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Quantum synchronization and quantum state sharing in an irregular complex network

Wenlin Li, Chong Li, and Heshan Song*

School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
(Received 8 July 2016; revised manuscript received 8 October 2016; published 6 February 2017)

We investigate the quantum synchronization phenomenon of the complex network constituted by coupled
optomechanical systems and prove that the unknown identical quantum states can be shared or distributed
in the quantum network even though the topology is varying. Considering a channel constructed by quantum
correlation, we show that quantum synchronization can sustain and maintain high levels in Markovian dissipation
for a long time. We also analyze the state-sharing process between two typical complex networks, and the results
predict that linked nodes can be directly synchronized, but the whole network will be synchronized only if
some specific synchronization conditions are satisfied. Furthermore, we give the synchronization conditions
analytically through analyzing network dynamics. This proposal paves the way for studying multi-interaction
synchronization and achieving effective quantum information processing in a complex network.
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I. INTRODUCTION

Synchronization is one of the most intriguing and valuable
phenomena in classical physics, and its history can be traced
back to the observation of two pendulum clocks by Huygens
in the 17th century [1]. In the last decade, the synchronization
idea has been widely applied in the fields of control and
communication [2–5], which urges people to search for similar
phenomena in quantum regimes. Among them, pioneering and
significant progress by Mari et al. [6] extended the concept
of complete synchronization into a continuous variable (CV)
quantum system and characterized it by a quantitative measure.
Up to now, extensive attention has been paid to quantum
synchronization in many physical systems [7–14], but few
works have proposed it as a tool in view of applications.
Recently, some effective attempts have been presented to
apply quantum synchronization in signal transmission [15],
parameter identification [16], and atomic clocks [8,17]. Owing
to Heisenberg uncertainty [18], however, the quantum effect
appears to take place as just a negative influence on synchro-
nization behavior due to quantum fluctuation. The majority of
previous works considered such a kind of synchronization of
only an expectation value in quantum system, and the quantum
fluctuation is neglected or regarded as a disturbance in their
schemes [8,15–17].

Intuitively, an appropriate application of quantum syn-
chronization is to provide an effective quantum correlation
for quantum information processing (QIP) [19]. Different
from the applications of synchronization in other fields,
quantum characteristics play the important role in QIP. That
is not just because synchronization means two systems take
on homology evolutions, which indicates the information
encryption and transmission between such two systems are
convenient [20,21]. Simultaneously, a nonlocal quantum effect
is indispensable in this process in order to obtain the particular
security and efficiency of QIP.

Other significant advantages of quantum synchronization
are controllability and accessible extendibility. Especially
in recent years, it is expected that QIP can be extended
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well into an n-body scheme or a quantum network [22–25].
However, the crossover between the quantum synchronization
and complex network remains largely unexplored. In the
past decade, quantum network protocols have been based
mainly on one-dimensional arrays or some regular networks
in order to simplify or avoid the complex multi-interaction
[26–28]. Although the synchronization and correlation in a
random network constituted by some simple physical systems
(identical van der Pol oscillators, for example) have been
discussed in few recent works [29,30], it still remains difficult
for two reasons to establish a general quantum network by
applying existing results. On the one hand, processing quantum
information needs more complex hybrid systems with higher
dimensions and different (random) parameters (initial states).
On the other hand, network theory has proved that some
typical network structures can give more accurate descriptions
of an actual information-processing network compared to a
completely random structure [31–34].

The aim of our work is to address the above problems
through proposing a QIP scheme based on the application
of quantum synchronization and expanding QIP well in a
complex quantum network. Specifically in this paper, we study
a quantum state-sharing scheme (also called a state distribution
scheme) in the frame of optomechanical systems. It is known
that such a QIP process requires a genuine quantum syn-
chronization channel since the shared quantum states need to
couple with the channel directly. The synchronization channel
is composed of oscillators which are twofold controlled by
phonon and circuit couplings for eliminating the difference
between the initial state and the dynamics parameter of each
oscillator. This design allows us to obtain quantum synchro-
nization between two completely different oscillators even in
the weak coupling range; however, the system accessing the
network illegally will not be synchronized with other systems
because of the notable differences.

Through further discussion of network theory, we determine
that the quantum synchronization can also exist in two kinds
of irregular networks. The given synchronization conditions
ensure that the quantum synchronization and the state sharing
will always be effective even though the network topology
varies with time. Because of this, we think this scheme can be
well applied in actual communication processes.

2470-0045/2017/95(2)/022204(15) 022204-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.022204


WENLIN LI, CHONG LI, AND HESHAN SONG PHYSICAL REVIEW E 95, 022204 (2017)

This paper is organized as follows: In Sec. II we introduce
the definition and the properties, especially the method of
measurement, of quantum synchronization. In Sec. III we
analyze the dynamic of a hybrid electro-optomechanical
system. We show that such a kind of system can be used as a
carrier of point-to point-synchronization in Sec. IV, and this
conclusion is extended to two kinds of representative networks.
Finally, a summary is given in Sec. VI.

II. QUANTUM SYNCHRONIZATION THEORY IN THE
HEISENBERG PICTURE

We consider two coupled quantum systems which can
be completely described by the quadrature operators (e.g.,
dimensionless position operator q̂ and momentum operator p̂)
in the Heisenberg picture. The difference between two systems
can be characterized by the following defined error operators:

q̂−(t) ≡ [q̂1(t) − q̂2(t)]/
√

2,

p̂−(t) ≡ [p̂1(t) − p̂2(t)]/
√

2, (1)

and quantum complete synchronization will be realized when
q− and p− vanish asymptotically with evolution. For further
quantitative statement, we introduce a synchronization mea-
sure proposed by Mari et al. [6,35]:

Sc(t) = 〈q̂−(t)2 + p̂−(t)2〉−1
. (2)

Compared to previous works, Sc is a good metric for genuine
quantum synchronization because the influence of quantum
fluctuation and nonlocal quantity are both considered in
this synchronization measure, meaning that it can effectively
distinguish the classical synchronization (even in quantum
system) and genuine quantum synchronization.

For mesoscopic CV systems, Sc can be modified as

S ′
c(t) = 〈δq̂−(t)2 + δp̂−(t)2〉−1

(3)

by mean-field approximation. Every operator here can be
rewritten as a sum of its expectation value and a small
fluctuation near the expectation value; i.e., it is redefined in the
following form: ô− = 〈ô−〉 + δô− with o ∈ {q,p}. Because
we ignore only the expectation value of each operator in
Eq. (3), S ′

c contains all the quantum properties of Sc, and it can
also be regarded as a quantum synchronization measure when
limt→∞〈ô−〉 = 0, which is an exact classical synchronization
condition. Mathematically, this is because S ′

c will be equal to
Sc when limt→∞〈ô−〉 = 0, and, physically, synchronization
at the level of the expectation value can be regarded as
a necessary condition of quantum synchronization. S ′

c(t) is
defined as second-order quantum synchronization measure in
the following discussion to reflect quantum property differ-
ences between systems, and the only source of disturbance
bounding S ′

c(t) will be quantum (or thermal) fluctuation.
Correspondingly, 〈ô−〉 is regarded as a first-order measure to
judge whether systematic synchronization error due to slightly
different average trajectories is synchronous or not.

0

FIG. 1. Two hybrid electro-optomechanical systems are coupled
via a phonon tunneling and a linear resistor. For each subsystem, a
charged oscillator is placed at wave node of a Fabry-Pérot cavity, and
it couples with the cavity field via a linear optomechanical interaction.
An electric potential difference exists between walls of a cavity which
is provided by the inductance of the Duffing circuit.

III. DYNAMICS OF A HYBRID
ELECTRO-OPTOMECHANICAL SYSTEM

Let us start by focusing on the dynamics of hybrid electro-
optomechanical system. As schematically shown in Fig. 1, the
charged mechanical oscillators couple to the optical field and
parametrically interact with the charged cavities which also
play the role of electrodes. Two oscillators mutually couple
through a phonon tunneling, and the electrode voltages are
provided by two Duffing circuits coupled to each other via a
linear resistor. We emphasize the electro-oscillator interaction
is a parametric coupling because it can be thought of as
a deviation in respective potential terms of two oscillators.
This effect can be regarded as a time-dependent rescaling of
the mirror frequency [36–41]. For a freely moving oscillator
corresponding to Hamiltonian Hm = P̂ 2/2m + mω2

mx̂2/2, the
modified Hamiltonian under the control of the bias gate
becomes

Hm = P̂ 2

2m
+ 1

2
mω2

eff x̂
2, (4)

where x̂ and P̂ are the position and momentum operators of the
oscillator with the bare eigenfrequency ωm and the effective
mass m. The effective frequency can be expressed as ω2

eff =
ω2

m[1 + ηUNL(t)], where UNL(t) is the voltage of nonlinear
inductor and η is a constant factor depending on parameters
of circuit. By defining the nondimensional coordinate and
momentum operators q̂ = √

mωmx̂ and p̂ = P̂ /
√

mωm and
using relation b = (q̂ + ip̂)/

√
2, Eq. (4) can be rewritten as

Hm = ωmb†b + ωm

4
ηUNL(t)(b† + b)2, (5)

where b is phonon annihilation operator satisfying [b,b†] = 1.
Under the modified potential, the Hamiltonian corresponding
to this model can be divided into three parts:

H =
∑
j=1,2

H0j + Hint + Hej , (6)

where H0j = ωlja
†
j aj + ωmjb

†
j bj − ga

†
j aj (b†j + bj ) +

iE(a†
j e

−iωdj t − aj e
iωdj t ) is the standard Hamiltonian of the
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optomechanical system [42,43], and Hint = −μ(b†1b2 + b
†
2b1)

is the phonon interaction through the tunneling with intensity
μ [6,15]. Such an oscillator interaction can also be easily
achieved by resonance oscillators with an X-X type interaction
between them. After a rotating-wave approximation, X-X
interaction will become Hint under the resonance condition. He

describes the Coulomb interaction caused by two electrodes,
and we will detail its expression in the following discussion.

Now we provide the details behind Eq. (5) by analyzing the
dynamics of the electrical circuit system. A simple Duffing
circuit can be described by the following dynamic equation
[44]:

d2φ

dτ 2
+ 1

RC

dφ

dτ
+ χ1

C
φ + χ3

C
φ3 = E′

RC
cos ωt. (7)

Here χ1 and χ3 are constants depending on the type of the in-
ductor, and they satisfy the relationship i = iR − iC = χ1φ +
χ3φ

3. φ is the flux over the inductor; moreover, iR(iL) and
VR(VL) are the current and voltage of the resistor (inductor),
respectively. Here we make a dimensionless transformation by
setting ϕ = φ/φ0, t = τ

√
χ1/c, UNL = dϕ/dt , υ = φ2

0χ3/χ1,
ε = (R

√
χ1C)−1, E = E′/χ1Rφ0, and ω0 = ω

√
C/χ1. In this

picture, the unidirectional coupling via a linear resistor can
be described as a control term εK(U con

NL − U self
NL ), where K

is coupling intensity. Therefore, for j = 1,2, two mutual
controlled Duffing circuits in Fig. 1 can be expressed as

d

dt
ϕj = UNL,j ,

d

dt
UNL,j = −εUNL,j − ϕj − υϕ3

j

+E cos ω0t + εK(UNL,3−j − UNL,j ). (8)

The Coulomb interaction provides an additional potential
energy, ωmη′VL(b† + b)2/4, to the oscillator, which has been
deduced in Ref. [39]. Through utilizing a similar dimensionless
transformation, the additional potential energy corresponding
to the j th oscillator can be gained:

Hej = ωmj

4
ηUNL,j (b†j + bj )2 ≡ ωm

4
Cj (t)(b†j + bj )2, (9)

with the definition Cj = ηUNL,j and the characteristic param-
eter

η =
√

χ1

c
φ0η

′ = C0QMRφ0

πε0mω2
md3

√
χ1

C
. (10)

Then the total Hamiltonian of this system can be expressed as
(h̄ = 1)

H =
∑
j=1,2

{
−�ja

†
j aj + ωmj

[
1 + Cj (t)

2

]
b
†
j bj

− iga
†
j aj (b†j + bj ) + iE(a†

j − aj )

+ ωmj

4
Cj (t)(b†j b

†
j + bjbj )

}

−μ(b†1b2 + b
†
2b1), (11)

after a frame rotating. Here for j = 1,2, aj (a†
j ) and bj

(b†j ) are the optical and mechanical annihilation (creation)
operators. �j = ωdj − ωlj refers to the detuning between
the frequencies belonging, respectively, to the laser driving
and the cavity mode. ωmj is the mechanical frequency. g is
the optomechanical coupling constant, and E is the driving
intensity.

Generally speaking, the properties and trajectory of a
quantum system corresponding to Hamiltonian (11) can be
expressed completely by a density matrix through solving the
quantum master equation in the Schrödinger picture. However,
a CV quantum system usually corresponds to a density
matrix with infinite dimension in Fock space. Therefore in
order to avoid calculating a density matrix, in this work,
we consider the dissipative effects in the Heisenberg picture
and write the quantum Langevin equations to investigate the
quantum trajectory of our system. Compared to the master
equation, quantum Langevin equations can describe system-
atic dynamics through analyzing the evolutions of the system
operators instead of solving a density matrix, and the quantum
noise can be introduced into the motion equations based on
input-output theory. Some common quantum properties, such
as quantum fidelity and quantum entanglement, have been
well calculated and discussed in previous works by adopting
quantum Langevin equations [45–48]. Corresponding to the
Hamiltonian in Eq. (11), the quantum Langevin equations of
the operator motions are [36,49]

ȧj = [−κ + i�j + ig(b†j + bj )]aj + E +
√

2κain
j ,

ḃj =
{
−γ − iωmj

[
1 + Cj (t)

2

]}
bj + iga

†
j aj + iμb3−j

− i
ωmj

2
Cj (t)b†j +

√
2γ bin

j . (12)

In this expression, κ and γ are the optical and mechanical
damping rates, respectively, and ain

j and bin
j are the input

bath operators. Under the Markovian approximation, the input
operators are assumed to be white Gaussian fields obey-
ing standard correlation: 〈ain,†

j (t)ain
j ′ (t ′) + ain

j ′ (t ′)ain,†
j (t)〉 =

δjj ′δ(t − t ′) [50] and 〈bin,†
j (t)bin

j ′ (t ′) + bin
j ′ (t ′)bin,†

j (t)〉 =
(2n̄b + 1)δjj ′δ(t − t ′), where n̄b = [exp(h̄ωmj/kBT ) − 1]−1 is
the mean phonon number of the mechanical bath, which gauges
the temperature T [51].

Here we adopt mean-field approximation to simplify the
above nonlinear differential operator equations since it is
quite difficult to directly solve them [6,14,52–54]. Therefore,
each operator in a quantum Langevin equation is expanded
as the sum of a c number mean value and a fluctua-
tion operator: aj (t) = 〈aj (t)〉 + [aj (t) − 〈aj (t)〉] := Aj (t) +
δaj and bj (t) := Bj (t) + δbj . Under a strong laser driving,
the fluctuation can be regarded as a perturbation around the
corresponding mean value. In this case, Eq. (12) can be divided
into two different sets of equations, that is, for the mean value:

Ȧj = [−κ + i�j + ig(B∗
j + Bj )]Aj + E,

Ḃj =
{
−γ − iωmj

[
1 + Cj (t)

2

]}
Bj + ig|Aj |2 + iμB3−j

− i
ωm

2
Cj (t)B∗

j , (13)
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and for the fluctuation:

δȧj = [−κ + i�j + ig(B∗
j + Bj )]δaj

+ igAj (δb†j + δbj ) +
√

2κain
j ,

δḃj =
{
−γ − iωmj

[
1 + Cj (t)

2

]}
δbj + igAjδa

†
j

+ igA∗
j δaj + iμδb3−j − i

ωm

2
Cj (t)δb†j +

√
2γ bin

j .

(14)

In the above expressions, the quantum fluctuations have
been already linearized by neglecting all second-order terms.
Utilizing a mean-field approximation, except for convenience,
is also based on the following two considerations. One is that
quantum synchronization measure is of a clearer physical
significance. Here we wish to emphasize once again that
the synchronization in the level of expectation value in this
case can be regarded as a necessary condition of quantum
synchronization. The other is that mean-field approximation
neglects the nonlinear effect in the quantum level, which causes
the quantum properties of the system to be restricted to linear
transformation. In our work, this characteristic can ensure that
the system is always a Gaussian state [55]. It is the reason
why the Gaussian fidelity and the Gaussian entanglement are
accurate in the following discussion.

After transforming the annihilation and creation opera-
tors by using x̂j = (a†

j + aj )/
√

2, ŷj = i(a†
j − aj )/

√
2, q̂j =

(b†j + bj )/
√

2, and p̂j = i(b†j − bj )/
√

2, Eq. (14) can be

rewritten in a more compact form: ∂t û = Sû + ξ̂ . Here vector
û is defined as û = (δx1,δy1,δx2,δy2,δq1,δp1,δq2,δp2)� and
ξ̂ means input vector (x̂in

1 ,ŷin
1 ,x̂in

2 ,ŷin
2 ,q̂in

1 ,p̂in
1 ,q̂in

2 ,p̂in
2 )�. S

is a time-dependent coefficient matrix, and it can be solved
by dynamic equations of the mean values (see Appendix B).
In order to analyze quantum synchronization and quantum
correlation, we consider the following covariance matrix:

Vij (t) = Vji(t) = 1
2 〈ûi(t)ûj (t) + ûj (t)ûi(t)〉, (15)

and its evolution satisfies [36]

∂tV = SV + V S� + N. (16)

In the above expression, N is a diagonal noise correlation
matrix Nij δ(t − t ′) = 〈ξ̂i(t)ξ̂j (t ′) + ξ̂j (t ′)ξ̂i(t)〉/2. Here we
want to explain again that the expectation value of a mechanical
quantity and the covariance matrix V can completely describe
the system quantum properties if the system is restricted to
the Gaussian state by the linearized Hamiltonian. According
to Eqs. (8), (10), (13), and (16), the first-order synchronization
measure between two oscillators can be obtained by 〈q−〉 =
Re[B1] − Re[B2] and 〈p−〉 = Im[B1] − Im[B2]. In addition,
the second-order synchronization measure is

S ′
c(t) = 〈δq̂2

−(t) + δp̂2
−(t)〉−1

= {
1
2 [V55(t) + V77(t) − 2V57(t)]

+ 1
2 [V66(t) + V88(t) − 2V68(t)]

}−1
. (17)

With the covariance matrix in Eq. (15), the fidelity of two
general Gaussian states can be obtained using the following
formula [56,57]:

F = 2√
� + λ − √

λ
exp[−β�(V1 + V2)−1β], (18)

where

V1 =
(

V11 V12

V21 V22

)
, V2 =

(
V33 V34

V43 V44

)
, (19)

β =
√

2

(
ReA1 − ReA2

ImA1 − ImA2

)
, (20)

� = det(V1 + V2), (21)

and

λ = (det V1 − 1)(det V2 − 1). (22)

Besides the quantum fidelity, we can also adopt the covariance
matrix to calculate logarithmic negativity, which is a well-
known measure to describe the entanglement between two
Gaussian states. For convenience, we express the covariance
matrix V in the following compact form:

V =

⎛
⎜⎝

IO1 DO1,O2 DO1,M1 DO1,M2

DO2,O1 IO2 DO2,M1 DO2,M2

DM1,O1 DM1,O2 IM1 DM1,M2

DM2,O1 DM2,O2 DM2,M1 IM2

⎞
⎟⎠, (23)

where Ii and Dij are 2 × 2 matrices. Here we use the indices O

and M to specify the mechanical and optical modes; moreover,
(i,j ) denotes the entanglement between the modes i and j .
For example, “(O1,M1)” means the entanglement between
the optical mode and the mechanical mode of the system 1,
correspondingly, and “(M1,M2)” is the entanglement between
the mechanical modes of the systems 1 and 2. The covariance
matrix of two entangled modes in this case can be written as

νij =
(

Ii Di,j

Dj,i Ij

)
, (24)

and the logarithmic negativity can be calculated based on

E
i,j

N = max[0,− ln(2ζij )]. (25)

In this expression, ζij is the smallest symplectic eigenvalue
of the partially transposed covariance matrix ν̃ij that can
be obtained from νij just by taking pj in −pj [58,59].
This symplectic eigenvalue can be gained by calculating the
square roots of the ordinary eigenvalues of −(σ ν̃ij )2, where
σ = J ⊕ J and J is a 2 × 2 matrix with J12 = −J21 = 1 and
J11 = J22 = 0.

IV. POINT-TO-POINT QUANTUM SYNCHRONIZATION
AND STATE SHARING

We first consider point-to-point quantum state sharing
between two systems connected directly (see Fig. 1). Two
cavities here are the carriers of quantum states, and we hope to
prepare identical unknown states via quantum synchronization
oscillators. Because of the linearization for the quantum
fluctuation, the systems can be described by Eqs. (8), (13),
and (14) completely. By computing the covariance matrix of
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FIG. 2. (a), (b) Expectation values of the oscillator coordinates corresponding to existing (a) or disconnecting (b) of coupling. Here black
solid lines denote 〈q1〉, and yellow dotted lines denote 〈q2〉. (c), (d) Expectation values of the coordinate error operator corresponding to
K = 2, μ = 0.02 (c, black solid); K = 0, μ = 0 (c, yellow dotted); K = 2, μ = 0 (d, black solid); and K = 0, μ = 0.02 (d, yellow dotted).
(e) Expectation values of the momentum error operator corresponding to K = 2, μ = 0.02 (black solid) and K = 0, μ = 0 (yellow dotted).
(f) Effective frequencies of system 1 (yellow dotted) and 2 (black solid) when K = 0. In these simulations, the oscillator frequency is set
ωm1 = 1 as a unit, and other parameters are ωm2 = 1, ω0 = 0.8, �j = ωmj = 1, g = 0.005, κ = 0.15, γ = 0.005, η = 0.01, ε = 0.18, ν = 1,
E = 10, and E = 26.7. The initial state of the cavity field is vacuum state which corresponds to Aj (0) = 0, and other initial conditions are all
random. All horizontal coordinates denote time t .

the systems, the evolution of the synchronization measure in
Eq. (3) can be calculated conveniently. Since the oscillators
are directly coupled, we use nonlocal measure S ′

c to describe
oscillator synchronization. For cavity fields, quantum sharing
is more concerned with the consistency of the local quantum
states in each cavity. Hence, we use local measure fidelity to
describe optical fields.

In Fig. 2 we show the dynamics of oscillators by plotting
the evolutions of the operator expectation values. One can ob-
viously see that synchronous evolution between the oscillators
appears under the suitable coupling intensity [Fig. 2(a)], but
this synchronization will be destroyed when both couplings
are disconnected [Fig. 2(b)] and two evolution curves are
inconsistent. In Figs. 2(c) and 2(d), we demonstrate this
phenomenon more intuitively by considering the first-order
error 〈q−〉 = 〈q1〉 − 〈q2〉. Here 〈q−〉 is plotted under different
connections, and it shows that the error will always tend to
zero if and only if two couplings exist simultaneously [black
solid line in (c)]. Otherwise, the error will take on irregular
evolution with large amplitude [(d) and dotted line in (c)].
Figure 2(e) illustrates that all the conclusions obtained from the
generalized coordinate can also be applied to the generalized
momentum. In Fig. 2(f), we plot the effective frequency ωeff of
each subsystem to illustrate the significant difference between
two systems when K = 0.

While 〈q−〉 → 0 and 〈p−〉 → 0 are simultaneously satis-
fied, two oscillators will exhibit the characteristics of complete
synchronization in the level of expectation value. In some
previous works, this kind of synchronization is also considered

as a quantum synchronization. This view is not strict because
the expectation value is an incomplete description without
considering quantum fluctuation. If the synchronization is not
intended to be used in semiclassical information processing
(e.g., transmission of strong signal and parameter identification
in quantum ensemble) but needs more quantum properties, the
nonlocality and quantum fluctuation will also cause a critical
impact, and they cannot be ignored in quantum synchroniza-
tion analyses. In particular, for the Gaussian state sharing
discussed in our work, a genuine quantum synchronization
will be required.

In Fig. 3 we present the contrast among the expecta-
tion value synchronization, quantum synchronization, and
Gaussian fidelity [56,57]. Compared with only considering
the expectation value, here evolution of the system is more
complicated and can be subdivided into three distinguishable
processes according to the quantum synchronization mea-
sure S ′

c. First, two systems are not synchronized because
there obviously exists a classical error between oscillator
expectation values. Correspondingly, S ′

c always tends to 0.
Subsequently, with the classic error gradually tending to
zero, S ′

c also gradually increases with time evolution at this
stage. The gradually rising S ′

c illustrates that this process is a
transformation process from quantum nonsynchronization to
quantum synchronization. Physically, the appearance of this
process is due to the mutual modulation between two systems.
From Fig. 3(c), we find that the corresponding fidelity of two
cavity fields is also rising in this duration, but it is not yet
available for quantum sharing. With the evolution continuing
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FIG. 3. Simulations of the expectation value error 〈q−〉, quantum
synchronization measure S ′

c(t), and Gaussian fidelity F . The inset in
(b) is the partial enlarged drawing of S ′

c in t ∈ [1900,2000]. In (b) and
(c), the yellow (pale) lines express the local average synchronization
measure and Gaussian fidelity by calculating ξ (t̄) = �t−1

∫ t+�t

t
ξ dt

in the time window �t (ξ ∈ {S ′
c,F}); Here all the other parameters

are the same as in Fig. 2.

and finally for S ′
c, an inflection point appears (see the dotted

boundary line). After this inflection point, a stable nonzero
S ′

c emerges and in maintained in a long time interval, and the
corresponding fidelity tends to 100%, which implies two cavity
fields evolve gradually from vacuum states to the quantum
states with almost 100% reliability. The inset in Fig. 3(b)
shows that S ′

c is greater than 0.26 after the inflection point,
which is a higher value compared to Mari’s results. It can be
certain from above analyses that quantum fluctuation can be
regarded as synchronization in this process.

In Fig. 4(a) we show quantum synchronization measures
under different conditions. The results show that S ′

c will
decrease to 0.1 when the classical coupling is disconnected.
Although S ′

c is unequal to zero in this case, it does not mean
that the systems have been synchronized because the classical
error will no longer tend to zero [see Fig. 2(d)]. Moreover,
S ′

c will equal zero if both couplings are disconnected. By
comparing these two results, it can be proved that the
quantum coupling is more suitable for playing a role in
restraining the difference between the quantum fluctuations.
Similar conclusions can also be verified by Fig. 4(c), which
shows that F(∞) → 100% will be satisfied only while both
two couplings are connected synchronously. Figure 4(a) also
shows that this synchronization will keep high efficiency if
the bath temperature is limited to be lower than T = 1 mK
(corresponding to MHz phonon frequency). Moreover, S ′

c

will still be greater than 0.1 even when T = 5 mK, which
corresponds to a strong robustness. Another concern in this
work is whether the quantum properties of two systems
are also identical at the synchronization moment. Therefore,
we plot Fig. 4(b) and confirm that the entanglement of
two systems also takes on consistent evolution. Considering
the above properties together, we can finally determine that
the synchronization between two systems indeed belongs
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FIG. 4. (a) Quantum synchronization measures under different
conditions. Here black (dark) lines denote S ′

c when n̄b = 0 (solid),
n̄b = 0.25 (dotted), and n̄b = 2.5 (circle). Yellow (pale) lines denote
S ′

c under K = 0, μ = 0.02 (solid), and K = 0, μ = 0 (dotted).
(b) Evolution of logarithmic negativity. (c) Local averaged fidelities,
respectively, corresponding to K = 2, μ = 0.02 (red square); K = 2,
μ = 0 (yellow (pale) dotted); K = 0, μ = 0.02 (black (dark) dashed);
and K = 0, μ = 0 (black (dark) solid). Here all the other parameters
are the same as in Fig. 2.

to a genuine quantum synchronization. Figure 4(b) also
illustrates the two systems are always separable in both optical
field and oscillator freedoms. This characteristic is suitable
for a quantum network because other nodes will be not
disturbed by entanglement steering when a node is attacked or
bugged.

Figures 2(c), 2(d), and 4(c) illustrate that the couplings
via a phonon channel and linear resistor in our model are
both necessary for synchronization. This feature has rarely
been used to design synchronization schemes in previous
works. In fact, these two kinds of couplings respectively
exhibit different physical mechanisms in the synchronization
process. Here quantum coupling plays a similar role as
that reported in Ref. [14], i.e., it is used to eliminate the
initial difference between two identical systems by mutual
adjustment and to generate nonlocality in order to improve the
synchronization measure. However, different from Ref. [14],
every subsystem in our work can be treated as the same if
and only if circuit coupling is connected. In other words,
the synchronization mechanisms in our paper are as follows:
Circuit coupling controls subsystems eventually have the same
effective frequency, which means two subsystems evolve under
the same dynamic equation. Once this condition is satisfied,
the responsibility of phonon coupling is to offset the initial dif-
ference between two subsystems. On the other hand, if circuit
coupling is disconnected or one of the subsystems is a common
optomechanical system without control voltage (ωeff = ωm),
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FIG. 5. (a) Initial state dependency of fidelity. The initial states of
cavity fields are respectively selected as two vacuum states: |0〉 and |0〉
(yellow solid); coherent states with identical photon number: |α〉 and
|αeiφ〉 (black dark dashed); and coherent states with different photon
number: |α1〉 and |α2〉 (green light dotted). Here |α〉 = exp(αa† −
α∗a)|0〉, α = α1 = 1, α2 = 10, and φ = π/2. (b) Gaussian fidelities
with varied phonon number difference. Here we set n̄b1 + n̄b2 = 20,
�n = n̄b1 − n̄b2, and all the other parameters are the same as in Fig. 2.

dynamic equations of the two systems are different and exhibit
unequal effective frequencies [see Fig. 2(f)]. In this case,
weak quantum coupling will not be sufficient to synchronize
two different systems. Compared to related works that obtain
quantum synchronizations by only one coupling, our scheme
can ensure a wide range of achievable parameters since the
quantum coupling is responsible only for synchronizing the
initial difference. At the same time, two kinds of couplings
can provide an additional control mode. Both the wider range
of parameters and the additional control mode can make the
constructing of network more convenient.

To show the efficiency of the state sharing, finally, we end
the analysis of a point-to-point system by discussing the initial
state dependence and environment influence on Gaussian
fidelity. In Fig. 5(a) we plot the evolutions of the fidelity with
different initial states. It can be known thatF(∞) → 100% can
always be achieved even starting evolution from an arbitrary
initial state. This is because the synchronization effect is
an intrinsic property of the system, and it is irrelevant with
the initial selection. Figure 5(b) illustrates that the cavity
field fidelity will always tend to 100% even though the
corresponding oscillators are dissipating into different baths.
This property is quite different with S ′

c, which takes on an
obvious decline once the phonon number within bath increases.
This is due to the fact that the influence of bath on the system
has be simplified as a decay parameter under the Markovian
approximation, and such a kind of parametric difference is also
balanced by the quantum coupling when the optomechanical
interaction and system-bath interaction are both weak. This
performance will relax the requirement for the experimental
conditions; in other words, it is more feasible to extend the
idea of quantum state sharing from the point-to-point system
to the quantum network.

V. QUANTUM SYNCHRONIZATION AND STATE SHARING
IN A COMPLEX NETWORK

Now let us extend the above conclusions to analyze state
sharing within the network. Similarly to the discussion about
a point-to-point system, we also begin this section with a
dynamic analysis of a hybrid electro-optomechanical system
array. According to Eq. (11), the whole Hamiltonian of a
quantum network can be expressed as

H = Hfree + Hcouple

=
N∑

i=1

{
−�ia

†
i ai +ωmi

[
1+ Ci(t)

2

]
b
†
i bi − iga

†
i ai(b

†
i + bi)

+ iE(a†
i − ai) + ωmi

4
Cj (t)(b†i b

†
i + bibi)

}

−
∑
t,q

μjk(b†j bk + b
†
kbj ), (26)

where N is the total number of nodes and μjk represents the
coupling strength between nodes j and k. Here Ci(t) can be
determined by Duffing circuit equations

ϕ̇i = UNL,i,

U̇NL,i = −εUNL,i − ϕi − υϕ3
i + E cos ω0t

+
k=i∑
t,c

εKjk(UNL,j − UNL,i), (27)

and, correspondingly, other mechanical quantities satisfy the
following quantum Langevin equations:

ȧj = [−κ + i�j + ig(b†j + bj )]aj + E +
√

2κain
j

ḃj =
{

−γ − iωmj

[
1+ Cj (t)

2

]}
bj + iga

†
j aj − i

ωmj

2
Cj (t)b†j

+
j=i∑
t,q

iμjkbk +
√

2γ bin
j . (28)

After a mean-field approximation, Eq. (28) becomes

Ȧi = [−κ + i�i + ig(B∗
i + Bi)]Ai + E,

Ḃi =
{
−γ − iωmi

[
1 + Ci(t)

2

]}
Bi + ig|Ai |2

− i
ωm

2
Ci(t)B

∗
i +

j=i∑
t,q

iμjkBk, (29)

to describe the evolution of expected value. Here we define two
graph matrices, Gc

jk = Kjk and G
q

jk = μjk , to represent the
coupling structures of circuit coupling and phonon coupling,
respectively. Gc can be an arbitrary matrix since circuit
coupling is classical; however, the Hermitian Hamiltonian
requires (Gq)� = Gq . Based on this expression, Eqs. (27) and
(28) can be rewritten in a more compact form by using graph
matrices [60]:

Ẋ = F (X) + Gc(t) ⊗ Hc · X + iGq(t) ⊗ Hq · X. (30)

In this expression, X = (X1,X2,X3, . . . ,XN )� is defined as a
network tensor, where Xj = (φj ,UNL,j ,Aj ,Bj ). The second
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term and the third term on the right side respectively cor-
respond to classical coupling term

∑
t,c εK(UNL,j − UNL,i)

and quantum coupling
∑j=i

t,q iμjkBk , and F (X) describing
free evolution of each node includes the remaining parts of
Eqs. (27) and (28). Hc and Hq refer to the autocorrelation
functions that describe the nexus between the variables in
the same node. If the variable order is defined as Xj =
(φj ,UNL,j ,Aj ,Bj ), the autocorrelation functions should be
Hc = diag(0,1,0,0) and Hq = diag(0,0,0,1).

With the advances of network theory, it is gradually
known that the irregular but incompletely random network
is better and more practical than other network structures
for application in communication or calculation process. In
the last few decades, the small-world (SW) network and the
scale-free (SF) network have been widely investigated and can
act as effective simulations of actual communication networks.
This motivates us to propose synchronization schemes for an
SW network and SF network in the following subsections,
respectively. The SW network corresponds to the case that
only few directly connected nodes in network are achieved
for synchronization. In addition, it is not required to design
additional controls for synchronization in an SW network. If
the synchronization target is used to synchronize all nodes
in an irregular network, we need a designed synchronization
condition to adjust the parameters of each node, which is the
goal of the synchronization in an SF network.

A. Quantum synchronization in a small-world network

We now go into detail about quantum synchronization in
an SW network. A typical Newman-Watts SW network can
be regarded as adding a few irregular links in the frame of a
regular network with neighboring links. The construction of
such a network can be divided into two steps:

(1) Establishing a regular network: Staring from a ringlike
network with regular connectivity comprising N nodes, and
each node within the network connects to its M (even number)
nearest neighbors.

(2) Randomization edge adding: In addition to the above
links, each node can also connect to non-nearest-neighbor
nodes at random with small probability P .

For hybrid electro-optomechanical systems, the two above
structures can, respectively, correspond to the classical cou-
pling and quantum coupling. As shown in Fig. 6(a), we
construct an SW network with the following strategy: N

electro-optomechanical systems (orange big points) are se-
lected as the nodes of the network, and their circuit parts link
to the nearest-neighbor nodes via classical Duffing couplings
(blue dotted lines). A node will not link any other nodes
via quantum couplings (red solid lines) unless it wants to
synchronize with other nodes. In our small-world network,
time-dependent topology refers to that a node can select
different nodes for quantum coupling in the time evolution
[see Fig. 6(b)].

In the case of larger N , the quantum coupling here can be
regarded as random connection with a small probability P .
Previous works have proved that such a network topology is
of smaller average path length and larger clustering coefficient
[61,62]. To some extent, an SW network remains symmetry
like a regular network, and the node differences caused by

1
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8
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FIG. 6. Each node represents an eletro-optomechanical system.
The nodes connect to each other through different coupling forms and
dissipate into different baths, including a separate bath (SB), common
bath (CB), and local bath (LB). Here (a) represents the structure of
the SW network consisting of primary and secondary nodes and
(b) shows a SW network with varying structure.

network topology are small enough to be eliminated because of
the weak coupling in the quantum domain. Especially when N

and P are fixed, the change of the network structure will have
a tiny impact on direct connected nodes, which ensures that
quantum synchronization can be extended more conveniently
into an SW network.

Now we discuss the above analyses in mathematics. Let
us reexamine the dynamic equation (30). In view of an SW
network, elements of Gc should be zero except gc

i,i±1 = εK

and gc
1,N = gc

N,1 = εK . Correspondingly, elements of Gq

should perform as g
q

jk = μjk . Substituting Gc and Gq into
Eq. (30), the dynamics of the whole network can be determined
by coupling matrix

GN,M,P (t) = Gc(t) ⊗ Hc + iGq(t) ⊗ Hq. (31)

We can calculate the trace distance under a different time,

D(t,t ′) = 1

2
Tr

∣∣∣∣ GN,M,P (t)

|GN,M,P (t)| − GN,M,P (t ′)
|GN,M,P (t ′)|

∣∣∣∣, (32)

to measure the difference between two different coupling
matrices. Under fixed network parameters, the influence
caused by the changing network structure on synchronization
can be measured by using average distance D̄(N,M,P ) =
[
∫ t

t0
D(t0,τ ) dτ ]/(t − t0). Here |A| is defined as

√
A†A.

As illustrated in Fig. 7(a), the average distance of an SW net-
work with N = 12 and P = 0.1 will decrease with increasing
the quantum coupling intensity μ. Especially corresponding to
μ = 0.02, D̄ is approximately equal to 0.01, and it will be less
than 0.015 even when P = 0.3 [see inset in Fig. 7(a)]. Such
a small difference indicates that quantum coupled nodes can
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FIG. 7. (a) Average trace distance D̄ with varied coupling intensity μ under N = 12, M = 2, and P = 0.1. The inset in (a) shows change
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represents the link disconnects at t1 and reconnects at t2. The initial state of each cavity field is a vacuum state or random coherent mix state.
Other initial conditions are all random, and all the other parameters are the same as in Fig. 2.

be directly synchronized without any additional control in an
SW network.

In order to verify the above discussion, we calculate the
dynamical evolution of a 12-node SW network [Fig. 6(a)]. We
find that the network synchronization can be more efficient
since each node can continue to synchronize other nodes. As
an example, here each major node is known as a central node
to derive the star-type network with S secondary nodes [blue
small points in Fig. 6(a)]. In this case, we can still realize
synchronously the synchronization among a large number of
nodes even in an SW network.

In Fig. 7 we show the evolutions of optical field fidelity and
field-oscillator entanglement of some key nodes dissipating
into different baths. For each linear motif quantum coupling,
the fidelity can stabilize at 100% for a long evolution time.
Unlike an SF network and Erdös-Rényi random network
[29,63], we emphasize that all nodes are directly connected to
the network without modifying deliberately any parameters.
Therefore the state sharing in this structure is quite convenient.
Moreover, as we discussed in point-to-point processing, the
differences caused by the bath influence can be eliminated
by the coupling. It is further verified by the Fig. 7(b) that
F(∞) → 100% is always satisfied whether in SB, CB, or LB.
Figures 7(c) and 7(d) illustrate that consistent quantum states
belonging to different nodes are not thermal equilibrium states
but have significant, not meaningless, quantum properties. The
optical field and oscillator in each node are still entangled even
if t → 7500, and simultaneously, the logarithmic negativity is
consistent between nodes in the same linear motif.

Now we discuss the synchronization performance when
the network structure is constantly changing. Our aim is to
prove that a state-sharing processing will not be affected by
other processes in the same network. We consider such a

process: two nodes are continuously connected [solid box
in Fig. 6(b)], and in the meantime, other links [dotted box
in Fig. 6(b)] are disconnected at t1 and reconnected at t2
[see dotted boundary lines in Figs. 7(e) and 7(f)]. It can be
seen in Fig. 7(e) that the nodes with a continuous connection
will continue to maintain synchronization andF(∞) → 100%
whether other links are connected or disconnected. It can be
predicted that identical quantum states can be transmitted in
this SW network even though its topology is varying with time.
Similarly, we emphasize again that any parameter correction
or additional control on nodes is not needed in this varying
network. Therefore, any links can be established or broken off
at any time. Moreover, we show that the disconnected nodes
can also be synchronized when they are connected again in
Fig. 7(f). The consistent evolution trends corresponding to
fidelity and synchronization measure explain that quantum
state sharing is present when synchronization arises.

B. Quantum synchronization in a scale-free network

The same protocol discussed above can be applied to
synchronize few elements (two or three major nodes) of a
network. However, it cannot ensure that many nodes can
be synchronized simultaneously via complex connections. In
particular, if a connected node constantly connects to other
nodes or the probability of edge adding is not small, the whole
network will become more complex and lose its symmetry.
In this case, the whole network cannot be synchronized
just through connecting directly nodes with each other. The
potential scheme to synchronize asymmetric network requires
us to modify the parameters of each local node.

To illustrate the problem, we consider a typical SF network
as shown in Fig. 8(b). It starts from the network with m0 nodes,
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FIG. 8. (a) Structure diagram of an SF network with 18 nodes.
(b) An SF network with a variable structure. (c) A simple example of
network synchronization with an auxiliary node. Here the red solid
lines represent the quantum couplings.

and in each subsequent process, a new node is added and
connected to the network with m existing nodes (m < m0).
What needs to be explained is that the new node is apt to
connect with such nodes with large node degree. Differently
from the SW network, here time-dependent topology refers to
new nodes accessing the network constantly.

In order to synchronize all nodes in such an SF network,
here we introduce and adopt the dissipative condition, which
can be expressed as

N∑
k=1

g
q

jk = 0 (33)

to control network synchronization [60,64]. Here g
q

jk is the
element of coupling matrix Gq that describes a special
coupling structure. Once the dissipative condition is satisfied,
all quantum coupling terms in dynamic equation will no longer
exist when all nodes have been synchronized. In order to
explain this condition more clearly, let us rewrite Eq. (33) as
gjj = −∑N

k=1,k �=j gjk and discuss its two sides. Considering
the quantum Langevin equations, nondiagonal elements of the
coupling matrix Gq correspond to the beam splitter (BS) terms
−μjk(b†j bk + b

†
kbj ), and conversely, diagonal elements gjj can

be regard as frequency shift terms −�ωjb
†
j bj in the Hamil-

tonian. Mathematically, those shift terms can express diverse
frequencies of different nodes via setting a uniform reference
frequency ωs , i.e., ωmj = ωs + �ωj . Besides the dissipative
condition, an identical node function requires identical η for
each node. Combining with these two requirements, we gain

the conditions for whole network synchronization as follows:

�ωj =
N∑

k=1

μjk and
QMR,j

ωs + �ωj

= const, (34)

where ωs should equal ωs < min{ωmj } owing to μjk > 0. In
this case Eq. (29) will reduce to

Ȧi = [−κ + i�i + ig(B∗
i + Bi)]Ai + E,

Ḃi =
{
−γ − iωs

[
1 + Ci(t)

2

]}
Bi + ig|Ai |2

− i
ωs

2
Ci(t)B

∗
i , (35)

owing to Bi = Bj (j ∈ [1,N ],j �= i). Equation (35) implies
that synchronization states can be determined only by re-
spective node functions that have the same forms due to
synchronized voltage control. The network evolution under
this mechanism can be interpreted as follows: Different initial
states and node functions will lead to initial differences among
all nodes, which can be regarded as phase differences when
the node functions are controlled with identical parameters.
In phase space, mutual quantum coupling makes the error
between two nodes take on periodic evolution in a weak
nonlinear regime, which ensures that the systemic evolutionary
track is a limit cycle but not chaos. Therefore, there is always
such a moment (the least common multiple of the error periods)
that all node errors simultaneously tend to zero. Once this
phenomenon emerges, zero coupling terms and identical node
functions ensure the system variables sustain synchronous
state.

Note that the first equation in Eq. (34) is a nonidempotent
linear equation, and it can not always be solved since Hermitian
BS terms require μjk = μkj . To ensure that at least one solution
exists, a simple method is to add some auxiliary nodes and
connections into the network that should be designed for
satisfying the solution condition. In other words, one can
always find suitable parameters to ensure state sharing within
the whole complex network.

In order to explain the synchronization conditions more
intuitively, we discuss a triangle structure as an example
to show how to adjust the coupling strength to satisfy the
synchronization conditions [see Fig. 8(c)]. Considering this
kind of triangular coupling structure, the first synchronization
condition in Eq. (34) can be rewritten as

ωm1 − ωs = μ12 + μ13,

ωm2 − ωs = μ12 + μ23, (36)

ωm3 − ωs = μ23 + μ13.

In the above expressions, ωm1,2,3 are oscillator frequencies
of target nodes, and they should be arbitrary but fixed.
Relatively, ωs is a designed standard frequency, and it is
similar to μ12,13,23, which can be adjusted according to
different coupling structures or network parameters. Under
normal circumstances, physical solutions may not exist for
the equation while ωm1,2,3 are taken arbitrarily. As mentioned
above, we add an auxiliary node and connection into the
network to ensure the synchronization conditions can be
satisfied. Considering the new structure consisting of the
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auxiliary node, Eq. (36) becomes

ωm1 − ωs = μ12 + μ13,

ωm2 − ωs = μ12 + μ23,

ωm3 − ωs = μ23 + μ13 + μA,

ωmA − ωs = μA, (37)

where ωmA is the oscillator frequency of the auxiliary node.
Equation (38) will exist with infinitely many solutions by
properly selecting ωA and μA. In particular, if we set

ωs = ωm1 − μ12 − μ13,

μ23 = μ13 + ωm2 − ωm1,

μA = μ12 − μ13 + ωm3 − ωm2,

ωmA = −2μ13 + ωm1 − ωm2 + ωm3, (38)

the dissipative condition will be satisfied even for arbitrary μ12

and μ13.
In order to validate that the above ideas can be extended into

complex networks, here we calculate the dynamical evolution
of an 18-node SF network [Fig. 8(c)]. Quantum sharing within
the network is measured and analyzed by a network-averaged
fidelity defined as

F(N ) =
∑

j<k Fjk

C2
N

. (39)

Here Fjk is the fidelity of nodes j and k, and C2
N is the

combination number. Under this definition, that F(N ) tends
to 100% means that the fidelity between any two nodes tends
to 100% .

In Fig. 9(a) we show the evolution of network-averaged
fidelity. It can be seen that F(N ) > 99% is always tenable,
and time-averaged fidelity can achieve F = 99.53% under
the same parameters. Furthermore, the best result of quantum
state sharing between two nodes can achieveF = 99.99%, and
correspondingly, the worst synchronization effect between two
nodes in this network can also ensure successful state sharing
with F > 98.5%.

Now we focus on varying network structure. We consider
joining two new nodes into the network one after another
[corresponding to blue dashed box in Fig. 8(b)]. When new
nodes are added, the network parameters will be adjusted to
satisfy synchronization conditions under the new structure. In
the general case, only the nodes that are directly connected
with the new joining node need to be adjusted since the SF
network requires new nodes to be added on the basis of the
original structure. In Fig. 9(b) we exhibit that new nodes are
not synchronized with other nodes when they are in the free
evolution, and the fidelities between the new node and other
nodes in the network remain at a lower value. Once a node
accesses into the network [i.e., t/1000 = 5 in Fig. 9(b)], it will
synchronize with other nodes rapidly, and the corresponding
fidelity will continue to rise until it reaches almost 100%. For
other nodes in the network, average fidelity shows that the
new node will not affect the original synchronization effect
although average fidelity decreases when new nodes just access
into the network. We can also get the same conclusion by
studying the synchronization measure of oscillators. As shown
in Fig. 9(c), S ′

c between a new node and any other nodes
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FIG. 9. (a) Network-averaged fidelity (black dark) and its local
time average value (yellow pale). (b) Fidelities between two nodes
when the network structure varies. (c) Quantum synchronization
measures when the network structure varies and the time interval
corresponds to the green box in (b). Here the initial state of each
cavity field is vacuum state and other initial conditions are all random,
and all the other parameters are the same as in Fig. 2.

has a significant improvement and finally stabilizes at 0.25,
roughly. To summarize, we can ensure that the state-sharing
processing can also work even if the network structure is
varying. Finally, we plot the entanglement measures to further
illustrate the nonclassical effect of the field in each node, shown
in Fig. 10(a), and to show that F(∞) → 100% can always be
achieved, even when starting evolution from an arbitrary initial
state, shown in Fig. 10(b).
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FIG. 10. (a) Entanglement measures of the quantum states in each
cavity. (b) Initial state dependency of fidelity. Here the initial states of
cavity fields are respectively selected as random coherent mix states.
All the other parameters are the same as in Fig. 2.
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VI. DISCUSSION

Here we give a brief discussion of the feasibility of
quantum synchronization in a complex network, including
the experimental feasibility of a coupled optomechanical
array and the solvability of network synchronization con-
ditions corresponding to Eq. (34). In our simulations, we
select the same dimensionless parameters adopted in Mari’s
work, and they can meet the experimental requirements of
most optomechanical systems. In a membrane (nano-object)
optomechanical system especially, the parameter bounds are
ωm/(2π ) = 134 kHz, meff = 40 ∼ 150 ng, γ = 4 kHz, and
κ = 157 kHz [65–68]. Correspondingly, g ∼ γ < κ is also a
common coupling intensity in recent research into optome-
chanical systems [6,14,15,42,43]. In addition, phonon cou-
plings between charged oscillators are also widely discussed
in research on oscillator synchronization and optomechanical
array [6,15].

In summary, we have proposed and analyzed a quantum
state-sharing process in a complex quantum network. The
quantum channel of this state-sharing process is based on
quantum synchronized oscillators, and it will keep a strong
quantum correlation in Markovian dissipation for a long time.
In particular, we have discussed two typical complex networks
to illustrate the effectiveness of our state-sharing process. An
SW network can be regarded as independent communication
between nodes in a network, and the state sharing occurs
in linear motifs. Correspondingly, an SF network describes
an information diffusion process, and all nodes need to be
synchronized simultaneously in the network. By analyzing
quantum synchronization, we find that linked nodes can
directly achieve synchronization in an SW network, but the
whole network can be synchronized only if the nodes are
locally regulated to satisfy given synchronization conditions.
In this case, F → 100% can be achieved in both SW and SF
networks, and basically it is not influenced by the environment.
For an SW network, a node can connect (disconnect) other
nodes at any time without affecting the other links; for an SF

network, external nodes can join the network at any time to
obtain the same quantum state. These two properties ensure
that our scheme is effective for QIP in complex network.
Furthermore, we have also given a brief discussion of the
experimental feasibility of our scheme.

We think some open aspects are worth being further
investigated. For example, an unknown synchronous quantum
state can be used to encrypt quantum states in the quantum
state transfer process. Moreover, transmission of a continuous
variable signal in a synchronized optomechanical system was
discussed in Ref. [15]. Because the synchronization and state
sharing are both effective in SW and SF networks, we think
the scheme for quantum synchronization and state sharing
discussed in our work can exhibit potential application values
in communication networks.
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APPENDIX A: DEDUCTION OF QUANTUM LANGEVIN
EQUATIONS AND INPUT OPERATORS IN THE

HEISENBERG PICTURE

In this Appendix, we will give the details of the deduction of
quantum Langevin equations and input operators. We consider
the point-to-point system coupling to an optical environment
and an oscillator environment respectively. Similarly to previ-
ous works, the quantum environments are regarded as Boson
thermal reservoirs, and the reservoirs are further assumed to
consist of many oscillators with closely spaced frequencies
and annihilation (creation) operators. Then the Hamiltonian of
the system can be expressed as Htotal = H + ∑

j (HEj + HIj ),
where H is the system Hamiltonian corresponding to Eq. (11),
and

HEj =
∫ ∞

−∞
(ωcj − ωlj )c†j (ωcj )cj (ωcj ) dωcj +

∫ ∞

−∞
(ωbj − ωmj ) d

†
j (ωbj ) dj (ωbj ) dωbj (A1)

and

HIj = i

∫ ∞

−∞
dωcjg(ωcj )[a†

j cj (ωcj ) − aj c
†
j (ωcj )] + i

∫ ∞

−∞
dωbjg(ωbj )[b†j dj (ωbj ) − bjd

†
j (ωbj )] (A2)

are, respectively, the energies of the quantum environments (reservoirs) and the coupling between the quantum system and
quantum environment with a rotating-wave approximation. The operators in the above expressions satisfy the following relations:

[cj (ωcj ),c†j (ω′
cj )] = δ(ωcj − ω′

cj ), [dj (ωbj ),d†
j (ω′

bj )] = δ(ωbj − ω′
bj ),

〈c†j (ωcj )cj (ω′
cj )〉 = 0, 〈d†

j (ωbj )dj (ω′
bj )〉 = nb(ωbj )δ(ωbj − ω′

bj ), (A3)

if the optical environment is set to zero temperature but the oscillator reservoirs have a finite temperature T . Here nb is the
thermal phonon number satisfying the Boltzmann distribution nb(ωbj ) = [exp(h̄ωbj /kbT ) − 1]−1.
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With the full Hamiltonian H , dynamics of the j th system can be obtained with the following Heisenberg equations in the
Heisenberg picture:

ȧj = [i�j + ig(b†j + bj )]aj + E −
∫ ∞

−∞
dωcjg(ωcj )cj (ωcj ),

ḃj =
{
−iωmj

[
1 + Cj (t)

2

]}
bj + iga

†
j aj + iμb3−j − i

ωmj

2
Cj (t)b†j −

∫ ∞

−∞
dωbjg(ωbj ) dj (ωbj ),

ċj (ωcj ) = −i(ωcj − ωlj )c(ωcj ) + g(ωcj )aj ,

ḋj (ωbj ) = −i(ωbj − ωmj )d(ωbj ) + g(ωbj )bj . (A4)

Solving the bath operators in Eq. (A4), we have

cj (ωcj ,t) = e−i(ωcj −ωlj )(t−t0)cj (ωcj ,t0) + g(ωcj )
∫ t

t0

dt ′e−i(ωcj −ωlj )(t−t ′)aj (t ′),

dj (ωbj ,t) = e−i(ωbj −ωmj )(t−t0)dj (ωbj ,t0) + g(ωbj )
∫ t

t0

dt ′e−i(ωbj −ωmj )(t−t ′)bj (t ′), (A5)

corresponding to an input process (t > t0). Substituting these solutions into the system operators in Eq. (A4), we obtain

ȧj = [i�j + ig(b†j + bj )]aj + E

−
∫ ∞

−∞
dωcjg(ωcj )e−i(ωcj −ωlj )(t−t0)cj (ωcj ,t0) −

∫ ∞

−∞
dωcjg(ωcj )2

∫ t

t0

dt ′e−i(ωcj −ωlj )(t−t ′)aj (t ′) (A6)

and

ḃj =
{
−iωmj

[
1 + Cj (t)

2

]}
bj + iga

†
j aj + iμb3−j − i

ωmj

2
Cj (t)b†j

−
∫ ∞

−∞
dωbjg(ωbj )e−i(ωbj −ωmj )(t−t0)dj (ωbj ,t0) −

∫ ∞

−∞
dωbjg(ωbj )2

∫ t

t0

dt ′e−i(ωbj −ωmj )(t−t ′)bj (t ′). (A7)

We first consider the optical parts. Here we assume that the coupling intensity between environment and system is a flat spectrum
without frequency dependence. So g(ωcj ) can be replaced as a constant, and it does not need to occur in the integrand. By
denoting g(ωcj )2 ≡ κ/π , Eq. (A6) can be rewritten as

ȧj = [i�j + ig(b†j + bj )]aj + E −
√

κ

π

∫ ∞

−∞
dωcj e

−i(ωcj −ωlj )(t−t0)cj (ωcj ,t0) − 2κ

∫ t

t0

dt ′δ(t − t ′)aj (t ′). (A8)

by using the relation
∫ ∞
−∞ dωe−iω(t−t ′) = 2πδ(t − t ′). Notice that

∫ t

t0
f (t ′)δ(t − t ′) = 1

2

∫ t1
t0

f (t ′)δ(t − t ′) = 1

2
f (t) for t0 < t < t1

and then Eq. (A8) can be further simplified as

ȧj = [−κ + i�j + ig(b†j + bj )]aj + E +
√

2κain
j , (A9)

by defining the input operator

ain
j = − 1√

2π

∫ ∞

−∞
dωcj e

−i(ωcj −ωlj )(t−t0)cj (ωcj ,t0). (A10)

Similarly, we can also simplify Eq. (A7) as

ḃj =
{
−γ − iωmj

[
1 + Cj (t)

2

]}
bj + iga

†
j aj + iμb3−j − i

ωmj

2
Cj (t)b†j +

√
2γ bin

j , (A11)

and the corresponding input operator is

bin
j = − 1√

2π

∫ ∞

−∞
dωmje

−i(ωbj −ωmj )(t−t0) dj (ωbj ,t0). (A12)

Substituting Eqs. (A10) and (A14) into Eq (A3), we can obtain〈
a

in,†
j (t)ain

j ′ (t ′)
〉 = 0,

〈
ain

j ′ (t ′)ain,†
j (t)

〉 = δjj ′δ(t − t ′),
〈
b

in,†
j (t)bin

j ′ (t ′)
〉 = n̄b(ωmj )δjj ′δ(t − t ′),

〈
bin

j ′ (t ′)bin,†
j (t)

〉 = (n̄b(ωmj ) + 1)δjj ′δ(t − t ′), (A13)
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and the thermal connection functions are〈
a

in,†
j (t)ain

j ′ (t ′) + ain
j ′ (t ′)ain,†

j (t)
〉 = δjj ′δ(t − t ′),

〈
b

in,†
j (t)bin

j ′ (t ′) + bin
j ′ (t ′)bin,†

j (t)
〉 = (2n̄b(ωmj ) + 1)δjj ′δ(t − t ′). (A14)

Equations (A11) and (A9) are exactly the same as the quantum Langevin equations used in the main text and (A14) is the
corresponding second correlation functions. Now let us reexamine the above derivations; the only approximation we adopted is
regarding varied coupling coefficient as a constant, which results in that the noise operator can correspond to a white noise with
correlation function δ(t − t ′). The delta function makes integral-differential Heisenberg equations lose their integral terms. In
this case the dynamical properties of the system no longer depend on its past history from t = t0 to t ′. This process can be said
to be Markovian, and the quantum environments under this approximation will not have the memory effect.

APPENDIX B: PARAMETERS IN QUANTUM LANGEVIN EQUATIONS

The concrete form of the coefficient matrix S in the main text is

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ −�1 0 0 −2gIm[A1] 0 0 0
�1 −κ 0 0 2gRe[A1] 0 0 0
0 0 −κ −�2 0 0 −2gIm[A2] 0
0 0 �2 −κ 0 0 2gRe[A2] 0
0 0 0 0 −γ ωm1 0 −μ

2gRe[A1] 2gIm[A1] 0 0 −ωm1[1 + Cj (t)] −γ μ 0
0 0 0 0 0 −μ −γ ωm2

0 0 2gRe[A2] 2gIm[A2] μ 0 −ωm2[1 + Cj (t)] −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

which contains the information of the mean value. Here �j = �j + 2gRe[Bj ].

[1] C. Huygens, OEuvres complet̀es de Christiaan Huygens (Mart-
inus Nijhoff, The Hague, 1893).

[2] Y. Xu, H. Wang, Y. Li, and B. Pei, Commun. Nonlinear Sci.
Num. Sim. 19, 3735 (2014).

[3] X. Wu, H. Wang, and H. Lu, Nonlinear Anal.-Real World App.
13, 1441 (2012).
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Rousseau, Phys. Rev. Lett. 97, 133601 (2006).

[68] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin,
Phys. Rev. Lett. 99, 093902 (2007).

022204-15

https://doi.org/10.1103/PhysRevE.93.062221
https://doi.org/10.1103/PhysRevE.93.062221
https://doi.org/10.1103/PhysRevE.93.062221
https://doi.org/10.1103/PhysRevE.93.062221
https://doi.org/10.1103/PhysRevA.86.013820
https://doi.org/10.1103/PhysRevA.86.013820
https://doi.org/10.1103/PhysRevA.86.013820
https://doi.org/10.1103/PhysRevA.86.013820
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.83.043804
https://doi.org/10.1103/PhysRevA.90.043825
https://doi.org/10.1103/PhysRevA.90.043825
https://doi.org/10.1103/PhysRevA.90.043825
https://doi.org/10.1103/PhysRevA.90.043825
https://doi.org/10.1088/0953-8984/25/14/142201
https://doi.org/10.1088/0953-8984/25/14/142201
https://doi.org/10.1088/0953-8984/25/14/142201
https://doi.org/10.1088/0953-8984/25/14/142201
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1088/0953-4075/47/4/045501
https://doi.org/10.1088/0953-4075/47/4/045501
https://doi.org/10.1088/0953-4075/47/4/045501
https://doi.org/10.1088/0953-4075/47/4/045501
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1016/j.cnsns.2008.01.019
https://doi.org/10.1016/j.cnsns.2008.01.019
https://doi.org/10.1016/j.cnsns.2008.01.019
https://doi.org/10.1016/j.cnsns.2008.01.019
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.103.100402
https://doi.org/10.1103/PhysRevLett.103.100402
https://doi.org/10.1103/PhysRevLett.103.100402
https://doi.org/10.1103/PhysRevLett.103.100402
https://doi.org/10.1103/PhysRevLett.107.123601
https://doi.org/10.1103/PhysRevLett.107.123601
https://doi.org/10.1103/PhysRevLett.107.123601
https://doi.org/10.1103/PhysRevLett.107.123601
https://doi.org/10.1016/S1049-250X(09)57002-4
https://doi.org/10.1016/S1049-250X(09)57002-4
https://doi.org/10.1016/S1049-250X(09)57002-4
https://doi.org/10.1016/S1049-250X(09)57002-4
https://doi.org/10.1103/PhysRevA.63.023812
https://doi.org/10.1103/PhysRevA.63.023812
https://doi.org/10.1103/PhysRevA.63.023812
https://doi.org/10.1103/PhysRevA.63.023812
https://doi.org/10.1103/PhysRevLett.103.213603
https://doi.org/10.1103/PhysRevLett.103.213603
https://doi.org/10.1103/PhysRevLett.103.213603
https://doi.org/10.1103/PhysRevLett.103.213603
https://doi.org/10.1103/PhysRevLett.112.110406
https://doi.org/10.1103/PhysRevLett.112.110406
https://doi.org/10.1103/PhysRevLett.112.110406
https://doi.org/10.1103/PhysRevLett.112.110406
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevA.89.053821
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1088/0305-4470/31/15/025
https://doi.org/10.1088/0305-4470/31/15/025
https://doi.org/10.1088/0305-4470/31/15/025
https://doi.org/10.1088/0305-4470/31/15/025
https://doi.org/10.1134/S1547477109070164
https://doi.org/10.1134/S1547477109070164
https://doi.org/10.1134/S1547477109070164
https://doi.org/10.1134/S1547477109070164
https://doi.org/10.1103/PhysRevA.72.032334
https://doi.org/10.1103/PhysRevA.72.032334
https://doi.org/10.1103/PhysRevA.72.032334
https://doi.org/10.1103/PhysRevA.72.032334
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1088/1367-2630/14/1/013011
https://doi.org/10.1088/1367-2630/14/1/013011
https://doi.org/10.1088/1367-2630/14/1/013011
https://doi.org/10.1088/1367-2630/14/1/013011
https://doi.org/10.1038/nature08061
https://doi.org/10.1038/nature08061
https://doi.org/10.1038/nature08061
https://doi.org/10.1038/nature08061
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1103/PhysRevLett.97.133601
https://doi.org/10.1103/PhysRevLett.97.133601
https://doi.org/10.1103/PhysRevLett.97.133601
https://doi.org/10.1103/PhysRevLett.97.133601
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902



