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Biochemical systems with switch-like interactions, such as gene regulatory networks, are well modeled by
autonomous Boolean networks. Specifically, the topology and logic of gene interactions can be described by
systems of continuous piecewise-linear differential equations, enabling analytical predictions of the dynamics
of specific networks. However, most models do not account for time delays along links associated with spatial
transport, mRNA transcription, and translation. To address this issue, we have developed an experimental test
bed to realize a time-delay autonomous Boolean network with three inhibitory nodes, known as a repressilator,
and use it to study the dynamics that arise as time delays along the links vary. We observe various nearly periodic
oscillatory transient patterns with extremely long lifetime, which emerge in small network motifs due to the delay,
and which are distinct from the eventual asymptotically stable periodic attractors. For repeated experiments with
a given network, we find that stochastic processes give rise to a broad distribution of transient times with an
exponential tail. In some cases, the transients are so long that it is doubtful the attractors will ever be approached in
abiological system that has a finite lifetime. To counteract the long transients, we show experimentally that small,
occasional perturbations applied to the time delays can force the trajectories to rapidly approach the attractors.
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I. INTRODUCTION

Boolean network models are widely used for describing
systems with switch-like interactions in multiple research
fields: In the geosciences, they have been used as idealized
climate models on a large range of timescales from interannual
to paleoclimatic variability [1,2], as well as for earthquake
modeling and prediction [3,4]. In biology, Boolean networks
have been used to describe neural networks [5,6], and gene
regulatory networks (GRNs) [7-11], and are applied to study
evolution [12,13] or immune response [14]. Furthermore,
Boolean network models find applications in economics [15]
and social sciences [16]. In all of these systems, current
research focuses on identifying the type and number of
coexisting attractors and their real-world interpretation. This
is especially the case for GRNs, which are the main focus of
this work.

The main idea of GRNs was put forth by Jacob and Monod
[17]: They proposed that a transcription factor, which is a
protein encoded by a specific gene, can bind to another gene,
thereby repressing or enhancing its production rate. As a
consequence, a directed network emerges where the nodes
are the genes, and links are given by causal interactions via
transcription factors. The dynamics of a regulatory network
can be approximated by considering genes to be either active or
inactive, i.e., producing their target protein or not. This depends
in a switch-like manner on the presence of a combination of
transcription factors, which motivates the description of GRNs
as a Boolean switching network, where each gene evaluates
its “on” or “off” state (denoted by “1” or “0”) according to a
Boolean function of its inputs, i.e., its transcription factors.
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Gene expression patterns observed in GRNs are believed
to mirror different characteristics of a cell. First, different
gene expression patterns correspond to different cell types, as
hypothesized by Kauffman [18], to match different coexisting
attractors of a Boolean network. Second, a gene expression
pattern displays a specific functional state of the cell, such as
differentiation (execution of a tissue-specific task), prolifer-
ation (cell cycle) and apoptosis (cell death) [19]. Functional
state and type of a cell may be determined by separate subsets
of the GRN.

When studying the dynamical patterns or attractors of
model GRNs [20-22], predictions depend on the choice
of models, e.g., the scaling of the number of attractors
with respect to system size in random Boolean networks
[23]. While a Boolean approximation to sigmoidal switching
interactions seems robust in many cases [24-26], several over-
simplifications of established models, such as synchronous
update of node states, negligence of transmission delays, and
homogeneous network elements, can restrict the dynamics
or yield artifacts. For example, it is well known that a
large number of periodic cycles in Boolean networks become
unstable for an autonomous updating scheme [23] and that
even very simple Boolean networks can display complex
dynamics [27,28]. Nevertheless, long-lasting unstable orbits
might still be biologically meaningful if they decay slowly to
the asymptotic attractors.

The simplified description of GRNs omits several processes
in gene expression that comprise transcription of DNA to
mRNA and translation to the target protein. These intermediate
steps can be modeled as separate nodes within the GRN
[29]. Additionally, intermediate steps in gene expression can
cause significant time delay in certain types of genes [30],
which we include explicitly in our experimental approach.
Time delays along network links in related non-Boolean
systems, such as neural networks, have been shown to induce
oscillations in systems that would otherwise converge to a
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FIG. 1. (a) Ring network of N = 3 nodes with inhibitory interac-
tions. (b) Description of panel (a) as time-delay autonomous Boolean
network. (c) State transition diagram of the autonomous Boolean
network (b) without link delays.

fixed point [31-33]. Transcriptional and translational delays
were identified to cause oscillations of the transcription factors
in real [34], synthetic [35], and model [36,37] GRNs. In neural
ring networks, delay-induced transient oscillations have been
reported [38—41], leading to instability that may interfere with
information processing. We anticipate that adding delay in
models of GRNs will similarly modify the stability of response
patterns.

To address the shortcomings of conventional models for
representing real-world networks, we use an experimental
test bed to realize time-delay autonomous Boolean networks
(ABNs) with electronic logic gates on field-programmable gate
arrays (FPGAs) [42,43]. With this approach, we also address
the question whether the dynamics are robust to noise and
heterogeneity as found in any real-world system. The ultrafast
timescale of the platform allows us to observe phenomena
that are difficult to obtain through numerical simulations of
the model because the time-delay model is exceedingly stiff,
especially as the time delay increases. Moreover, a general
framework to integrate delay equations with stochastic delays
has not yet been developed to the best of our knowledge. With
this platform, we study small ring networks of inhibitory genes,
which exhibit nearly periodic oscillations of gene activity that
evolve slowly to an asymptotically stable periodic state. This
is a prominent behavior in regulatory systems of organisms
[44-48]. Specifically, we study the so-called repressilator [49]
network, illustrated in Fig. 1, which is extensively studied as
a synthetic network.

The primary purpose of this paper is to show that delays
induce transient patterns in ABNs that are distinct from the
asymptotic attractor. These transients can be exceedingly long,
consisting of millions or billions of oscillations. This suggests
that gene regulation patterns inferred from asymptotic study
of Boolean network models might not always be relevant
on observational timescales. Our experiments incorporate
additional features of realistic Boolean models. First, we
demonstrate that the transient dynamics are very sensitive to
delay heterogeneities and initial conditions. Second, the
inherent noise in our system reveals an important role of
stochasticity, as we observe long-tailed distributions for the
transient durations for longer delay times. Furthermore, we
present a method to counteract these super-long transients
using small occasional perturbations to one of the time delays.
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Finally, we reproduce essential experimental observations
with a theoretical model based on piecewise-linear delay
differential equations.

II. BACKGROUND AND EXPERIMENTAL APPROACH

A. Network dynamics without time delay

A well-established framework describing GRNs as ABNs
without link delays is the so-called Glass model, which
embeds the logic and topology of Boolean networks in
systems of piecewise-linear differential equations [50]. Here,
the symbolic dynamics can be described by Boolean network
states (by,by,...,by) with b; € {0,1}, which correspond to the
current activity of N genes. These states can be depicted as
vertices on an N-dimensional hypercube [Fig. 1(b)], and they
evolve in time on the directed edges of the hypercube, which
are determined by topology and Boolean functions of the
network nodes. The attractor on the hypercube corresponds
to the asymptotic gene expression pattern of the GRN, which
can be static or dynamic, i.e., steady states or cyclic switching
patterns.

A ring network with N = 3 repressing nodes, modeled by
the Boolean NOT function, exhibits a cyclic attractor with the
switching sequence (0,0,1) — (0,1,1) — (0,1,0) — (1,1,0)
— (1,0,0) - (1,0,1) — --- [50]. Without link delays, this
attractor is reached immediately after the switching of at most
one variable. We test whether these predictions hold as delays
are included along the links.

B. Implementation on a field-programmable gate array

We construct experimental repressilator networks with
autonomous (unclocked) logic gates performing Boolean NOT
operations on a FPGA (Altera Cyclone IV on the Terasic
DE2-115 demonstration kit), as described in greater detail in
Appendix A. An important characteristic of this experimental
system is the response time of a logic gate, which we will need
when comparing to the theoretical model described in Sec. V.

Fundamentally, the finite rise and fall time of the output of
a logic gate due to a step change in its input gives rise to an
effective time delay in its output. In a mathematical model, we
can account for this by either choosing to assign a response
time to the node and no delay time, or assign a delay time to
the node, and take the rise and fall time as instantaneous. Here,
we take the three nodes of the repressilator to have a response
time of 7, = 0.41 &+ 0.05 ns, which corresponds to the time the
analog voltages take to reach the threshold. This characteristic
timescale may be linked to production and degradation rates
(lifetimes) of gene products in real GRNs. The network nodes
are connected with links that are constructed by connecting
a cascade of n; pairs of NOT gates in series. For these NOT
gates, instead of taking all rise and fall times into account,
we assign a time delay tp = 0.52 4= 0.05 ns. Therefore, each
network link i has a delay 7; = n; 7y due to a discrete number r;
of delaying elements and the networks are thus characterized
by the vector n = (ny,n,,n3). Our initial analysis focuses on
equal numbers n of delay elements in each link, corresponding
to approximately homogeneous delays.
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This delay time is only an estimate because it is subject
to different heterogeneities: manufacturing imperfections lead
to varying propagation delays of the logic elements and the
routing wires in between network nodes and delay lines
are not identical at every node. We find that manufacturing
imperfections typically give rise to a delay heterogeneity of
50-150 ps in two delay lines with identical number n of
delay elements. In contrast, because of asymmetries in the chip
layout, we cannot directly measure the heterogeneities due to
nonidentical routing wires. By studying different placements
of the network on the chip as discussed in Appendix B, we
estimate that this heterogeneity is on the order of 100 ps. The
heterogeneity is less than 10% of a typical link delay used in
our experiment, which ranges from approximately 1 to 3.5 ns.

Because we investigate a time-delay autonomous system,
the initial conditions have to be defined for a time interval
corresponding to the longest time delay Tp,x in the network.
To this end, we first keep the nodes’ states fixed for a time
much greater than tp.,x. Then, the autonomous dynamics
are essentially simultaneously released by a signal generated
by a clocked register for each node. There is a remaining
heterogeneity of roughly 100 ps in the timing of this signal due
to the nonzero phase shift of the clock at different positions
on the chip and nonidentical wires leading to the different
network nodes. As above, this timing difference is no more
than 10% of the typical delay used in our experiment.

We make small changes to the time delays by implementing
an alternate path within a delay line that includes a logic gate
with slightly longer propagation delay than its counterpart
in the original path. This allows us to selectively change the
heterogeneity of time delays by ~100 ps. To change the timing
heterogeneity of the initial conditions, we use the CAD tool
Altera Quartus II as discussed in Appendix B. It allows us to
alter the relative positions of the initializing clocked registers
for each node, thereby inducing an additional routing delay,
which affects the heterogeneity of the timing of the initial
conditions by ~100 ps.

The attractor dynamics are also affected by the presence
of stochastic, time-varying fluctuations in the link time delays
due to fluctuations in the gate charge on a fast time scale, and
on the FPGA chip temperature and supply voltage on longer
time scales. To reduce the effects of the change in temperature
in the laboratory, we place the FPGA in a small box where
the typical variation is 0.5 °C. These processes give rise to
variation in the delay times of the logic elements on the order
of 10 ps over all timescales, which is ~1% of the typical
delay times. These fluctuations are small in comparison to
the noisy environment typically encountered in a biological
regulatory network. We conjecture, however, that the behavior
we observe here will be obtained even with larger noise, albeit
with a different timescale for the distribution of transient times.

III. REPRESSILATOR DYNAMICS

A. Transient oscillatory patterns

We observe long nearly periodic transients when we
initialize the networks with initial conditions that do not
lie on the eventual attractor, i.e., Boolean states (0,0,0) or
(1,1,1). In Fig. 2(a), we show the waveform V(¢) of one node
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FIG. 2. Temporal evolution of the transient dynamics. (a) Wave-
form of one node in a network with n = (2,2,2) delay elements
initialized in the (1,1,1) state. The initial nearly periodic in-phase
behavior eventually gives way to out-of-phase oscillations after 7' ~
4.05 ps. (b) Corresponding three-dimensional phase portrait of the
trajectory, which evolves from in-phase nearly periodic oscillations
(left) to the asymptotic out-of-phase periodic attractor (right).

observed in a network with n = (2,2,2) after initialization,
and after collapse of the transient, which occurs after T ~
4.05 ps, or equivalently approximately 1500 oscillations of
each node. Initially, the dynamics of each node is nearly
periodic and in-phase with the other nodes with a period of
2.84 £ 0.01 ns. For reference to the theoretical discussion in
Sec. V, this period ~27, where t is average link delay. The
in-phase oscillations are indicated in the three-dimensional
phase portrait in Fig. 2(b), where the trajectory evolves nearly
on the hypercube diagonal in an apparently closed trajectory, at
least on the observed timescale of a few cycles. This trajectory
evolves slowly, always remaining nearly periodic. During this
transient phase, a cycle edge is catching up to another due to
tiny network heterogeneities or initial conditions, eventually
leading to the annihilation of a low-high-low transition [at
~4.02 us in Fig. 2(a)] then a high-low-high transition (just
after ~4.04 us), indicating the end of the transient. After this
transient collapse, the trajectory is characterized by the stable
periodic attractor shown in the right panel of Fig. 2(b) with a
period of 8.51 &+ 0.01 ns [compare with Fig. 1(b)]. Again, for
future reference, this period is ~67.

B. Scaling and distribution of transient durations

In our experiments, the time to reach the asymptotic attrac-
tor is different from trial to trial mainly due to the stochastic
variation in the delay due to charge noise fluctuations at
the gates, as mentioned in the previous section. Below, we
characterize this behavior by measuring the transient duration
probability distribution. Especially for long link delays, these
times can be exceedingly long. This is an example of
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FIG. 3. Mean transient durations for networks with a homoge-
neous number of n delay elements in each network link, repeatedly
initialized in the (0,0,0) state. For n = 5, the transients for each ex-
perimental run last longer than 40 min at which point the experiment
terminated. Here, the data point only signifies the termination point
and the arrow indicates that the mean is longer than this value. For
each data point in the white region, we collect 100 000 samples. In
the gray region, we conduct 30 experimental runs for n = 5, 32 000
for n = 6, and 94 669 for n = 7. The error bars indicate the standard
deviation.

super-transient behavior, which is encountered in a range of
other systems and often have a mean transient time that scales
exponentially with a system parameter. This has been observed
for spatially extended systems [51-56], networks [38,57,58],
and time-delay systems [39]. The observed behavior also
shows similarities to stable chaos in coupled map lattices for
which the transient time scales with the size of the lattice [59].

We observe a rapid increase of mean transient duration
(T') with time delay. In Fig. 3, we show the mean transient
durations for networks with different numbers n = (n,n,n) of
delay elements in each link, which increases the link time
delays. For small delay times (white region of the plot), we
observe transients of moderately long duration, i.e., several
thousand oscillations.

When the link delays are above ~2 ns (indicated by the
gray region in the figure), a regime of supertransients with
typical durations on the order of milliseconds or seconds and
beyond is found. Here, the transient durations do not increase
monotonically with n. For a network realization with n =
(5,5,5), we find that the transient durations are beyond 40 min
for each of 30 experimental runs, at which point we terminate
each run. Hence, we can only conclude that the mean transient
time exceeds this value. In Fig. 3, this is indicated by an
arrow for the data point corresponding to this network. For
n = (6,6,6), the mean lifetimes are roughly 1 s, although there
are extremely large variations from run to run. We hypothesize
that, in this regime, the observed variation in the mean transient
durations are dominated by tiny heterogeneities in link delays
and initial conditions due to different routing of wires in the
delay lines as we vary n. Further below, we demonstrate that
the mean transient durations for fixed n are very sensitive to
slight changes in heterogeneity.

From Fig. 3, we furthermore see that the standard deviation
increases with delay, which indicates a broadening of the
transient duration probability distributions. For small delays,
the transient durations are confined to a Gaussian-shaped peak
with a short tail, as shown in Fig. 4(a). For longer delays, the
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FIG. 4. Probability density function for the transient durations of
networks with (a) n = (2,2,2) and (b) n = (7,7,7) delay elements.
Here, a histogram is generated indicating the number of instances that
we observe a transient time within 7 and 7 + AT, normalized by
AT and the total number of observed transient times. It approximates
the transient time probability density P(T'), where P(T)AT is the
probability of observing a time interval 7 when AT is small.
(b) The mean transient duration (7') is 0.41 s and the red line shows an
exponential fit [p(T) o< e=*T] to the data with exponent A = 2.44 s~

distribution of transient durations shows an exponential tail, as
displayed in Fig. 4(b). Here, the standard deviation is roughly
equal to the mean.

C. Alternative transient patterns

In addition to the in-phase oscillations shown in Fig. 2,
we observe transient trajectories in some networks, which
correspond to different Boolean switching patterns when
depicted on the hypercube. These different transient patterns
can coexist for a given network realization and likewise
emerge when repeatedly initializing the network. In Fig. 5,
we show two different transient trajectories that arise in a
network with n = (4,4,4). While one trajectory represents in-
phase oscillations (left), the other corresponds to a switching
sequence that visits all states on the hypercube. This is a
further indication that the nature and number of coexisting
gene expression patterns, which are inferred from our model
on observational timescales, differ from the asymptotic state.

D. Sensitivity to heterogeneity

In our experiments with longer link time delays, we
observe that the average transient durations (7') vary by

FIG. 5. Phase portrait of two different transient trajectories of
a network with n = (4,4,4) delay elements, both initialized in the
(1,1,1) state.
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FIG. 6. Transient duration distributions in the presence of het-
erogeneities and active feedback control. (a) Transient duration
distributions in a network with n = (7,7,7) delay elements when
individually altering the timing of the initial conditions of each node
by roughly 100 ps. The mean transient durations when delaying nodes
1,2,and 3 are (T) = 5.93 ms, (T') = 8.05ms, and (T') = 151.46 ms,
respectively. We collected 30 000 samples for each distribution.
(b) Transient duration distributions in a network with n = (6,6,6)
delay elements, when perturbing the timing of a specific traveling
edge. Note that the time scale for the distribution with no perturbation
(red) is seconds.

several orders of magnitude for slightly different on-chip
network realizations with the same number of delay elements
n = (n,n,n). We demonstrate that this behavior is a result
of changing the fixed or “frozen in” heterogeneities in delay
times and initial conditions. We expect these to be on the
order of 100 ps, corresponding to ~1/30 of a typical link
delay. We independently alter the heterogeneities of initial
conditions or time delays by these small amounts and measure
changes in the transient duration distributions. In Fig. 6(a),
we show three transient duration distributions obtained by
slightly delaying the timing of the initial conditions of one
of the nodes as described in Appendix B. The distributions
have an exponential tail with means varying by two orders
of magnitude. In the experiment with unchanged initial
conditions, the mean transient duration is (7) = 0.92 s. A
similar effect is seen as we alter the delay in one of the
delay lines by ~100 ps (data not shown here). We conjecture
that the larger variation in mean time delay seen in the gray
region of Fig. 3 is due to this increased sensitivity to network
heterogeneity.

IV. ACTIVE FEEDBACK CONTROL
OF TRANSIENT DYNAMICS

It is often important to predict and control the transition
of dynamical systems from transient dynamics to a targeted
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behavior [60]. This has been investigated for technological ap-
plications, including turbulent pipe-flows [56] and cascading
failures in power grids [61], as well as biological systems, such
as ecological models [62] and neural networks [63]. To force
our experimental transient dynamics toward the asymptotic
attractor, we harness the high sensitivity to small changes of
the time delays. This is similar to feedback control methods
for chaotic systems, which have been used to stabilize unstable
periodic orbits by harnessing the chaotic sensitivity to small,
occasional perturbations [64,65].

We apply occasional adjustments to one of the time delays
to perturb the timing of selected traveling Boolean transitions.
Similar to Blakely er al. [66], we detect the signal at one
position in the ring and subsequently perturb one of the time
delays at a later position. In greater detail, we perturb the timing
of a specific traveling Boolean transition (the target edge) every
other round trip. This is achieved by implementing delay lines
consisting of two alternate paths, which differ in delay time by
about 100 ps (less than 10% of a typical link delay time). Ata
fixed position, before the delay line splits into these two paths,
we detect incoming edges and decide whether or not to perturb
them. This decision can be made by an asynchronous counter,
which counts the number of incoming edges, starting from
the target edge as described in greater detail in Appendix C.
We prescribe a fixed target value of the counter, reflecting the
frequency that we want to perturb the target edge. Whenever
this value is reached, we reset the counter and create a short
pulse, which leads the delay line to employ the longer path for
the target edge. For all other edges, the shorter path is used.
For the results presented in Fig. 6(b), we perturbed the target
edge once every other round trip.

These targeted perturbations give rise to a rapid decay of
the transients for all networks. An example is given in Fig. 6(b)
for a network with n = (6,6,6) delay elements, where, in
every delay line, the timing of one of the three traveling edges
can be perturbed. When not perturbing any edge, we find an
average transient duration of (T) = 0.4 s, the corresponding
distribution has an exponential tail (red curve). Perturbing one
of the edges leads to a rapid transient collapse. The transient
durations are then confined to a narrow interval around an
average that can be as small as (T') = 250 ns. Thus, the high
sensitivity of transient dynamics to heterogeneities can be used
to yield a consistently rapid transient collapse when employing
targeted perturbations of time delay. Furthermore, the actual
time of transient collapse may be controlled by adjusting the
application of the occasional perturbations.

V. MATHEMATICAL MODEL OF THE
REPRESSILATOR WITH DELAY

To model the dynamics that arise in our experiments, we ex-
tend the framework developed by Glass and collaborators [50]
by including time delays along the links [67]. We investigate a
set of first-order piecewise-linear delay differential equations
for a general ring of N nodes,

yi(t) = —yi(t) + Flyi-1(t — @)l )

where i is defined mod N. In this model, the continuous
variables y;(¢) relate to the concentration of the gene product
of gene i and act as a transcription factor for gene i + 1. For the
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sake of symmetry, we rescale the dynamics to the interval y €
[—1,4-1]. The production is regulated by a repressing threshold
function,

1 for

F<y>={‘1 »20

for y<O. 2)

Time is scaled in units 7,/In2, where 7, is the rise or fall
time of the analog signals to the threshold defined in Sec. I B.
Each variable is initialized at a time ilo = §;, where we choose
as initial functions y;(t < fé) = 1, and the link delays t; are
allowed to have both fixed (frozen in) variation as well as
stochastic time-varying behavior.

In the absence of stochastic variation in the delay, but with
a small fixed heterogeneity, these differential equations are
known to display long transients [39]. Long transient times
were also reported in a model for inhibitory ring GRNs that
does not incorporate time delays, but instead includes an
intermediate step in gene expression, which gives an effective
delay time [68].

We begin with a direct analysis of the delay differential
Eq. (1) with no delay or initial timing heterogeneities or
stochastic effects. We identify the in-phase periodic solution
corresponding to the initial transient shown in Fig. 2(a) and
find that its period is Py, = 2(t + In[2 — e~ 7]), where 7 is the
average delay of the three network links. For the asymptotically
stable periodic state, we search for an out-of-phase periodic
solution and find that the period is Py =~ 6(t + In[2]) in the
limit as T — oo.

We compare our predictions to the experimental results
shown in Fig. 2 for n = (2,2,2) by converting our expressions
back to physical time. We predict that P, = 2.79 &+ 0.08 ns,
Pyt = 8.7 £ 0.24 ns, where the errors are dominated by our
uncertainty in 7y. The agreement with the experimentally mea-
sured values (2.84 &+ 0.01 ns and 8.51 £ 0.01 ns, respectively)
is good and within our prediction error.

To understand in greater detail the transient dynamics, we
continue to ignore the stochastic variation in the delay and
follow the approach of Edwards et al. [67], where we take
advantage of the fact that the system Eq. (1) is piecewise
linear. In between switching times fl.k, where y;(t) changes
from a rising to a falling edge and vice versa, the equations
can be directly integrated, leading to an exponential evolution
toward the ideal Boolean values +1,

ple—8) =14 (@) £ D @

In the first term, the minus (plus) sign is chosen for a falling
(rising) edge. The dynamics is then fully described by the
switching times fik, and the value of the state variables at these
times yi(flk). Further simplification is possible by defining a
new discrete-time variable,

(k) =1— |y ()], )

which describes the distance of the state variables to the ideal
Boolean values y = +1 at switching time fl.k. Solving Eq. (3)
for y;(t) = 0 leads to a recursive relation,

P = +m[2-€ ]+, )

k+1_ 7k
el = (2 el)e @D, (6)

l

The initial conditions translate to ¢;(0) = 0 and t"lp =4;.
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FIG. 7. Transient durations for the map Egs. (5) and (6) for
N =3 with no stochastic fluctuations in the time delay (§ = 0).
(a) Transient durations as a function of the mean delay r for a
fixed heterogeneity A = 0.1, defined by 7, =t + A/2, 1, = 7, and
73 = T — A/2. Differences in initialization timing are not explicitly
taken into account, i.e., §; = 0. An exponential fit (T o ¢**) to the
data with exponent A = 1.17 is shown in red. (b) Transient durations
as a function of delay heterogeneity A for a fixed mean delay 7 = 8.

The dynamics occur on a fast time scale governed by Eq. (5)
related to the nearly periodic in-phase behavior, which drives
the dynamics of the slow behavior governed by Eq. (6) and
determines the transient duration. We find that the natural
logarithm of the absolute value of the Floquet multiplier
describing the slow dynamics is given by 3e~* /4 in the limit
T — 00, explaining the extremely long transient time.

We next investigate the scaling of the transient durations in
this model with delay time and fixed heterogeneity between the
time delays. We numerically simulate Eq. (6) until €;(K) > 1,
or, equivalently, fiK < fiK ~! meaning that two edges collide
and thus the transients terminate. For a mean link delay r,
the duration of the transient can then be estimated as the
number of transitions K multiplied by half the initial period
oscillations, T~ K P;,/2. For fixed heterogeneity, we find
that the transient duration scales approximately exponentially
with the mean delay time, as depicted in Fig. 7(a) and in
agreement with our estimate based on the Floquet exponent.
In Fig. 7(b) we vary the delay heterogeneity for a given
mean delay time. We see that the system shows a sensitive
dependence on heterogeneity for small differences between
initial conditions or link delays, and the mean transient
duration diverges for vanishing heterogeneity. Moreover, a
timing change of initial conditions has the same effect as fixed
heterogeneous time delays. This allows for the possibility that
different heterogeneities cancel, yielding super-long transients
in agreement with the observations in our experiments.

The reduction of the set of delay differential equations given
in Eq. (1) to a map Egs. (5) and (6) also offers a framework
to study the role of stochastic variations in the delay time in a
straightforward way. Here we consider the simplest case of a
stochastically varying link time delays by modeling the delay
term as 7;(k) = t; + &;(k), with &;(k) a white Gaussian noise
term with zero mean and variance o>. The system is then
described as

P - J+n+ER, O

bl gk
et = (2 — ) @D, (8)

2

We numerically evaluate the map Egs. (7) and (8) with
increasing mean time delays and constant noise strength 2.
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FIG. 8. Transient durations for the map Eq. (6) for N =3.
(a) Mean transient duration as a function of the mean delay t for
02 = 107*. (b) Probability density function of the transient duration
fort =10 and 0% = 107*.

It is seen that the mean transient duration scales exponentially
with the mean link delay for the shorter delays, as is
illustrated in Fig. 8(a). For longer mean delay, the scaling
is subexponential where, we conjecture, the stochastic term in
Eq. (7) plays a more important role and reduces the rate of
increase but does not suppress the long transient. We confirm
this conjecture by increasing the noise strength and find that
the break from exponential scaling occurs at shorter mean
time delays (data not shown). We also find that the stochastic
variation in the link delays leads to a distribution of the
transient durations similar to the experimental observations as
shown in Fig. 8(b). Here, we see that the distribution is broad
with an exponential tail for a long mean time delay. For shorter
time delays (not shown), the distribution resembles a gaussian.
A more complete investigation of this model, including the role
of heterogeneities, size of the ring network and noise strength,
is published elsewhere [69].

VI. DISCUSSION

We demonstrate that including time delays in ABN models
induces long-lasting transient dynamics that are qualitatively
different from the asymptotic attractors. If we transfer this
result to GRNS, our findings suggest that the asymptotic gene
expression patterns may not always be important for cell
fate. Instead, the distinct transient patterns might dominate on
observational timescales, which are then linked to different
cell types or functions. While transients with hundreds to
thousands of oscillations are found for time delays on the
order of 1-4 node response times, a dynamical regime of
extreme transients emerges at delay times on the order of 5
node response times and beyond. When comparing timescales
to real GRNSs, one has to consider various processes within
gene expression. Some of them have been characterized as
time delays, such as mRNA splicing, which can be on the
order of the actual gene product lifetime [30,70]. Additionally,
there are many more processes that translate into time delay
in our model, such as elongation [71], actual mature mRNA
production rate, translational delays, and many more. As a
result, we believe our studies reflect a biologically plausible
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parameter regime with regards to time-delay along the network
links.

With our experimental platform, we show that the mean
transient durations are very sensitive to small changes in the
heterogeneities of time delays and initial conditions. Despite
this high sensitivity to heterogeneity, our findings are not
restricted to time delays with very small heterogeneities.
Instead, the qualitative results for the transient dynamics
remain unchanged when we implement heterogeneous de-
lays n = (ny,n,,n3), with ny # n, # n3 in the delay lines,
assuming that the relative difference of the time delays does
not exceed approximately 50%. This robustness is important
because heterogeneities in the time delays of real GRNs
might be substantial. On the other hand, we demonstrate that
applying small occasional perturbations to one of the time
delays can indeed rapidly force the transient trajectories toward
the asymptotic attractors.

The results presented in this paper are not restricted to
the repressilator network. We have carried out the same
experiments for repressing ring networks with N =2 [69],
representing a toggle-switch [72], and with N = 4. Both
networks are asymptotically nonoscillatory, but possess two
coexisting steady states. We observe the same qualitative
transient dynamics: As delays are included along the links,
oscillatory transients are induced, which can be extremely
long for certain parameter regimes and obey long-tailed
distributions. Furthermore, the transient dynamics are sensitive
to small changes in heterogeneities and may be controlled with
our proposed scheme.

A theoretical model of our experimental ABN using
piecewise-linear delay differential equations is consistent
with our essential experimental observations. In particular,
we predict a sensitive dependence of transient durations on
heterogeneities of time delays and initial conditions. For fixed
heterogeneities, we furthermore find an exponential scaling
with delay time. This is not clearly seen in the experiment due
to the fact that we cannot keep the heterogeneities fixed as we
vary the time delays. When taking stochastic variation of the
time delay into account, this exponential scaling is reproduced
for the shorter time delays and saturates at longer delay.
Moreover, we recover in our model a broad distribution of
transient times with an exponential tail. In other work [69], we
further investigate the role of noise and asymmetric thresholds
in the model to help understand in more detail the experimental
observations.

We conclude that link delays, as often found in biological
networks, along with small heterogeneity, give rise to different
super-long transient patterns in small network motifs that are
distinct from the eventual network attractors. This suggests
that these transient patterns, as opposed to the asymptotic
dynamical network states, could have a biological relevance.
Specifically, the gene expression patterns inferred from GRN
models, that are linked to types and functional states of cells,
might not be reached on observational time scales. We also
show that the observed transient patterns are very sensitive to
tiny changes in the heterogeneities of delay, initial conditions,
and stochastic behavior, which can be harnessed for controlling
the dynamics toward the asymptotic attractors by employing
occasional perturbations of the time delays. Future research is
needed to investigate the effects of much larger noise than in
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our experimental system that is typically found in biological
networks.
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APPENDIX A: REALIZING THE REPRESSILATOR
ON AN FPGA

In this appendix, we present the hardware description code
for the repressilator, written in Verilog and compiled using
Altera’s Quartus II, and then downloaded to the FPGA. The
Verilog code is given in Fig. 9.

In line 1, the module repr_del_het_ff is declared, which
defines the network. It is part of a much larger circuit on

1 module repr del het ff(

2 dynamics,

3 clock,

4 set_enable,

5 set

6 )i

7 input set_enable, clock;

8 input [2:0] set;

9 output [2:0] dynamics;

10 wire [2:0] net, init/*synthesis keep*/;
11

12 parameter no0 = 7;

13 parameter nl = 7;

14 parameter n2 = 7;

15

16 wire [2*n0-1:0] delay0O/*synthesis keep*/;
17 wire [2*nl1-1:0] delayl/*synthesis keep*/;
18 wire [2*n2-1:0] delay2/*synthesis keep*/;
19 genvar i;

20 generate

21 for (i=0;i<3;i=1+1)

22 begin : generate_ flops

23 DFF init ff (

24 .d(set_enable),

25 .clk(clock),

26 .g(init[i])

27 ) /*synthesis preserve*/;

28 end

29 endgenerate

30 assign delay0[0] = _net[0];

31 assign delayl[0] = _net[1];

32 assign delay2([0] = net[2];

33

34 generate

35 for (i=0;1<2*n0-1;i=1i+1)

36 begin : generate_delay0

37 assign delayO[i+1] = _delay0[i];
38 end

39 endgenerate

40 generate

41 for (i=0;1i<2*nl-1;i=i+1)

42 begin : generate delayl

43 assign delayl[i+1] = _delayll[il;
44 end

45 endgenerate

46 generate

47 for (i=0;i<2*n2-1;i=1i+1)

48 begin : generate_delay2

49 assign delay2[i+1] = _delay2[i];
50 end

51 endgenerate

52

53 assign net[0] = (_delayl[2*nl-1]&_init[0])| (set[0]&init[0]);
54 assign net[1] = (7delay2[2*n2—1]&7init[1])\(set[l]&init[l]);
55 assign net[2] = (_delay0[2*n0-1]& init[2])| (set[2]&init[2]);
56

57 assign dynamics = net;

58

59 endmodule

FIG. 9. Verilog code defining a ring network with N =3 in-
hibitory nodes and heterogeneous link time delays.
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the chip, which will not be specified here. This circuit is
responsible for starting and stopping the initialization of the
network, for detecting the end of the transient, and for sending
and receiving data from the computer via a USB chip, which
is connected to a general purpose /O (GPIO) port on the
FPGA board. Additionally, the Booleanized dynamics are
often written to on-chip RAM in discrete time steps.

The module repr_del_het_ff has the output port dynamics,
which is 3 bits wide and connects the dynamics of the three
network nodes to other modules of the circuit, or directly to the
output buffers leading to the SMA connectors on the FPGA
board and an oscilloscope. There are three input ports. The
input clock feeds the clocked registers used to initialize the
network from the on-board clock source. The input set_enable
is the set signal, which determines when the initial conditions
are set, and which is fed to the clocked registers. The input
set is 3 bits wide and determines the initial conditions of each
node. These ports are declared in lines 7-9.

In line 10, two 3 bit wide wire-type signals net and init are
declared. Wire-type signals are used for either connecting ports
of different modules or for the implicit creation of unclocked
logic gates when they are assigned to a logic expression in an
assign statement. The wire net is used to define the logic gates
of the network nodes, while the wire init connects the clocked
registers with the network nodes. After the wire declaration in
line 10, the attribute /*synthesis keep*/ is used to prevent the
compiler from removing the declared wires.

In lines 12-14, three parameters n0, nl, and n2 are
specified, which correspond to the number of delay elements
in each delay line. In lines 16—18, the wires defining the logic
gates for the three delay lines are declared. Each wire is 27 bits
wide, corresponding to the 2n inverter gates that constitute a
delay line of n delay elements.

Lines 19-29 create multiple statements or instantiations in
Verilog using a loop, which is called a generate block. In
this environment, three instantiations of DFF, a predefined
primitive, generate d-type flip-flops, which are the clocked
registers initializing the network nodes. A d-type flip-flop
assigns its input signal d to its output ¢ whenever a rising edge
at its input clk is detected. These three ports are connected to
the external inputs clock of the clock signal and set_enable,
which comes from another part of the circuit and determines
when the initial conditions are set and released, and the
wire-type signal init, which is connected to the network nodes.
These generate blocks are an important tool for creating large,
scalable network designs, and one reason why this text-based
approach of creating the circuits is powerful.

Lines 30-32 contain three assign statements used to create
autonomous logic gates from wire-type signals. Here, the first
elements of the three delay lines are assigned to the inverse of
the network nodes using the symbol “~”, which is one way
to implement the Boolean NOT function. In lines 34-51, the
remaining logic gates of the delay lines are created in generate
blocks by using assign statements to assign each new element
to the inverse of the previous element in the delay line. This
creates three delay lines consisting of cascades of an even
number of inverter gates.

Lines 53-55 define the network nodes. In addition to
implementing Boolean NOT functions, they also process the
signals that initializes the network, which is is done by
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formulating a Boolean expression with the operators “~”,
“&”, and “—” for NOT, AND, and OR, respectively. Thus, the
network nodes take on the values of the initial conditions set
whenever the signal init, coming from the clocked registers,
is high, while the network nodes invert the last element of
the adjacent delay line when init is low, corresponding to
the free-running autonomous dynamics of the ring network.
Finally, in line 57, the output dynamics is connected to the
network nodes.

APPENDIX B: SPECIFICATION OF ON-CHIP
PLACEMENT AND ROUTING

We specify the physical positions of the logic elements on
the chip, which is important for controlling the heterogeneity
of the link time delays. The logic elements are assembled in
so-called logic array blocks (LABs) consisting of 16 elements
each, which form a two-dimensional grid. Thus, every logic
element has three coordinates: X, Y, and M, where X and
Y define the position on the two-dimensional grid, while M
defines the position of the element within a LAB. Even M
correspond to the combinatorial logic elements, while odd M
correspond to the flip-flops that belong to each logic element
for synchronous operation. We set the specific location of each
network element using a set_location_assignment command.

In many cases, it is also important to specify and keep
fixed the routing connections that are used in between logic
elements, especially the routing channels going from the
end of one delay line to the next network node. While
this is usually handled by the compiler, it is possible to
manually assign a connection to a specific wire by writing
a routing constraint file, which then constrains the routing
channels that can be chosen by the compiler. Furthermore,
logic elements in adjacent LABs are connected via so-called
local interconnect channels which are specified by the keyword
LOCAL_INTERCONNECT.:..., followed by a coordinate of
the wire. We constrain these lines for all of our work.

APPENDIX C: SCHEME FOR THE OCCASIONAL
PERTURBATION OF TRAVELING EDGES

To greatly shorten the transient dynamics of the repressi-
lator, we occasionally perturb the time-delay in one of the
network links whose timing is based on detecting a specific
Boolean transition at a fixed location along the network ring.
As described below, we develop a method for detecting the
transition, which is complicated by the fact that the orientation
of the target edge alternates every round trip. The goal of the
scheme is to only perturb the target edge every other round
trip and to deactivate the perturbation mechanism for the time
in between.

Our method is illustrated in Fig. 10. It employs an
asynchronous mod-3 counter, which counts the number of
edges with the target orientation that pass the measurement
point after the target edge has been perturbed. When two edges
are counted, the perturbation mechanism is activated again.
The asynchronous mod-3 counter is built with two d-type
flip-flops that have an asynchronous clear input (denoted by
“clr””). We connect the measurement point to the clock input
of the first flip-flop. The inverted output of the first flip-flop
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FIG. 10. Scheme for perturbing a single Boolean transition every
other round trip using a mod-3 asynchronous counter. The blue
rectangles represent a NOT gate an the yellow rectangles represent
the d-type flip-flops.

is connected to its own input so that the output toggles in
between “0” and “1” at every positive edge it detects at the
clock input. Thus, it behaves as the least significant bit of a
counter, which counts the positive edges. The inverted output
of the first flip-flop is furthermore connected to the clock input
of the second flip-flop. In the second flip-flop, we again connect
the inverted output to its own input. Thus, the output of the
second flip-flop toggles in between “0” and “1” whenever
there is a negative edge in the output of the first flip-flop.
It therefore behaves like the second least significant bit of a
counter, which counts the positive edges at the clock input of
the first flip-flop. The combined output of the two flip-flops
constitute an asynchronous counter, which can count from 0
to 3. We make it a mod-3 counter by resetting both flip-flops
to “0” as soon as a count of three is reached, corresponding
to an output of “1” of both flip-flops. This is accomplished by
combining the two flip-flops in an AND gate (marked green
in Fig. 10) and connecting this gate to the asynchronous clear
inputs of the flip-flops.

We let the counter start counting with the target edge so
that a count equal to 1, in combination with the detection of
the right edge orientation at the measurement point, activates
the perturbation mechanism. This is done by combining the
counter state with the signal from the measurement point in
a 3-input AND gate, whose output is the perturbation signal
that selects between the two alternate paths in the delay line.
We add another AND gate that can completely deactivate the
perturbation mechanism with an on-board switch.

The hardware description code for the control perturbations
is largely based on the code given in Fig. 9. Additional
code is used to enable or disable the perturbations using a
combination of Boolean functions as outlined above. For both
control schemes, the propagation time of the signals from
the measurement point through the two alternate paths to the
multiplexer has to match the control loop latency, i.e., the
propagation delay through the logic determining whether a
perturbation should be applied. This is an important issue
for controlling the repressilator because there is significant
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control-loop latency so that we have to measure the edges at
an earlier point in the delay line [66]. Ideally, the perturbation
signal arrives at the multiplexer one characteristic rise time
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before the arrival of the signal from the shorter path because
we want to avoid perturbing an earlier edge, which might have
come close to the target edge.
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