillation amplitudes Q � π/2. On the other side one should
notice that the small-amplitude expansion of Eq. (21) shows
that the value β sin2 π/N turns out to be small, if the length
of the chain is large enough. It correlates strongly with the
assumptions about the resonance of the considered modes,
because splitting between them is proportional this value.

Figures 8(a)–8(c) show the energy distribution along the
chain for different values of the coupling parameter β—before
and after threshold value βloc. These figure were obtained by
the direct numerical integration of the equations of motion
which correspond to the initial Hamiltonian Eq. (1) under
the periodic boundary conditions. The period of the zone-
bounding mode at the amplitude Q = π/2 is T = 2π/ω � 7.4
time units.

Figure 8(a) shows the periodic energy redistribution along
the chain before the localization (β = 1.76): the bright and
dark areas change their location with the period, which
is essentially larger than the oscillation one. Figure 8(b)

FIG. 8. Energy distribution along the chain with 20 pendula for three values of the coupling parameter β: 1.76 (a), 1.75 (c), and 1.00 (c).
Parameter α = 1.25. Amplitude of oscillation Q = π/2. The figure legends show the energy value in the dimensionless units.

022212-6



LARGE-AMPLITUDE NONLINEAR NORMAL MODES OF THE . . . PHYSICAL REVIEW E 95, 022212 (2017)

demonstrates the energy distribution at the coupling parameter
β = 1.75, which is under previous value less than 1% . One can
see that the main part of the energy is localized near the center
of the chain. Finally, Fig. 8(c) shows the well localized oscilla-
tions at the coupling parameter β = 1.00 � βloc. One should
notice that the estimation of the localization threshold with
Eq. (21) for the used parameters gives the value β = 2.044,
while as it can be seen from Fig. 8(b) shows the the localization
occurs at β � 1.755. The difference between the numerical
result and the analytical estimation is approximately 15%.

III. CONCLUSIONS

The study of normal modes of the SLs revealed that
the high-amplitude oscillations of harmonically coupled
pendulums possess nontrivial dispersion relation, when the
normal modes with higher wave numbers correspond to
smaller oscillation frequencies. This peculiarity of the SL
is a consequence of competition of the intersite and on-site
parts of the potentials. Actually, the nonmonotonic behavior of
the intersite potential can lead to decreasing the contribution
of the dispersion term in Eq. (6). The competition between
on-site and intersite interactions occurs when the difference
of the displacements between neighbor pendulums turns out
to be large enough, i.e., for the short wavelength oscillations.
In the continuum limit, the dispersion terms of Eq. (6) are
reduced to the second derivation of variable ϕ. As a result,
the dispersion terms do not depend on the amplitude anymore.
This correlates with that the continuum equation can be used
for description of the long wavelength range only.

The analytical semi-inverse approach with multiple scale
procedure turns out to be efficient for the investigation of
different types of nonlinear lattices. This approach requires us
to determine the value of the small parameter, which allows us
to separate the timescales.

A natural small parameter in the problem is the value of
the gap between the frequencies of adjacent NNMs. In spite
of not having a small parameter in the initial equations, we are
able to single it out in the process of solution. In particular,
the equations in terms of the complex amplitudes, which are
similar to Eq. (6), allow us to study the nonlinear normal
mode interaction (see, e.g., Refs. [20–22,29]) that opens a wide
possibilities for the analysis of nonlinear systems in various
fields of physics. For example, the lattices with a wide class of
nonlinear on-site and intersite potentials may be analyzed in
the framework of this method. On the other side, this method
allows us to analyze weakly coupled small systems, providing
the coupling parameter is sufficiently small [16].

We have shown that using the asymptotic time-dependent
evolution Eq. (14) with Hamiltonian Eq. (20) is a useful
approach to study the resonant interactions of the NNMs in a
wide range of the amplitudes and wave numbers. In particular,
this approach allows us to determine the domains of NNMs’
stability and to estimate the threshold of the energy localization
analytically.
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APPENDIX: TIMESCALE SEPARATION

In the framework of the multiscale method the “fast” and
“slow” times are determined by the rules

τ0 = t, τ1 = ετ0,

and the derivative with respect to the time is

d

dt
= ∂

∂τ0
+ ε

∂

∂τ1
.

Let us rewrite Eq. (6) as follows:

∂ϕj

∂τ0
+ ε

∂ϕj

∂τ1
− ω

2
ϕj + F (ϕj ) = 0, (A1)

where

F (ϕ) = 1√
2ω

J1

(√
2

ω
|ϕj |

)
ϕj

|ϕj |

− β

α
√

2ω

[
J1

(
α

√
2

ω
|ϕj+1 − ϕj |

)
ϕj+1 − ϕj

|ϕj+1 − ϕj |

− J1

(
α

√
2

ω
|ϕj − ϕj−1|

)
ϕj − ϕj−1

|ϕj − ϕj−1|
]
.

Let us consider the solution in the form ϕj = ϕj,0 + εχj ,
where ϕj,0 satisfy Eq. (6) and ε is a small parameter. Taking
into account that ϕj,0 = const, one can write Eq. (A1) as
follows:

ε
∂χj

∂τ0
+ ε2 ∂χj

∂τ1
− ω

2
(ϕj,0 + εχj ) + F (ϕj,0 + εχj ) = 0.

(A2)
One can consider this equation from the viewpoint of the

order of small parameter ε:

ε
∂χj

∂τ0
+ ε2 ∂χj

∂τ1
− ω

2
ϕj,0 + F (ϕj,0)

− ε

[
ω

2
−

(
∂

∂x
F (x)

)
x=ϕj,0

]
χj = 0. (A3)

Taking into account Eq. (6), one can get

ε
∂χj

∂τ0
+ ε2 ∂χj

∂τ1
− ε

(
ω

2
−

(
∂

∂x
F (x)

)
x=ϕj,0

)
χj

= ε
∂χj

∂τ0
+ ε2 ∂χj

∂τ1
− ε

[
∂

∂x

(
ω

2
x − F (x)

)]
x=ϕj,0

χj = 0.

(A4)
So, if the last term in Eq. (A4) corresponds to a small value

of order ε, one can separate the different orders of the small
parameter ε:

ε :
∂χj

∂τ0
= 0,

(A5)

ε2 :
∂χj

∂τ1
− 1

ε

[
∂

∂x

(
ω

2
x − F (x)

)]
x=ϕj,0

χj = 0.

One should notice that the term in the square brackets has
to be proportional to the relative difference of the modes’
frequencies 	ω/ω and the small parameter ε can be estimated
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as follows:

ε � 	ω/ω.

Because the stationary solution ϕj,0 does not depend on
the time, the nonlinear evolution equation may be written as
Eq. (14).
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