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Cluster synchronization in networks of identical oscillators with α-function pulse coupling
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We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses,
weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability
of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K ,
i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully
synchronized oscillators, such as fixed (N − 1,1) states, which have synchronized clusters of sizes N − 1 and 1,
as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the
stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics
for K = 0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a
continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction
framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting
states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and
the stability of all fixed points and limit cycles for N = 2–4. The set of possible attracting states can be used to
distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)]
we know that of the types of partially synchronized states discussed here, only the (N − 1,1) states can be
stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models.
Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here
generalize to equivalent fixed points in which neurons need not fire coincidently.
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I. INTRODUCTION

Pulse-coupled oscillator networks are oscillator networks
in which the oscillators do not communicate continuously;
instead, the oscillators each evolve completely independently
of each other, except when an oscillator reaches some threshold
level and then undergoes a “firing event.” When an oscillator
fires, it then emits a pulse, which in some way alters the
evolution of the other oscillators in the network. Pulse-coupled
oscillator networks are natural models for a variety of systems
in nature, such as the cardiac pacemaker, neural networks,
and most famously, swarms of fireflies that flash in unison.
Beginning with the pioneering work of Winfree [1] and
Peskin [2] in the 1960s and 1970s, these systems have been
studied extensively; it is impossible to summarize in a short
discussion all the important work in the vast literature on this
topic. We are mainly interested in the subclass of systems
in which the individual oscillators have identical dynamics
and affect each other in the same way; in this case the
oscillator network has “all-to-all” coupling. All-to-all models
are a highly idealized class since they ignore the possible
effects of network architecture, but they are often analytically
tractable due to their inherent symmetries and hence have
received particular attention in the work on pulse-coupled
networks.

All-to-all networks of identical oscillators have the (some-
times) desirable property that synchrony cannot be broken; in
other words, the sync states, which we define as states such
that all oscillators have the same phase, are preserved by the
dynamics. This is because when the oscillators simultaneously
reach threshold and fire, the effect of the firings is the same
on each oscillator in the network, so they all remain in sync.
However, this does not imply that synchrony is stable; this

depends sensitively on the form of the coupling. For example,
Mirollo and Strogatz [3] proved that synchrony is stable in
all-to-all networks with excitatory δ-function coupling (when
one oscillator fires, all others advance discontinuously by the
same amount up to but not exceeding their thresholds). But
in networks with continuous pulses, synchrony is not always
stable as was first shown by Abbott and van Vreeswijk [4]
for leaky integrate-and-fire (LIF) networks with excitatory
α-function coupling. Note that an α-function pulse attains its
maximum magnitude at time τ = 1/α after the onset of the
pulse, so there is a delay inherent with the effect of α-function
coupling unlike the case of δ-function coupling.

Synchrony is of course a highly symmetric configuration
of states; not surprisingly, all-to-all networks have a variety
of other states which are symmetric in the sense that they
are invariant under some permutations of the oscillators
and which may or may not be dynamically stable. At the
other extreme from synchrony are splay states in which the
oscillators all evolve according to the same periodic function
but equally staggered in phase. Splay states can be stable,
for example, in all-to-all networks with inhibitory δ-function
coupling [5]. There are many studies of splay states and their
stability [4,6–10]. The stability of splay states can often be
analyzed in the continuum limit as the number of oscillators
N → ∞ since the distribution of the oscillator phases becomes
stationary for splay states in this limit. Olmi and co-workers
[9,11] have thoroughly analyzed this problem for networks
with δ-function coupling using a perturbative approach in 1/N

to study the stability of splay states. Of course, the analysis of
splay states in continuum limit models sheds little light on their
behavior for small N networks, which is the primary focus of
this paper.
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It may be tempting to conclude that the dichotomy between
sync and splay states is the whole story, but this is far from the
case. All-to-all networks of identical pulse-coupled oscillators
have a variety of partially synchronized states: If N = n1 +
n2 + · · · + nM is any partition of N , then the network has
partially synchronized states with ni oscillators in each of the
M synchronized clusters. And partially synchronized states
with synchronized clusters of different sizes can also be stable.
For example, we will see systems with N = 4 oscillators
which have stable partially synchronized states with a (3,1)
configuration (i.e., a cluster of three oscillators in sync, the
remaining one out of phase with the cluster of three).

For inhibitive coupling, we also find stable sates consisting
of M distinct equally sized clusters (ni = N/M) in a splay
configuration, where N = ni × M . For N = 4 and 6 we find
stable (2,2), (2,2,2), and (3,3) partially synchronized splay
states. Note that for systems of identical coupled sinusoidal
(i.e., Kuramoto type) oscillators, (N − 1,1) states are the
only possible stable asynchronous configurations [12]; this
is a consequence of the invariance under the action of the
Möbius group on the state space. The existence of stable (2,2)
states in the case of pulse-coupled networks implies that the
dynamics of these networks cannot be replicated by Kuramoto
networks. For inhibitive coupling and N < 7, the only stable
partially synchronized states are (N − 1,1) or equal-cluster
splay configurations. In contrast, using numerical simulations
for 100 oscillators, van Vreeswijk found [7] clustered states
which were not equally sized in a splay configuration nor of
the (N − 1,1) variety.

The organization of this paper is as follows: we begin by
setting up a standard model of N identical LIF neurons with
α-function pulse coupling, which has an (N + 2)-dimensional
state space. We reduce the dynamics down one dimension by
constructing a return map that relates consecutive states right
after a complete cycle of N firing events. We accomplish a
further reduction in dimension by assuming that the coupling
is small; in the limit of weak coupling the discrete dynamics
of the firing event map can be approximated by the continuous
dynamics of an associated ordinary differential equation
(ODE) model of lower dimension (one dimension lower
for exponential pulses, two dimensions lower for α-function
pulses). So, for example, the system with N = 3 oscillators and
α-function pulses, which has a five-dimensional state space,
can be reduced to a two-dimensional flow. We investigate the
dynamics of our reduced systems numerically and map out in
parameter space some of the different stable configurations we
observe. These include, not surprisingly, stable sync and splay
states but also a variety of partially synchronized states and
limit cycles (LCs), including (2,2) configurations as well as
the (3,1) configurations mentioned above. We conclude with a
discussion of our findings and future directions for this work.

II. MODEL

We begin by setting up a classic all-to-all LIF network as
described in Ref. [4]. A state of this model is an (N + 2)-
dimensional vector (x,s,b) = (x1, . . . ,xN ,s,b), where xi � 1.
Here xi’s represent the voltages of the N individual oscillators,
and s and b are auxiliary variables that determine a global field
through which the oscillators are coupled. Provided that all

xi < 1, the state variables xi, s, and b evolve according to the
equations,

ẋi = a − xi + Ks, i = 1, . . . ,N,

ṡ = α(−s + b), ḃ = −αb, (1)

where a > 1, α > 0, and K are constant parameters. Since
a > 1 we are modeling suprathreshold LIF neurons, which are
equivalent to phase rotators because they fire periodically in
the absence of coupling. The parameter α determines the shape
of the pulses emitted when oscillators fire, and K is a coupling
constant (which can be any real number). We assign weights
wi > 0 to the oscillators and assume

∑
wi = 1; wi = 1/N

when the N oscillators are weighted equally. The rationale for
introducing the weights wi is that if an initial condition for
the equal weight model with N oscillators consists of M < N

clusters of synchronized oscillators, then this partial synchrony
is never broken, and the evolution of this state reduces to
a model for M oscillators but with different weights if the
clusters are not all equal in size.

Firings occur when one or more of the variables xi reach
the threshold x = 1; when this happens we reset xi to 0, b is
augmented by wiα, and s is unchanged. If oscillator i fires
at time t0, the global field s(t) is augmented by the function
wiφ(t − t0) where φ(t) is the α-function pulse defined by

φ(t) = α2te−αt .

[The parameter α determines the time τ = 1/α at which φ(t)
attains its maximum value.] Between firings, s(t) obeys the
ODE,

s̈ + 2αṡ + α2s = 0,

so s(t) has the form (A + Bt)e−αt and hence would decay to 0
in the absence of firings. Notice that since a > 1, firings will
eventually occur; if not, then s(t) would decay to 0, but then
each oscillator reaches threshold in finite time.

III. DIMENSIONAL REDUCTIONS

Following Zillmer et al. [8], we transform the continuously
evolving system described above to a discrete dynamical
system on a state space one dimension lower by use of a return
map. The idea is to look at a snapshot of the model immediately
after one or more of the oscillators has fired and reset to 0. Note
that it is possible for the oscillator variables xi to drop below
x = 0; indeed, this can happen for large negative K , even if
we assume our initial condition has all xi > 0. However, if
we define the width of a state by δ = max xi − min xi , then
we claim that eventually δ will drop below and remain less
than 1. To see this, observe that between firings, δ satisfies the
ODE δ̇ = −δ and hence decays exponentially between firings.
If δ � 1 when a firing occurs, then we must have some xi � 0,
and hence δ does not increase due to this firing; this implies
that we must eventually obtain δ < 1. And once a state has
δ < 1, this condition holds for the subsequent evolution of
that state. So we may as well only consider postfiring states
with all xi � 0.

If we assume that the N th oscillator has fired and reset, then
we can take as our state space set X of vectors (x,s,b) with

x = (x1, . . . ,xN−1), 0 � xi < 1. (2)
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If we identify 0 and 1, then X is just the product of the
(N − 1)-fold torus T N−1 with R2. Let F (x,s,b) ∈ X denote
the evolution of state (x,s,b) ∈ X after one complete cycle of
N firings (each oscillator fires once). The discrete dynamics of
the return map F completely capture the continuous dynamics
of the original model on a state space of dimension N + 1,
one less than the original. In the case of equal weights wi , the
state space X can be partitioned into (N − 1)! fundamental
domains, which are the open sets in which the variables
x1, . . . ,xN−1 are distinct and have the same ordering; these
fundamental domains are each invariant under F and have
identical dynamics, so we can restrict our attention to any one
of these domains, say X0 given by

0 � xN−1 � · · · � x1 < 1.

The boundaries of the fundamental domains consist of states
with at least one cluster of two or more identical xi’s and are
invariant under the dynamics. The dynamics on the boundary
components can be viewed as systems with fewer oscillators
but possibly unequal weights wi .

Our approach differs from that of Zillmer et al. [8] where
only the case of equal weights wi is considered. They describe
the dynamics by an “event-driven map” that is the result of a
single-firing event. In their formulation the states can be taken
as configurations of points 0 � xN−1 � · · · � x1 � 1 together
with a vector (s,b). Their firing map is given by taking the new
configuration of points after oscillator No. 1 fires and resets to
zero and then shifting each index down by one. An advantage
of their formulation is that the fixed points of the single-firing
map are exactly the splay states. A disadvantage is that the
single-firing map is discontinuous at partially synchronized
states. In our formulation the return map F is continuous on
the full state space and has a richer set of fixed points, including
both the sync and the splay states, various types of partially
synchronized states, and higher order periodic points of the
single-firing map.

We next explain how to accomplish an additional reduction
of two more dimensions in the limit of small coupling K → 0.
Consider the system in the case of K = 0; then the equations
for the oscillator states xi are uncoupled and independent of the
variables s and b, although the evolution of s and b still depends
on the firing times of the oscillators. Suppose (x,s,b) ∈ X;
then, after N firings, x is unchanged, so we have

F (x,s,b) = (x,s ′,b′)

for some s ′,b′ ∈ R. We can describe the evolution of the
variables s and b as follows: Let s0 and b0 be their initial
values, and let sj ,bj be their values after the j th firing,
j = 1, . . . ,N . Assume the oscillators fire in order 1,2, . . . ,N

and let t1, . . . ,tN be the times between consecutive firings;
then

t1 + · · · + tN = T ,

where T > 0 is the time for each oscillator to go from reset
x = 0 to threshold x = 1. Then we have(

sj

bj

)
= exp(tjA)

(
sj−1

bj−1

)
+

(
0

wjα,

)

where j = 1, . . . ,N and A is the matrix governing the
evolution of s and b,

A = α

(−1 1
0 −1

)
.

Inductively, we see that we can express(
sN

bN

)
= exp(T A)

(
s0

b0

)
+ v(x),

where the vector v(x) depends on α, the weights wi , and the
vector x through the interspike times tj . Since A has repeated
eigenvalue −α < 0, this iteration converges exponentially to
the unique fixed point given by(

s0(x)
b0(x)

)
= [I − exp(T A)]−1v(x).

The codimension 2 submanifold X̃0 given by states
[x,s0(x),b0(x)] is invariant and attracting in the full state space
X for the system with K = 0.

Now suppose K �= 0; then for K sufficiently close to 0, the
system will continue to have a codimension 2 invariant and
attracting subspace X̃K , which we can parametrize in the form

(x,sK (x),bK (x)), x = (xi), 0 � xi < 1,

with i = 1, . . . ,N − 1. The dynamics of F on X̃K are com-
pletely determined by the dynamics in the vector x and reduce
to the identity map for K = 0. Let us denote temporarily the
return map for a given K by FK and expand at K = 0 to first
order in K on the full state space X,

FK (x,s,b) ≈ F0(x,s,b) + KG(x,s,b)

for some function G on X. Let us also expand the functions
sK and bK ,

sK (x) ≈ s0(x) + Ku(x),

bK (x) ≈ b0(x) + Kv(x)

for some functions u and v on T N−1. Then on the reduced state
space X̃K we have an expansion to first order in K ,

FK (x,sK (x),bK (x))

≈ F0(x,s0(x) + Ku(x),b0(x) + Kv(x))

+KG(x,s0(x),b0(x)).

The dynamics in x on X̃K are given by the first component
of FK (x,sK (x),bK (x)). The first component of F0(x,s0(x) +
Ku(x),b0(x) + Kv(x)) is just x, which has no K dependence.
So we see that, to first order in K , the dynamics in x on X̃K

are given by a function of the form

x �→ x + Kg(x),

where g is just the first component of G(x,s0(x),b0(x)).
Notice that, if we instead expand FK on X̃0, namely, expand
FK (x,s0(x),b0(x)) to first order in K , we get the same first order
expansion! In other words, if we use the approximate values
s0(x) and b0(x) instead of the correct values sK (x) and bK (x)
to determine the dynamics in x along the invariant subspace
X̃K , we will be correct to first order in K .

So we see that, in the K → 0 limit, the dynamics of our
model reduce to an iteration of the form x �→ x + Kg(x),
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where g is a function on the torus T N−1. This discrete
iteration is just Euler’s method for ẋ = ±g(x) on T N−1 with
time step |K|, so we ultimately see that, in the K → 0
limit, the dynamics of our original system reduce to the
continuous dynamical system ẋ = ±g(x) on T N−1, where ±
is the sign of K (the observation that the dynamics reduce to
a continuous system in the K → 0 limit can also be found in
Refs. [13,14]. Thus we obtain a reduction of three dimensions
from the original model. The function g(x) depends only on
the parameters a and α, not on K . Observe that, in the K → 0
limit, the dynamics for excitatory (K > 0) and inhibitory
(K < 0) couplings are identical under time reversal.

IV. ATTRACTORS AND BIFURCATIONS

In this section we describe the dynamics of the reduced
model ẋ = ±g(x) on T N−1, focusing on the stability and
bifurcations of fixed points and limit cycles as a function of
the parameter α. Our results are based on numerical solutions
of the original discrete system for small |K| and values of a

slightly above the threshold 1 (such as a = 1.05).
We start by reviewing the case of two identical coupled

oscillators (N = 2 and w1 = w2) studied in the classic paper
of van Vreeswijk et al. [6]. The dynamics reduce to a flow
on the unit circle T 1. For small α the flow has the simplest
possible fixed point structure, namely, one sink and one source.
For K → 0− the stable fixed point is the synchronized state
x1 = 0, and the unstable fixed point is the splay state. [Note that
the splay fixed point is not x1 = 1

2 in this representation since
ẋ is not constant. For K = 0 each oscillator fires with period
T = ln[a/(a − 1)] so the interspike period for a splay state
is T/2 = ln

√
a/(a − 1). This gives x1 = a − √

a(a − 1) > 1
2

in the K → 0 limit.] As discussed in Ref. [6] the splay fixed
point undergoes a pitchfork bifurcation at a threshold value
of αc. The two states born at this bifurcation are equivalent
in the sense that each maps to the other under a single firing
(and exchange of indices). For α > αc both sync and splay
states are stable for K → 0−. As α increases further the basin
of attraction of the splay grows, approaching all of T 1 for
large α.

For K → 0+ the flow direction is reversed, resulting in a
stable splay and an unstable sync state for small α. The two
states born at the pitchfork bifurcation (PF) of the splay state
are now stable and converge to the sync state in the large α

limit. The attractors and bifurcations in the K → 0 limit for
N = 2, w1 = w2 and fixed a are shown in Fig. 1.

Our analysis for N > 2 will place considerable emphasis
on partially synchronized subspaces of T N−1, which lie in
the codimension 1 boundaries between fundamental domains.
As mentioned earlier, these subspaces are invariant under
the flow for ẋ = ±g(x) and are equivalent to systems of
fewer than N oscillators but with possibly unequal weights
wi . With this in mind, we consider here the case of N = 2
oscillators with unequal weights w1 �= w2. We find that the
number of fixed points is the same as in the symmetric
case, but instead of a pitchfork, there is a saddle-node (SN)
bifurcation at which two additional fixed states are born. For
K → 0− the basin of attraction of the stable asynchronous
state approaches the full state space T 1 in the large α limit.
For K → 0+ the two stable asynchronous states approach the

FIG. 1. The case of N = 2 with symmetric coupling w1 = w2:
PF for K → 0−; attractors in the K → 0 limit for fixed a; pitchfork
bifurcation for K → 0+. (The black circles are attractors, and the
white circles are repellors.)

sync state in this limit. The attractors and bifurcations in the
K → 0 limit for N = 2, w1 �= w2, and fixed a are shown in
Fig. 2.

Now we are ready to consider the system with N = 3
identical oscillators, which reduces to a flow on the torus
T 2 (x3 = 0). We represent T 2 as the unit square 0 � x1, x2 �
1 with 0 and 1 identified. The diagonal x1 = x2 separates T 2

into two triangular fundamental domains with edges consisting
of partially synchronized (2,1) states. The edges are invariant
under the flow for ẋ = ±g(x), and the dynamics on each edge
is that of the N = 2 system with weights 1

3 , 2
3 , depicted in

Fig. 2.
The simplest dynamics again occur for small α. The

dynamics for K → 0− on the fundamental domain 0 � x2 �
x1 � 1 are represented in the lower left triangle in Fig. 3. The
vertices of this triangle correspond to the synchronous state,
which is attracting, and the fixed point in the interior is a splay
state, which is repelling. Each edge has a saddle point that
is repelling along the edge. The dynamics for small α and
K → 0+ have reversed flow direction, and so they have splay
attracting and sync repelling. Note that the actual locations of
the splay and edge saddle (ES) points are typically far from
the centrally positioned points shown in Fig. 3, which is a
schematic chosen to illustrate the relevant dynamical structures
clearly.

FIG. 2. The case of N = 2 with asymmetric coupling w1 �= w2:
bifurcation diagram for K → 0−; SN for K → 0−; attractors in the
K → 0 limit for fixed a.
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FIG. 3. N = 3 schematic Hopf bifurcation followed by double
saddle-node (DSN) bifurcation; attractors in the K → 0 limit for
fixed a. (Crosses denote saddles; the darker shade indicates attracting
direction.)

It is instructive to check the count of indices of all of the
fixed points, which must be zero for any flow on the full state
space T 2. The index of a fixed point is defined to be (−1)r ,
where r is the dimension of the unstable manifold of the fixed
point. For a two-dimensional flow, attracting and repelling
fixed points have index +1, and saddle points have index −1.
Combining this fundamental domain with its reflection in the
diagonal, we see that the full state space T 2 has one sync, two
splay and three saddle fixed points, which gives a total index
of zero, as expected.

Upon increasing α, our numerical simulations reveal that
the splay fixed point in the interior of the triangle undergoes
a Hopf bifurcation at some αH . For K → 0− the Hopf
bifurcation is subcritical, so the resulting limit cycle for α >

αH is repelling and the splay fixed point becomes attracting.
For K → 0+ the limit cycle becomes the new attractor for
α > αH through a supercritical Hopf bifurcation.

This section has so far focused on fixed points for the K →
0 limit continuous dynamical system ẋ = ±g(x), which are the
K → 0 limits of corresponding fixed points for the discrete
dynamical system defined by the return map F . Moreover,
the stability behavior of the fixed points in the continuous
dynamical system is also the same as that of the corresponding
fixed points in the discrete system for sufficiently small |K|.

In contrast, when the continuous system in the limit K → 0
has an attracting limit cycle, then for sufficiently small |K| >

0, the corresponding discrete system will exhibit the discrete
analog of a limit cycle, which is a stable quasiperiodic orbit
near the limit cycle. This is consistent with the quasiperiodic
behavior observed numerically and attributed to a Hopf
bifurcation by van Vreeswijk [7] and discussed further by
Mohanty and Politi [15]. This limit cycle, however, does not
exist for arbitrarily large α.

As α increases further, the LC grows until it becomes
tangent to a point on each edge. Then a somewhat unusual
bifurcation occurs; along each edge, the point of tangency

FIG. 4. Schematic of a double saddle-node bifurcation for K→0−.

bifurcates into a sink and a source along the edge together
with a pair of saddle points on either side of the edge. After
this “double saddle-node” bifurcation, the remnant of the limit
cycle is a heteroclinic cycle connecting the three edge sources
for K → 0− (sinks for K → 0+) and the three saddles born
in the fundamental subdomain containing the limit cycle. This
bifurcation is depicted in Fig. 4.

This double saddle-node bifurcation creates a new attract-
ing fixed point on each edge; this fixed point is a partially
synchronized (2,1) state. So for K → 0−, in addition to the
stable sync and splay, there are now three equivalent stable
partially synchronized (2,1) states for α > αDSN. The basins
of attraction for these three types of states are illustrated in
the first panel in Fig. 5. For K → 0+, the limit cycle is the
only attractor for αH < α < αDSN, and for α > αDSN, the only
attractors are the three equivalent stable (2,1) states born at
α = αDSN. The basins for the three (2,1) attracting fixed points
are shown in the second panel in Fig. 5. Note that the set of (2,1)
states on each edge corresponds to an asymmetrically weighted
N = 2 system, which undergoes a saddle-node bifurcation as
shown in Fig. 2.

The attractors for K → 0, N = 3, and fixed a are given in
the center panel of Fig. 3. For K → 0−, both sync and splay
are stable for αH < α < αDSN, and sync, splay, and (2,1) are
stable for αDSN < α. The size of the sync basin (white space
in the first panel of Fig. 5) vanishes in the large α limit. For
K → 0+ only a single type of attractor is stable for any given
α, and for α 
 αDSN the stable (2,1) attractors get arbitrarily
close to the unstable sync state.

For N = 4 the K → 0 continuous dynamics have state
space T 3 or equivalently the unit cube 0 � x1,x2,x3 � 1 with 0
and 1 identified (x4 = 0). The dynamics for K → 0− and small

(2
, 1

)

(2, 1)

(2
,1

)

splay

sync

syncsync

(2
,1

)

(2, 1)

(2
, 1

)

K → 0− K → 0+

FIG. 5. The basins of attraction of the stable fixed points for large
α. For K → 0− the attractors are sync, splay, and three equivalent
(2,1) states; for K → 0+ the attractors are the other three equivalent
(2,1) states.
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FIG. 6. N = 4 flow on a fundamental tetrahedral subdomain for
small α and K → 0−. Partially synchronized invariant subspaces
include four (3,1) edges, two (2,2) edges, and four (2,1,1) triangular
faces. The broken rings indicate face saddles (FSs) that repel in the
face and attract transverse to it.

α on the tetrahedral fundamental domain 0 � x3 � x2 � x1 �
1 are shown in Fig. 6. The tetrahedron’s boundary has four
equivalent triangular faces consisting of (2,1,1) states which
are invariant under the flow for ẋ = ±g(x) and correspond
to the asymmetric N = 3 system with weights 1

4 , 1
4 , and 1

2 .
Each face has two edges consisting of (3,1) states and one
edge consisting of (2,2) states, which are drawn in a lighter
shade in our figures. The full state space T 3 consists of the six
fundamental subdomains generated by permutations of points
(x1,x2,x3) in this tetrahedron.

For K → 0− the vertices of the tetrahedron in Fig. 6
correspond to the attracting synchronous state, and the fixed
point in the interior is the repelling splay state. The saddle
point on each of the six edges is repelling along the edge and
has a unique attracting direction into each face. The two (2,2)
edge saddles are splay (2,2) states; i.e., fixed points of the
square of the single-firing map. Each of the four faces has a
saddle point in its interior which is repelling in the face and
attracting in the direction perpendicular to the face.

The full state space T 3 has four distinct (3,1) edges and
three distinct (2,2) edges which together contain seven edge
saddles (index −7); the 12 distinct faces in T 3 together contain

12 face saddles (index +12); and each of the six fundamental
subdomains has a single splay fixed point in its interior (index
−6). Together with the single sync fixed point (index +1), this
gives a total index of zero as expected.

Since edges are invariant subspaces, a fixed point on the
interior of an edge has one eigendirection along the edge. The
four (3,1) edges are common to all six subdomains, and six
faces meet at each (3,1) edge. So the interior saddle points
on (3,1) edges have two equal eigenvalues associated with
invariant two-dimensional flow transverse to the edge. There
are three (2,2) edges in T 3, two of which are on the boundary
of any subdomain, and four faces meet at each (2,2) edge.
The interior saddle points on (2,2) edges typically have three
distinct eigenvalues with eigendirections along the edge and
in the two faces that meet transversely at the edge.

Upon increasing α, our numerical simulations reveal a
sequence of six distinct bifurcations portrayed in Fig. 7. In
the first bifurcation (labeled 22E PF) the two splay (2,2) edge
saddles undergo pitchfork bifurcations that turn these splay
(2,2) states into attractors and give birth to two new (2,2) edge
saddle points surrounding each of the two splay (2,2) states.
The new edge saddles are again repelling along the edge only.

In the second bifurcation, which creates no new attractors,
two face saddles (from different subdomains) merge with each
of the new (2,2) edge saddles in a reverse pitchfork bifurcation.
The diagram labeled FEF rPF in Fig. 7 shows four pairs of
face saddles with each pair on two parallel faces meeting
at the (2,2) edge, merging with the four new (2,2) saddles
in the fundamental subdomain. After this bifurcation there
are no face saddles, and the (2,2) saddles are now repelling
along the edges as well as the direction from which the two
bifurcating saddles came. [The two (2,2) saddles surrounding
an attracting splay (2,2) state are now inequivalent since their
second repelling directions are orthogonal.]

Next, a limit cycle is born in a Hopf bifurcation of the
interior splay fixed point as we observed for the N = 3 system.
For K → 0− the three repelling directions of the splay fixed
point reduce to one, and the limit cycle is repelling. For

FIG. 7. Bifurcation sequence for N = 4 and K → 0−, starting upper left and moving clockwise.
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FIG. 8. Six face saddle bifurcation, viewed transverse to the (3,1)
edge 0 = x4 = x3 = x2 < x1 < 1; the center in the diagram is the
edge fixed point, which is surrounded by six face saddles on the six
faces meeting the edge.

K → 0+ the limit cycle is attracting, and the splay state now
only has one attracting direction along which a heteroclinic
orbit connects the splay with the splay (2,2) states, which are
repelling for K → 0+. Note that unlike the edges, which are
composed of partially synchronized states, this heteroclinic
orbit is a one-dimensional invariant space in the tetrahedron’s
interior; and for N = 4 all fixed points that are not partially
synchronized lie on this orbit.

The fourth bifurcation is a saddle node on each of the (3,1)
edges. Upon increasing α each subdomain’s limit cycle hits
the (3,1) edges tangentially, and a pair of fixed points is born
along each (3,1) edge. For K → 0− one of these is a repelling
source, and the other is a saddle which is attracting along the
edge and repelling transverse to it.

The next bifurcation turns each of the (3,1) edge saddles
born in the saddle-node bifurcation into an attractor with each
simultaneously giving birth to six new face saddles on the six
faces meeting a (3,1) edge. The fixed points involved in this bi-
furcation along the (3,1) edge 0 = x4 = x3 = x2 < x1 < 1 are
depicted in Fig. 8. The x∗

1 values of the seven fixed points in this
plot vary slightly, but their differences vanish at the bifurcation.
The x∗

2 and x∗
3 values are zero, small positive, or very close to

one. The central fixed point is the (3,1) edge attractor, and the
six outer fixed points are the new face saddles. Although each
of them has one repelling and one attracting direction within
each invariant face, the sign of the eigenvalue associated with
the eigendirection with a component perpendicular to each
face alternates as indicated by the arrows. The D, D′, and D′′
face saddles are repelling away from their faces (index +1),
whereas the E, E′, and E′′ face saddles are attracting toward
the faces (index −1). The face saddles related by reflection
about the face x2 = x3 are equivalent: D ≡ D′′ and E ≡ E′′.
For either sign of the K → 0 limit, this bifurcation leaves a
sink-source pair on each (3,1) edge.

The final bifurcation is a pitchfork bifurcation of the interior
splay saddle. For K → 0−, its unique negative eigenvalue
changes sign making the splay state attracting, and two new
interior saddles are born along a heteroclinic orbit connecting
the splay state with the splay (2,2) states. For K → 0+ splay
is now repelling.

The sequence of bifurcations and resulting attractors upon
increasing α is summarized in Fig. 9. For K → 0+ the
sequence of splay, limit cycle, and (N − 1,1) attractors is the

FIG. 9. The N =4 bifurcation sequence and resulting phase
diagram, showing attractors for K →0+ and K →0− for fixed a.

same as for N = 3. For K → 0− the factorization N = 4 =
2 × 2 supports new partially synchronized splay states, and an
additional bifurcation is needed to stabilize splay.

The more exotic bifurcations we described above, namely,
the double saddle node for N = 3 and the FEF rPF, the saddle
node (with loss of limit cycles) and the 6xFS for N = 4 are all
invariant under subgroups of the full permutation group; this
property partially accounts for the nonstandard nature of these
bifurcations. The properties of bifurcations under permutation
symmetries are discussed in general by Ashwin et al. [14] and
Ashwin and Swift [16].

For N > 4 we would expect to find even longer sequences
of bifurcations that would: (i) ultimately turn the fully repelling
splay state into a fully attracting state for K → 0− and (ii)
stabilize new partially synchronized splay states consistent
with the prime factorization of N . For instance, for N = 6
we find a bifurcation sequence that first stabilizes splay
(3,3) states, then splay (2,2,2) states, and ultimately fully
asynchronous splay states.

V. NUMERICAL RESULTS

The bifurcation and phase diagrams discussed in the
previous section are constructed based on a combination
of numerical simulations, constraints associated with the
hierarchy of lower-dimensional invariant subspaces in the
boundaries between domains, and constraints associated with
index theory for the flow on T N−1. In this section we will
present numerically generated examples of the dynamics for
the discrete map F when N = 3 and N = 4. We simulate the
dynamics by numerically solving for the time to the next spike
using bisection methods and then updating (x,s,b) by explicitly
solving the equations of motion between spikes. We use quad
precision arithmetic and typically maintain accuracy to within
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edge saddle limit cycle

α = 1.01 α = 1.5
k = −0.01 k = +0.01

FIG. 10. Orbits for N = 3, a = 1.01, |K| = 0.01, and two val-
ues of α that are separated by a Hopf bifurcation and thus have
different attractors; left panel: α = 1.01 < αH , K < 0 and right
panel: αH < α = 1.5 < αDSN, K > 0.

20 digits. For consistency we fix the parameters a = 1.05 and
K = +0.01 or K = −0.01 and then vary α.

We first consider N = 3 and plot orbits (x1,x2) generated
by iterating the map F . Starting from carefully chosen initial
conditions, these orbits reveal the various saddle points and
attractors shown in Fig. 3. For small but nonzero |K| the orbits
consist of very closely spaced discrete points. The first panel
in Fig. 10 is for α = 1.01 and K = −0.01. We show six orbits
that all start near the splay state with two flowing to each of the
triangle’s vertices (which are all the same point in T 2). Pairs
of orbits diverge near the three edge saddle points indicated
by the arrows. The second panel is for α = 1.5 and K = 0.01.
The black curve is the discrete orbit approximating a limit
cycle which is attracting; we also plot three orbits spiraling
in toward the limit cycle, starting near each of the triangle’s
vertices as well as one orbit spiraling out from the splay state.

Figure 11 depicts the dynamics for K = −0.01 and α = 3,
after the double saddle-node bifurcation illustrated in Fig. 4.
We locate the edge and face saddles by plotting carefully
chosen pairs of orbits that start near the (3,1) edge sources and
diverge near the various saddles. Two of these pairs of orbits di-
verge close to each face saddle, and one pair diverges near each
edge saddle. Note that two of the face saddles lie very close
to the edges and two of the edge saddles lie very close to the

FIG. 12. Velocity field in the top (x3 = 0) and side (x1 = x2)
(2,1,1) faces of the tetrahedral subdomain for α = 1.133, a = 1.05,
and K = −0.01 just before the FEF-rPF bifurcation. The main panel:
sync attractors at vertices plus three (2,2) edge fixed points. The inset:
magnified (2,2) edge with a central splay (2,2) attractor, surrounded
by two edge saddles labeled A and A′.

vertices in the main figure. The picture is clearest for the (2,1)
source on the horizontal edge. From it three closely separated
pairs of orbits head out to two face saddles and one edge saddle.
Near the saddles, pairs of orbits diverge and approach different
attractors, namely, the synchronized state at the vertices, the
splay state, or one of the (2,1) edge sinks. The diverging orbits
near all six saddles are magnified in the insets where orbits
originating from the same source are plotted in the same color.

For N = 4 we present numerical results illustrating three
of the six bifurcations. Although the comparison of general
orbits in three dimensions (3D) is not that easy to present
in figures, the new bifurcations are mostly confined to
partially synchronized lower-dimensional subspaces on the
fundamental domain’s boundaries.

In Fig. 12 we plot data for K = −0.01, a = 1.05, and
α = 1.133 just before the FEF-rPF bifurcation that was

FIG. 11. Examples of orbits for N = 3, a = 1.01, K = −0.01, and αDSN < α = 3. The main panel shows pairs of orbits originating from
the three (2,1) edge sources that either diverge near the FSs or near the (2,1) ESs. The orbits near each saddle are magnified in the insets.
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FIG. 13. Velocity field in the top (x3 = 0) 211 face relative to
the (2,2) edge saddle labeled A in the previous figure. At this
magnification one can resolve the face saddle labeled B.

schematically represented in Fig. 7. In the main panel we
show the velocity field in the top (x3 = 0) and side (x1 = x2)
211 faces of the tetrahedron in Fig. 6. (Since the faces are
invariant, the velocity field lies in the faces.) We indicate
the fixed points at the tetrahedron’s vertices corresponding
to the sync attractor as well as three fixed points on the (2,2)
edge which are magnified in the inset. The central fixed point
on the (2,2) edge is the splay (2,2) attractor which is surrounded
by two edge saddles labeled A and B. In the inset, the compo-
nents of the velocity field perpendicular on the (2,2) edge as
well as the vertical (x3) component of the velocity field on the
x1 = x2 face have been magnified for illustrative purposes.

In the FEF-rPF bifurcation edge saddles from parallel
faces on different fundamental subdomains merge with the
(2,2) edge saddles. In Fig. 13 we show the velocity relative
to the (2,2) edge labeled A on the top face with sufficient
magnification to also show the face saddle (which is repelling
in the face) that will bifurcate with edge saddle A for
slightly larger α. Here the components of the velocity field
perpendicular to the (2,2) edge have been magnified 30-fold.

In Fig. 14 we plot quasiperiodic orbits for positive K =
0.01, a = 1.05, and four different values of α. The two smaller
orbits for α = 1.38 and 1.39 are composed of 420 and 430
points, respectively, each approximating one revolution of the
limit cycle for K → 0. The third orbit has α = 2.1, is much

FIG. 14. Quasiperiodic orbits approximating limit cycles for
positive K = 0.01, a = 1.05 for four values of α with two slightly
larger than αH (α = 1.38 and 1.39) and two slightly smaller than αSN

(α = 2.1 and 2.44). The orbits increase in size as α increases.

FIG. 15. Velocity field in the x3 = 0 face, relative to the (3,1)
attractor for K < 0 (labeled C) that lies on the x2 = 0 edge. Here
K = −0.01, a = 1.05, and α = 2.445 which yields dynamics just
after the 6xFS bifurcation that stabilizes the (3,1) attractor at the
origin of the figure and in which the face saddle (labeled D) is born.

larger, and is composed of 1250 points for one approximate
cycle. This orbit approaches very close to two (3,1) edges. The
last orbit for α = 2.4 is composed of 19 770 points most of
which are extremely close to all four (3,1) edges. This orbit
moves away from the edges near the (3,1) saddles. The orbit
evolves so slowly because this value of α is very close to αSN.

At αSN a saddle-node bifurcation gives birth to a pair of
fixed points on each (3,1) edge. For K < 0 one is repelling,
and the other is a saddle which is attracting along the edge and
repelling transverse to it. In the sixfold face saddle bifurcation,
this edge saddle becomes attracting in all directions, and six
face saddles are born on each of the six faces that meet each
(3,1) edge as was illustrated in Fig. 8. Figure 15 shows velocity
fields on the x3 = 0 face, relative to the edge fixed point that
is now attracting (labeled C) just after the sixfold face saddle
bifurcation. The parameters are K = −0.01, a = 1.05, and
α = 2.445. The figure shows the edge attractor C and one face
saddle (labeled D) on the x3 = 0 face of the x3 < x2 < x1

fundamental subdomain. To illustrate the flow, the component
of the velocity field perpendicular to the horizontal edge has
been magnified 5000 times.

In Figs. 13 and 15 we show velocity fields near four fixed
points on the x3 = 0 face. To verify our index assignment to
each of these we consider the maps relating consecutive points
in numerically evaluated 3D orbits near these fixed points.
These maps are very close to linear, and so it is straightforward
to compute the three eigenvalues of the flow near the fixed
points, which are listed in Table I, as well as their eigenvectors.
Note that our numerical accuracy is such that all the digits in
these numbers are significant. For A and B, the eigendirection
for λ1 is transverse to the x3 = 0 plane, whereas it is the
eigendirection for λ3 that is transverse to the x3 = 0 plane for
C and D. The (3,1) attractor C corresponds to the fixed point at
the origin of Fig. 8, and its eigenvalues λ2 = λ3 correspond to
flow on an invariant plane transverse to the edge. The positive
λ3 for the face saddle D implies that orbits near this fixed point
but off the face flow away from this face. The table’s last row
lists eigenvalues for the related face saddle E on the x2 = x3

face. For it λ3 is negative and orbits near E but off the x2 = x3
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TABLE I. Eigenvalues of the four fixed points labeled A and B

in Fig. 13 and C and D in Fig. 15 (which all lie on the x3 = 0 face).
The eigenvalues denoted by E are for the fixed point on the x2 = x3

face that is similar to D.

FP λ1 λ2 λ3

A −2.0805450 × 10−2 2.881564 × 10−3 −6.743099 × 10−5

B −2.0805638 × 10−2 2.880864 × 10−3 6.778099 × 10−5

C −1.0922055 × 10−2 −2.429602 × 10−4 −2.429602 × 10−4

D −1.0921714 × 10−2 2.411858 × 10−4 2.018837 × 10−4

E −1.0922258 × 10−2 2.422949 × 10−4 −2.322444 × 10−4

face flow toward this face. Rotating around the (3,1) edge there
are six such face saddles for which these signs of λ3 alternate
consistent with the pattern of Fig. 8.

VI. DISCUSSION

The dynamics of the pulse-coupled model with N identical
oscillators studied in this paper can completely be described by
a return map F on an (N + 1)-dimensional state space. When
the coupling K = 0, this system has an attracting invariant
codimension 2 subspace on which the dynamics are purely
neutral (F is the identity map on this subspace). This attracting
codimension 2 invariant subspace persists for sufficiently small
nonzero K , and in the K → 0 limit, the dynamics to first order
in K are given by a map of the form x → x + Kg(x). This
discrete iteration is just Euler’s method for the continuous
flow ẋ = g(x), so in the K → 0 limit the model dynamics
are captured by this (N − 1)-dimensional continuous system.
Changing the sign of K corresponds to reversing the direction
of this flow. The original model with N oscillators has an
(N + 2)-dimensional state space (the two extra dimensions
describe the α-coupling pulse), so this achieves a reduction of
three dimensions from the original model. We emphasize that
the key ingredient for this reduction is the neutral dynamics for
K = 0. We exploit this reduction in several ways; primarily,
it makes it possible to depict the dynamics for as many as
N = 4 oscillators. We also can use techniques from continuous
dynamics, such as index theory, to predict the existence of
various types of fixed states, especially saddles. The state
space for the reduced system is stratified by a hierarchy of
lower-dimensional invariant subspaces consisting of partially
synchronized oscillator configurations. Except for the fully
asynchronous splay states, all of the stable fixed points we
found in our analysis lie on these subspaces.

In the study of oscillator networks with identical oscillators
and all-to-all coupling, it is natural to focus on the stability of
the fully synchronized states and their dynamical opposites,
the fully asynchronous splay states (where the oscillators all
have identical periodic evolution but are equally staggered
in phase). These two types of states typically have natural
analogs in the continuum limit (N → ∞) of the model, and
their stability can often be analyzed explicitly in the continuum
limit. In this paper we focus on some of the other possible types
of attractors for small N and find that, for the pulse-coupled
model we studied, that the overall picture is much richer
than a competition between sync and splay. We find many
examples of stable partially synchronized attractors, such as

(N − 1,1) fixed states, partially synchronized splay states with
(2,2), (3,3), and (2,2,2) configurations, as well as stable limit
cycles. This raises the possibility of a hierarchy of partially
synchronized splay configurations that become stable under
a sequence of bifurcations for large but finite N , depending
on the prime factorization of N . These partially synchronized
states do not have a well-defined analog in the continuum
limit since they are dependent on the factorization of N . So
we expect that in general the dynamics of our finite N model is
highly dependent on N and much more intricate than that of its
continuum limit analog. This certainly is the case for N = 2–4
where we are able to describe completely the sequence of
bifurcations and all attracting states.

We have shown that the all-to-all pulse-coupled oscillator
model with N identical LIF oscillators and α-function pulses
can exhibit fairly intricate dynamics even for small values of
N . It is natural to ask to what extent the various attractors
and bifurcations we found depend on the specific details of
the model or are to some degree model independent. This
is an obvious direction for future exploration, although we
can shed some light on this question based on some of our
earlier work on Kuramoto oscillator networks [12,17]. As we
mentioned in the Introduction, networks of identical Kuramoto
oscillators can only have attractors that are fixed points or
limit cycles, and these attracting states must be either fully
synchronized or (N − 1,1) states. Two standard (equivalent)
types of neuron models, namely, quadratic integrate-and-fire or
θ -neuron models, can be transformed to the class of Kuramoto
oscillators, so this remark applies to pulse-coupled networks
of these types of neural models. Since the attractors must all lie
in the (N − 1,1) subspace, it is hard to imagine a bifurcation
sequence as complicated as that described in Fig. 7 for the case
of identical Kuramoto networks. So we can conclude that, to
at least some extent, the attractor and bifurcation structure we
described depends on the details of the individual oscillator
evolution.

The dynamics also depend on the details of the pulse shape.
For example, the LIF model with excitatory δ-function pulses
is known to synchronize for almost all initial conditions [3]. A
distinguishing feature of α-function from δ-function pulses is
the property that an α function peaks some time after the pulse
is emitted. This feature is also present in a delayed δ-function
pulse; however, as shown by Ernst et al. [18] and Timme
et al. [19], synchronization is more subtle in delayed δ-function
pulses, and so we would not expect a similar attractor and
bifurcation structure for that model.

An important direction for future investigations that is
necessary to connect to biological neural circuits is to suspend
the assumption of identical oscillators. For example, one could
consider a coupled LIF model with variation in the parameter
a governing the evolution of the individual oscillators. For
sufficiently small coupling K , the first stage of our dimensional
reduction analysis goes through, giving an attracting codimen-
sion 2 invariant subspace. However the second stage of our
reduction depends heavily on the assumption that the return
map F , which is just the Poincaré map section, reduces to
the identity map when K = 0. This obviously fails to hold for
nonidentical oscillators, so we believe that the final reduction
to a codimension 3 continuous flow is not possible in the more
general setting of nonidentical oscillators. Nevertheless, with
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two dimensions of reduction this model should be numerically
tractable for small values of N , and we would expect it to
have similar dynamics to our identical LIF model at least
for sufficiently small variation in the oscillator periods. The
fixed points and limit cycles in T N−1 discussed in this paper
persist for nonidentical oscillators and correspond to limit
cycles and invariant tori, respectively, in T N just as they
do for identical oscillators. These invariant tori are similar
to the invariant two-dimensional surfaces we introduced in

the context of periodically driven Hodgkin Huxley oscillators
in Ref. [20].
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