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Nonlinear diffusion in multicomponent liquid solutions
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Mutual diffusion in multicomponent liquids is studied. It is taken into consideration that the influence of
complex formation on the diffusion process may be substantial. The theory is applied to analyze mass transfer
in an acetone-chloroform solution. The molecular complex concentration was obtained from the analysis of
Fourier transform infrared spectra of this solution. Taking into account molecular complex formation allows one
to explain the experimental dependence of diffusion coefficients on the composition (components concentration).
The accuracy of experimental and theoretical data descriptions in the frame of our model is compared to the
accuracy for some other approaches.
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I. INTRODUCTION

Standard Fick laws [1] are usually used to describe exper-
imental results of mutual diffusion, i.e., transport of solute
from regions with high concentrations to low concentrations
in nonuniform solutions. In this way, the velocity of matter
transfer is determined with DF , the mutual diffusion (inter-
diffusion) coefficient. Numerous experimental data indicate
that in many solutions this coefficient DF is not constant
but sufficiently depends on the solute concentration (see, for
example, Refs. [2–4]).

Many methods have been developed for the theoretical
description of diffusion effects in liquid solutions by now (see,
for example, Refs. [2–18] and references therein). The Darken
equation [7] and its modifications [5,8,10] are widely used.
Also the Vignes equation [13] is the basis of many empirical
equations [5,14–16]. Fluctuation theories of diffusion arouse
interest due to attention paid to the random spatial distribution
of molecules [17,18]. The interconnection between mutual
diffusion and viscosity of solutions allows us to predict some
physical characteristics [12].

In some papers diffusion is considered a random walk
of particles through free positions (vacancies) (see, e.g.,
Refs. [3,19]). But the concept of “vacancy” is very difficult
to introduce in the multicomponent liquid mixture, in which
molecules have significantly different sizes. Besides that, many
liquids have low compressibility. This can be interpreted as an
absence (or a very small quantity) of free volume.

Another direction of diffusion theories’ development is
connected with the application of probability theory for
random walks of atoms in the nodes of a crystal lattice [20].
Note that in the framework of a two-component lattice gas
model new nonlinear diffusion effects can be found: the drag
effect, the formation of the drifting spatial structure, the effect
of “negative” mass transport, etc. [20–26].

But the results of the latter papers are not adapted for
the description of diffusion in liquid solutions. The reason
is that mutual diffusion cannot be separated from the process
of dissolving, and mixing of initial components is accompa-
nied by the energetic process (change of enthalpy, heating
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and cooling). New components can be formed as the result of
dissolution, and they are called “complexes” or “heteroasso-
ciates” [27]. In experiments [28–30] the average quantity of
such structural formations was large enough (for example, it
can exceed 50%), despite their instability.1

An essential step was made in Refs. [31–34],where the
hypothesis of the influence of solution structure on the
diffusion process was successfully realized. The impact
of association or complex formation on interdiffusion and
intradiffusion in multicomponent systems was investigated
in the frame of traditional thermodynamic theories [35–39].
Peculiarities, which complicate their practical applications,
include the necessity of taking into account (in some theories)
the concentration dependence of auxiliary functions, e.g.,
thermodynamic factor, intradiffusion coefficients of solution
components, etc.

The purpose of this work is the application of probability
theory to the description of a mutual diffusion process in a
liquid multicomponent solution with associates, or complex
generation. As an example of our theoretical application,
diffusion in an acetone-chloroform solution is analyzed.

II. NONLINEAR FLOW UNDER
NORMALIZATION CONDITIONS

It is known that in an ideal binary mixture, where interac-
tions between components are not taken into account, transport
of particles A and B is governed by a linear diffusion law [2,3].
The simplest model, which implies nonlinear flow behavior
(relative to concentration characteristics),2 must include more
than two types of particles (“particles” may include individual
molecules, associates, and complexes).

Hereinafter a mixture of three components A, B, and C

is considered. Diffusion takes place only along axis x. In
the frame of our model construction, all the particles are
located in planes xi (i = 0, ± 1, ± 2, ± 3, . . .). The distance
�L between all adjacent planes is small. In any plane the total

1The small lifetime of a molecular complex has to be compared
with the small time of free motion of individual molecules.

2In our theory, diffusion flow relating to the corresponding thermo-
dynamic force is considered in linear approximation.
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amount of particles, N0, is fixed (vacancies are not available).
If a particle A is located in the plane xi and a particle B

is located in the plane xi+1 (near the molecule A), then the
correlated process when A moves into the plane i + 1 and B

moves to the vacant place in plane i can occur. Therefore, this
process AB → BA is called the “exchange of positions.”

In fact, exchange of positions can be performed in a more
difficult way (displacement of several neighboring particles
in the closed loop). However, the flux density is determined
only by the difference between initial and final molecular
distributions and does not depend on the method of particle
transfer. The exchange of positions of particles of one type
is excluded from consideration because it does not result in
experimentally registered changes.3

We denote pab, pbc, and pac the probabilities of exchange of
the positions (per unit time) for the processes A ↔ B, B ↔ C,
and C ↔ A, respectively. The number of particles of type “s”
in the plane xi is denoted NS(xi,t). The probability to find
the particles with s1 �= s2 in the neighboring positions with the
coordinates (xi,yj ,zk), (xi+1,yj ,zk) will be proportional to the

product (NS1(xi ,t)
N0

)(NS2(xi+1,t)
N0

). In any case, the normalization
condition must be satisfied:

Na(xi,t) + Nb(xi,t) + Nc(xi,t) = N0. (1)

The particle flux is determined by the number of exchanges
A ↔ B, A ↔ C (per unit time) in the direction of the axis x

and equal to

J a
x (x,t) = 1

N2
0

{pab[Na(xi,t)N
b(xi+1,t)

−Nb(xi,t),N
a(xi+1,t)]+pac[Na(xi,t)N

c(xi+1,t)

−Nc(xi,t)N
a(xi+1,t)]}. (2)

If smooth spatial variations for functions NS(x) take place,
it can be spread into a Taylor series:

NS(xi+1) ∼= NS(xi) + ∂NS

∂x

∣∣∣∣
xi

�L (3)

(�L = xi+1 − xi). Substituting Eq. (3) in Eq. (2), we obtain
for the three-component case

J a
x (xi,t) =

(
pab�L

N2
0

)[
Na ∂Nb

∂x
− Nb ∂Na

∂x

]∣∣∣∣
xi

+
(

pac�l

N2
0

)[
Na ∂Nc

∂x
− Nc ∂Na

∂x

]∣∣∣∣
xi

. (4)

It is easy to generalize Eq. (4) for continuous distribution
of equal size particles, and then we obtain

Ja(r,t) =
∑

q

Q(a,q)[Na(r,t)∇Nq(r,t)

−Nq(r,t)∇Na(r,t)]. (5)

Here we introduce the following notations: a and q are
components of the system, Ja is the total flux of the particles

3This theory is oriented at macroscopic diffusion experiments,
for example, with optical registration of spatial distributions of
concentrations.

a, and the value Q(a,q) is determined by the speed of position
interchange for the substances (a,q). The flow (5) is a quadratic
function of the concentration. Therefore, diffusion has to be
classified as a second order nonlinear effect.

To generalize results above, it is necessary to take into
account the differences in sizes of the diffusing particles.
According to the principles of the phenomenological theo-
ries [40], the diffusion flux of the matter should be considered
as the averaged value over “physically infinitesimal volume.”
Following Ref. [40], we select a physically infinitesimal
volume4 V0(r) in the mixture (centered at the point r) and
define the volume fraction ϕn(r) as the relative portion of this
volume occupied by all molecules of the type n:

ϕn(r) = Vn(r)

V0(r)
,

(∑
n

ϕn(r,t) = 1

)
, (6)

where Vn(r) is the part of the volume V0(r) occupied by the
substance n.

The flow (5) was defined earlier as the number of particles
that transit through a unit area per unit time. We can replace
this flow by the ϕ stream. It is the volume of substance n which
is carried over a unit area per unit time. It is easy to check that
in this way the nonlinear diffusion flows can be written as
follows:

j i =
∑

j

bij [ϕi∇ϕj − ϕj∇ϕi]. (7)

Here the indices i and j denote the components of the liquid
mixture, ϕi is the volume fraction of the ith component, j i

is volume flow of the ith substance, and bij is the symmetric
matrix of position interchange coefficients (bij = bji), that can
be interpreted as “nonlinear diffusion coefficients.” Contrary
to the mutual diffusion coefficient DF the values of bij are
constant and do not depend on component concentration. Here
and below, the volume-fixed frame of reference is used.

The nonlinearity of flow similar to Eq. (7) appears in other
tasks. For example, it can be considered a generalization of
the mass transfer law for the model [41] that was created
for multicomponent photopolymers. Also the quadratic non-
linearity similar to Eq. (7) was met in the investigations of
impurity diffusion in cubic crystals [20–26] and in monolayers
of reagents on the surface of a catalyst [42,43].

Generally, the diffusion of liquid components has to be
described as a macroscopic phenomenon. So, all physical
quantities, related to mass transfer, have to be averaged
over physically infinitesimal volume. As a result, all other
equations could be formulated in terms of “partial volumes”
too. Besides Eq. (7), the following laws (generalization of
standard formulas [41,44]) can be used in investigation of
diffusion:

(a) the equations of continuity

∂ϕi

∂t
+ div j i = Si, (8)

4According to the definition of physically infinitesimal volume
(PIV), its sizes are much smaller compared to the precision of space
coordinate measuring (in diffusion experiment), but the PIV contains
a large number (N � 1) of particles.
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(b) and the conditions of conservation∑
i

j i = 0,
∑

i

Si = 0. (9)

Here Si is the function of sources, which depends on the
processes of i-component formation (decomposition).

For the case of the negligibly small influence of the
shrinkage and swelling phenomenon on the processes of
diffusive transport, we take into account the law of volume
conservation:5 ∑

i

ϕi = 1. (10)

Equations (7)–(10) are valid in the range 0 � ϕi � 1, (i =
1,2, . . .).

It is obvious that macroscopic diffusion flux of any
component must be accompanied by reverse flow of other
components in the case of volume conservation. Hence the
problem of macroscopic diffusion can be considered an analog
of two-body problems (taking into account two related or
interconnected flows). In the general case, the many-body
problem can be described by nonlinear equations [46]. And
it is not surprising that simultaneous consideration of two
correlated subsystems, “direct flow–reverse flow,” leads to
quadratic dependence in the equations of motion.

First of all, it can be checked that the nonlinear form of
the flow in Eq. (7) in the particular case does not contradict
the linear Fick law. Indeed, consider a mixture of two
noninteractive molecular liquids with the flow

j1 = b12[ϕ1∇ϕ2 − ϕ2∇ϕ1]. (11)

The condition of volume conservation ϕ1 + ϕ2 = 1 leads to

ϕ2 = 1 − ϕ1, ∇ϕ2 = −∇ϕ1. (12)

Substituting Eq. (12) into Eq. (11), we find the expression
for the volume flow:

j1 = −b12∇ϕ1. (13)

The diffusion coefficient in Eq. (13) is constant. The volume
flow j1 and molar flow J1 are interconnected by the following
relation:

j1 = V̄1 J1, (14)

where V̄1 is the molar volume of substance 1. Volume flow (13)
can be rewritten as

J1 = −DF ∇c1, (15)

where the coefficient DF = b12 is constant. Thus, in the case
of two noninteractive components the diffusion flow is a linear
function of concentration.

5Shrinkage and swelling effects can be taken into account if
an additional component (free space) is added. See, for example,
Ref. [45].

III. DIFFUSION IN LIQUID SOLUTION

Consider diffusion in the molecular solutions that are
formed by mixing two liquid substances A and B. The
theoretical description of this system is considered in the frame
of ideal associated solution model (IASM) [27,47]. This model
treats nonideal mixtures of associated components as ideal
mixtures of free molecules and molecular complexes [48–51].
Interaction between molecules of the original components can
lead to formation (with some probability) of complexes of the
AnBm type. Below we discuss the system with the following
interactions:

nA + mB → AnBm (formation of complex),

AnBm → nA + mB (dissociation of complex). (16)

(To simplify the calculations, the intermediate steps of reac-
tions are not considered.)

Within the framework of our model, this kind of mixture
consists of three components: A, B, and AnBm. Hereinafter
these components are denoted as 1, 2, and 3. The reactions (16)
determine the form of the functions Si (sources). In this case

S1 = β1ϕ3 − α1ϕ
n
1 ϕm

2 ,

S2 = β2ϕ3 − α2ϕ
n
1 ϕm

2 ,

S3 = −S1 − S2.

⎫⎬
⎭ (17)

The form of the functions (17) is similar to the description
of generation and decay processes for nonstable products of
chemical reactions [52]. Below, the reaction rates are assumed
to be rapid compared to diffusion so that chemical equilibrium
exists locally [31]. Then the approximation

Si
∼= 0 (18)

can be used in Eqs. (17). In other words, diffusion occurs
under conditions of a local chemical equilibrium. In this case,
the volume fraction of a complex component can be found
from Eqs. (17) and (18):

ϕ3
∼= Kϕϕn

1 (1 − ϕ1 − ϕ3)m
(

Kϕ = α1

β1
= α2

β2

)
. (19)

Below we take into account the following peculiarity. The
transport of molecules in the diffusion process occurs via two
mechanisms: (i) individually and (ii) as a part of the complex
AnBm. Therefore, the total flow of the matter “A” (measurable
in experiments) is defined as a linear combination,

j tot
1 = j1 + ᾱ1 j3

(
ᾱ1 = nV̄1

nV̄1 + mV̄2

)
, (20)

where α1 is the volume fraction of substance A in the complex
AnBm, and V̄1 and V̄2 are the molar volumes of components 1
and 2.

After substitution of Eq. (7) in Eq. (20) we have the
following relationship:

j tot
1 = b12[ϕ1∇ϕ2 − ϕ2∇ϕ1] + b13ᾱ2[ϕ1∇ϕ3 − ϕ3∇ϕ1]

+ b23ᾱ1[ϕ3∇ϕ2 − ϕ2∇ϕ3]. (21)

As we highlighted above, there are two states of substance
1 in the solution: free and bonded (in molecular complex
composition). Therefore, its total partial volume is

ϕtot
1 = ϕ1 + ᾱ1ϕ3. (22)
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Similarly, we can determine the total partial volume for the
second component, ϕtot

2 :

ϕtot
2 = ϕ2 + ᾱ2ϕ3

(
ᾱ2 = mV̄2

nV̄1 + mV̄2

)
. (23)

In this case the normalization condition is identically
satisfied:

ϕtot
1 + ϕtot

2 = 1 (ᾱ1 + ᾱ2 = 1). (24)

It is easy to verify the following assertion: the value ϕtot
1

completely determines all other functions of diffuse flows [i.e.,
ϕi = ϕi(ϕtot

1 ), i = 1,2,3] if conditions defined by Eq. (18) are
valid. Therefore, the total flux of substance 1 also can be
represented as the function of ϕtot

1 only:

j tot
1 = −Def

1

(
ϕtot

1

)∇ϕtot
1 . (25)

It is obvious that Eq. (25) has the same form as the first
Fick law of diffusion; however, it contains the generalized (ef-
fective) coefficient of diffusion, Def

1 . In fact, the “coefficient”
Def

1 is not constant but is a function which depends on the
“concentration” of interacting substances:

Def
1

(
ϕtot

1

) = w12
(
ϕtot

1

)
b12 + w13

(
ϕtot

1

)
b13 + w23

(
ϕtot

1

)
b23.

(26)

Here wij determines the relative contribution of the interac-
tions between different components {i,j} = {1,2,3} into the
effective (measured) diffusion coefficient. In the general case6

w12 = ϕ2
∂ϕ1

∂ϕtot
1

− ϕ1
∂ϕ2

∂ϕtot
1

,

w13 = ᾱ2

(
ϕ3

∂ϕ1

∂ϕtot
1

− ϕ1
∂ϕ3

∂ϕtot
1

)
,

w23 = ᾱ1

(
ϕ2

∂ϕ3

∂ϕtot
1

− ϕ3
∂ϕ2

∂ϕtot
1

)
. (27)

It is not difficult to verify that

w12 + w13 + w23 = 1. (28)

All functions wij in Eqs. (26) and (28) must be expressed
through ϕtot

1 .
The results obtained above [Eqs. (25)–(27)] describe

diffusion in a “binary” liquid solution with complex AnBm

generation in the process of mixing. The material parameters
of this system are Kϕ and bij . In Appendix A it is proved
that in the simplest case of solutions with 1:1 a complex these
parameters can be found from the experimentally measured
values on the borders of an area of measuring (in the case
of infinite dilution of component A or B) Def

1 (ϕtot
1 = 0), Def

1
(ϕtot

2 = 0), ∂Def
1 /∂ϕtot

1 (ϕtot
1 = 0), and ∂Def

1 /∂ϕtot
1 (ϕtot

2 = 0).
Therefore, parameters Kϕ and bij do not need to be considered
mathematically adjustable.

Unfortunately, precise experimental measuring of diffusion
coefficients under conditions ϕtot

1 = 0 or ϕtot
2 = 0 usually is

not realized (in practice they are found by extrapolation of the

6For an arbitrary type of third component, particularly for any n, m.

nearest points7). This is the reason why another way could
be more preferable. Indeed, the equilibrium constant Kϕ can
be determined from other experimental data (for example, by
vibrational spectroscopy or NMR techniques [53,54]). As a
rule, use of additional data leads to improvement of calculation.

IV. MOLECULAR COMPLEX FORMATION IN
ACETONE-CHLOROFORM MIXTURE

The presence of the C-H · · · O hydrogen bond in the
acetone-chloroform mixture causes the formation of the
molecular complex which consists of one acetone molecule
and one chloroform molecule. Equimolecular (1:1) complex
formation is indicated by inelastic neutron scattering [55],
low-Raman, far- [56], mid- [57], and near-infrared, and 1H
NMR [53] spectroscopies. On the other hand, the oxygen
atom in acetone contains two electron lone pairs, so in fact
two types of complexes may exist. The indirect evidence
of 1:2 complex existence is the slight asymmetry of excess
thermodynamic functions (excess Gibbs energy, enthalpy, and
entropy) [58,59]. Due to the small number of 1:2 complexes
fixed experimentally [54,60], hereinafter we consider only
equimolecular 1:1 complex formation.

Before using Eqs.(26) and (27), we need to obtain the
equilibrium constant Kϕ of complex formation which allows
determination of the volume fractions ϕ3. It can be obtained
from an infrared (IR) absorption spectroscopy, because it is
well known that IR spectra are very sensitive to any structural
changes which occur in the investigated system [61].

Fourier transform infrared (FTIR) absorption spectra, be-
tween 3750 and 6200 cm−1 (Fig. 1), were used to study in-
termolecular interactions between components of the acetone-
chloroform liquid solution. FTIR spectra were measured using
a Thermo Scientific Nicolet iS50 FTIR spectrometer with
maximum spectral resolution of 0.125 cm−1. Heating of the
sample almost did not occur during the measurements due to
the small value of the absorption coefficient at the excitation
frequency. The temperature of liquid samples was 25 ± 0.2 ◦C.
Chloroform and acetone with purity 99.9% were used in this
research. The concentration of components was changed from
0% to 100% (in vol %) with a step of 10%. Spectra recordings
were repeated 32 times for each sample. Thereafter the average
spectrum was calculated for every concentration and used in
further analysis.

Considering the liquid solution as multicomponent, which
contains unbonded (“pure”) and bonded (molecular complex)
species, the IR data matrix may be written as

D = CST + R. (29)

Here D is the measured IR absorption spectra matrix of
solution, its rows containing spectra measured at different
concentrations; C is the matrix of concentrations, its columns
containing concentration profiles of solution components; S is
the matrix, which contains spectral profiles of each solution
component; and R is the residuals matrix.

7In many diffusion experiments the minimal step of concentrations
is near 5–10 %.
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FIG. 1. FTIR absorption spectra of acetone-chloroform solutions between 3750 and 6200 cm−1; ϕtot
1 is the initial volume fraction of acetone

(before mixing).

The goal of multivariate curve resolution (MCR) techniques
is the determination of the matrices C and S using the
experimental data matrix D [62,63]. The basic principle of
MCR is to seek a bilinear model that gives the best fit to the
matrix D.

Use of the liquid solution structural model may simplify
greatly the decomposition of spectra matrix D [63]. The
concentration matrix C (in our case it contains volume
fractions) may be found by using a mass balance equation
at fixed value of Kϕ . The solution of Eq. (29) at fixed D may
be estimated in sense of least squares:

S = (CT C)−1CT D = C+D. (30)

Here C+ = (CT C)−1CT is Moure-Penrose pseudoinverse ma-
trix. By using Eqs. (29) and (30), the residuals matrix R may
be written as

R = D − CC+D. (31)

Matrix C depends on the equilibrium constant Kϕ only;
thus, matrix norm of R must be minimized for the estimation
of the equilibrium constant optimal value:

‖R‖ = ‖D − C(Kϕ)C+(Kϕ)D‖ → min, Kϕ > 0. (32)

The three-component model of the solution, which was
proposed for the description of mutual diffusion, was used
for decomposition of spectra matrix D. Using measured IR
absorbance data, solution of Eq. (32) gives the following
optimal value of the equilibrium constant:

Kopt
ϕ = 2.5 ± 0.2. (33)

With this value of equilibrium constant K
opt
ϕ we can

numerically solve Eq. (19) and calculate volume fractions of
mixture components ϕ3, ϕ2, and ϕ1 as a function of initial
volume ϕtot

1 . The results are shown in Fig. 2.
The complex fraction ϕ3 arises as the result of interaction

between molecules in the dissolution process and can occupy
in our case up to 30% of the total volume.

V. ANALYSIS OF DIFFUSION IN
ACETONE-CHLOROFORM MIXTURE

We applied the modified system of diffusion equations
(7)–(10) to analyze the mass transfer processes in a liquid
mixture of acetone (C3H6O, component 1) with chloroform
(CHCl3, component 2). These substances are completely
mutually soluble. The molar volumes of molecules

V̄1 = 74.00 ml/mol, V̄2 = 80.64 ml/mol, (34)

for acetone and chloroform, respectively (which are needed
for the calculation of ᾱ1 and ᾱ2), were found from Ref. [27].

Experimental data on diffusion in an acetone-chloroform
mixture were obtained in Refs. [64,65] at 25 ◦C. These data
have been restated to build the curve of the diffusion coefficient
D

expt
12 as a function of the acetone partial volume ϕtot

1 (Fig. 3).
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FIG. 2. Calculated volume fractions of mixture components. ϕtot
1

is the initial volume fraction of acetone (before mixing).
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FIG. 3. Concentration dependence of the effective diffusion
coefficient for the acetone-chloroform solution: points, experimental
data [64]; solid curve, theoretical calculations; ϕtot

1 , initial volume
fraction of acetone (before mixing).

It is known that the concentration dependence of the excess
enthalpy of mixing has a parabolic form with a minimum
when the component concentration ratio is 1:1 [58,66]. It
is an indirect evidence of equimolecular complex formation
(C = A + B). This conclusion is confirmed by many other
experimental results (see, for example, Refs. [53,55–57]). In
our case, such a complex formation process corresponds to the
following set of coefficients: n = 1, m = 1.

The concentration of components 1 and 2 after mixing can
be written as

ϕ1 = ϕtot
1 − ᾱ1ϕ3, ϕ2 = ϕtot

2 − ᾱ2ϕ3. (35)

In this case the equation for the volume fraction of the
component C ≡ [A1B1] can be obtained from Eq. (19):

ϕ3 = Kϕ

(
ϕtot

1 − ᾱ1ϕ3
)(

ϕtot
2 − ᾱ2ϕ3

)
, (36)

which is a quadratic form of ϕ3. The solution of Eq. (36) can
be found as

ϕ3(ϕtot
1 , ϕtot

2 ) =
{[

1 + Kϕ

(
ᾱ1ϕ

tot
2 + ᾱ2ϕ

tot
1

)] −
√[

1 + Kϕ

(
ᾱ1ϕ

tot
2 + ᾱ2ϕ

tot
1

)]2 − 4ᾱ1ᾱ2K
2
φϕtot

1 ϕtot
2

}
2ᾱ1ᾱ2Kϕ

. (37)

We can rewrite Eqs. (27) for the case of 1:1 complex
formation in the form

w12 = �(1 + ϕ3),

w13 = �Kϕᾱ2ϕ1(ϕ1 + ϕ3),

w23 = �Kϕᾱ1ϕ2(ϕ2 + ϕ3), (38)

where � = [1 + Kϕ(ᾱ1ϕ2 + ᾱ2ϕ1)]−1.
The explicit form for the concentration dependence of

functions wnm is obtained by use of Eqs. (35)–(37):

w12 = 1 + ϕ3

1 + Kϕ

(
ᾱ1ϕ

tot
2 + ᾱ2ϕ

tot
1

) − 2ᾱ1ᾱ2Kϕϕ3
,

w13 = Kϕᾱ2(ϕtot
1 − ᾱ1ϕ3)(ϕtot

1 + ᾱ2ϕ3)

1 + Kϕ

(
ᾱ1ϕ

tot
2 + ᾱ2ϕ

tot
1

) − 2ᾱ1ᾱ2Kϕϕ3
,

w23 = Kϕᾱ1(ϕtot
2 − ᾱ2ϕ3)(ϕtot

2 + ᾱ1ϕ3)

1 + Kϕ

(
ᾱ1ϕ

tot
2 + ᾱ2ϕ

tot
1

) − 2ᾱ1ᾱ2Kϕϕ3
. (39)

Experimental data D
expt
1 can be compared with the

theoretical dependence of Eqs. (26) and (29). Fitting of
bnm can be realized by minimization of the difference

|Dexpt
1 (ϕtot

1 ) − Dcalc
1 (ϕtot

1 )|2 by the least-squares method. It
leads to the following values of material parameters:

b12 = 3.86 × 10−9 m2/s,

b13 = 3.32 × 10−9 m2/s,

b23 = 1.28 × 10−9 m2/s. (40)

A graphical comparison of the theoretical results with the
experimental data is presented in Fig. 3. Good agreement
of theory and experiment (average relative deviation 1.4 %)

supports the assumption that the coefficients bij are really
constants (material parameters) and do not depend on concen-
trations.

Despite the low share of complexes (does not exceed 30%
of the volume), its influence on the diffusion is significant.
This is manifested in the nonlinear dependence of the diffusion
coefficient on the concentration of components.

VI. COMPARISON WITH OTHER APPROACHES

The mutual diffusion phenomenon has been investigated
since Fick proposed his equation [1], but there is no unique
theory for its description8 [4,5]. The Darken equation9 [7]
is one of the earliest equations which takes into account the
concentration dependence of the mutual diffusion coefficient.
First, it was proposed for binary metal alloys, but now some
modifications of it are used for description of diffusion in
liquid solutions as well.

Concentration dependencies of tracer diffusion coefficients
are needed for application of the Darken equation, but
sometimes they cannot be measured directly. In such cases
a modified Darken equation is formulated, in which mutual
diffusion coefficients at infinite dilution are used instead of
tracer diffusion coefficients [68]. The Vignes equation [13]
is another widely used equation; it is based on Eyring’s
kinetic theory and theoretically substantiated by Cullinan [69].
Darken and Vignes equations are the basis for many empirical

8For more details, see Appendix B.
9Sometimes it is called the Hartley-Crank equation (Hartley and

Crank derived a similar equation independently in Ref. [67]).
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TABLE I. Comparison of different approaches for acetone-chloroform solution.

Number of Number of
specific nonspecific

Version parametersa parametersb CDAFc ARDd (%)

Group 1 (measuring of auxiliary functions is needed)
Moggridge + NRTL [10,11] 0 3 2 × Np 2.2
Zhu et al. + NRTL [11] 0 3 2 × Np 2.8
Li et al. [8] 4 5 1 × Np 3.3

Group 2 (theories with adjustable nonspecific parameters)
UNIDIF [15] 2 6 0 1.5
Modified Darken + UNIQUAC [15] 2 7 0 1.9
Modified Darken + NRTL (version 2) [15] 2 3 0 2.1
Vignes + NRTL [15] 2 3 0 2.1
Vignes + UNIQUAC [15] 2 7 0 2.1
Medvedev and Shapiro [73] 0 8 0 1.4–7.4e

Group 3 (theories without adjustable nonspecific parameters)
Yan et al. + Wilson [70] 4 2 0 2.3
Yan et al. + NRTL [70] 4 3 0 4.2
Zhou et al. + NRTL [14] 2 3 0 5.5
Bosse and Bart + Wilson [16] 2 2 0 6.0
Zhou et al. + Wilson [14] 4 2 0 6.2
Modified Darken + Wilson [70] 2 2 0 17.0
Modified Darken + NRTL (version 1) [14] 2 3 0 17.0
Vignes + Wilson [14] 2 2 0 18.4
Obukhovsky et al. 3 1 0 1.4

aCoefficients of self-diffusion D0
1 and D0

2 and/or mutual diffusion at infinite dilution D0
12 and D0

21 (material constants).
bAny other parameters (from nondiffusion experiments).
cConcentration-dependent auxiliary function (number of functions ×Np , where Np is the number of experimental points). Tracer diffusion
coefficients D∗

i or viscosity of mixture, η, can be used as auxiliary functions. In this table, Np = 9.
dAverage relative deviation.
eARD depends on the chosen thermodynamic model and the way of the determination of penetration length Z.

equations [5,8,10–12,14–16]. Nowadays, most popular
modifications are based on the local composition con-
cept [8,12,14,70]. All these equations contain a thermody-
namic correction factor, but there is no unique theory for its
determination [71].

Hsu and Chan proposed the UNIDIF model [15], which
combines the lattice theory of liquids and absolute reac-
tion rate theory. Shapiro proposed the fluctuation theory
of diffusion [17] based on thermodynamics of irreversible
processes. The main idea of this approach is the fact that the
matrix of Onsager phenomenological coefficients is related
to the product of three matrices: kinetic (which accounts
for the rates of molecular motion), thermodynamic (which
is connected with the second order derivatives of the entropy),
and resistance (which accounts for the resistance to molecular
motion by other molecules) matrices. Determination of the
thermodynamic matrix requires knowledge of the equation of
state. Also it is difficult to determine the resistance matrix from
first principles [72]; thus, empirical formulas with variable
numbers of adjustable parameters are used [18,73].

Calculation of the concentration dependence of the mutual
diffusion coefficient D12(c1) requires information (e.g., tracer
diffusivities and activity coefficient) about the investigated
mixture. Such information can be obtained (1) directly
from diffusion coefficient data or (2) from other available
experimental data (for example, the concentration dependence

of the activity coefficient is often obtained from vapor-liquid
equilibrium data [68]). In some theories the concentration
dependence of accessory functions (tracer data and, viscosity)
is needed [8,10,11]. Thus, all theoretical descriptions of
the mutual diffusion coefficients mentioned above can be
separated into three groups (see Table I and Appendix B)
depending on the presence of auxiliary functions and specific
and nonspecific parameters.

The acetone-chloroform solution is a popular system for
diffusion theories. Below in Table I the results [8,10,11,14–
16,70,73] are processed and classified.

In Table I the average relative deviation (ARD),

ARD = 1

Np

Np∑
i=1

∣∣∣∣∣D
expt
i − Dcalc

i

D
expt
i

∣∣∣∣∣, (41)

was used to define the difference between experimental
and theoretical data. Values for ARD were taken from the
respective cited papers. For the main formulas of different
approaches see Appendix B.

Insertion of adjustable parameters into theoretical formulas
leads to decreasing of ARD. Thus, minimization of ARD can
be achieved by using three or four adjustable parameters (in
the formula of penetration length Z) in the fluctuation theory
of diffusion [73]. But there is no rigorous basis for the formula
of penetration length Z, and its choice is quite arbitrary.
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TABLE II. Some approaches to the description of the mutual diffusion coefficient.

Parameters of model

Approach Equation Specific Nonspecific CDPCa

Group 1 (measuring of auxiliary functions are needed)
Moggridge + NRTL [10,11] D12 = (x1D

∗
2 + x2D

∗
1 )
α̃ , α̃ ≈ 0.64; 
 = 
(τ12,τ21,ā; x1) τ12,τ21, ā D∗

1 (x1), D∗
2 (x1)

Zhu et al. + NRTL [11] D12 = (x11D
∗
2 + x22D

∗
1 )
α̃ , α̃ ≈ 0.64; 
 = 
(τ12,τ21,ā; x1) τ12,τ21, ā D∗

1 (x1), D∗
2 (x1)

Li et al. [8] D = (
φ22V̄

V̄2
D∗

1 + φ11V̄

V̄1
D∗

2

)

; 
 = 
(�12,�21; x1), D0

12, D
0
21, �12,�21, η(x1)

D∗
i = D0

i
ηi

η

( n0
i

1+(n0
i
−1)xi

)β̃
, i = 1,2 D0

1,D
0
2 η1, η2 β̃

n0
1 = ( η2D0

21
η1D0

1

)1/β̃
, n0

2 = ( η1D0
12

η2D0
2

)1/β̃

β̃ = 1/2

Group 2 (theories with adjustable nonspecific parameters)

UNIDIF [15]

ln D12 = x2 ln D0
12 + x1 ln D0

21 + 2
{
x1 ln x1

φ1
+ x2 ln x2

φ2

}
+2x1x2

{
φ1
x1

(
1 − λ1

λ2

) + ϕ2
x2

(
1 − λ2

λ1

)}
+{

x2q1[(1 − θ2
21) ln τ21 + (1 − θ2

22)τ12 ln τ12]

+x1q2[(1 − θ2
12) ln τ12 + (1 − θ2

11)τ21 ln τ21]
}

D0
12,D

0
21,

a12,a21

r1,r2

q1,q2

θji = θj τji∑
l θl τli

, θj = xj qj∑
l xl ql

, τji = exp
(− aji

T

)
,

φi = xiλi∑
l xlλl

, λi = (ri)
1/3, i = 1,2

Modified Darken D12 = (
D0

12x2 + D0
21x1

)

; 
 = 
(τ12,τ21,r1,r2,q1,q2,Nc; x1) D0

12,D
0
21 τ12, τ21, q1, q2, Nc

+ UNIQUAC [15,68] r1, r2,

Modified Darken D12 = (
D0

12x2 + D0
21x1

)

; 
 = 
(τ12,τ21,ā; x1) D0

12,D
0
21 τ12, τ21, ā

+ NRTL(version 2) [15,68]

Vignes + NRTL [13,15] D12 = (
D0

12

)x2
(
D0

21

)x1

; 
 = 
(τ12,τ21,ā; x1) D0

12,D
0
21 τ12, τ21, ā

Vignes + UNIQUAC [13,15] D12 = (
D0

12

)x2
(
D0

21

)x1

; 
 = 
(τ12,τ21,r1,r2,q1,q2,Nc; x1) D0

12,D
0
21 τ12, τ21,

r1, r2, q1,q2, Nc

Medvedev and Shapiro [73] D12 = LD
Mm

M1M2T

(
1

x1M2

∂ ln μ2
∂c2

+ 1
x2M1

∂ ln μ1
∂c1

)
, A, B1 a1, a2,

LD = GLT rG
T , LT r = 1

2

(
LT r + LT

T r

)
, B2, B12 b1, b2

LT r = 1
4 LKLT LR. LK,ij = δij

√
8RT

πMj
,

LT,ij = −fij , f = F −1 Fij = ∂2S

∂ci ∂cj
,

Fi,3 = F3,i = ∂2S

∂ci ∂U
, F3,3 = ∂2S

∂U2 ,

LR,ij = δijZ − ci
∂Zi

∂ci
, LR,i3 = −ci

∂Zi

∂U
,

Zi =
√

Mi

Mmix
A

(
1 − B1c1 − B2c2 − B12c1c2

c1+c2

)
, (i,j = 1,2)

Group 3 (theories without adjustable nonspecific parameters)

Yan et al. + Wilson [70] D12 = [
x2

(
φ21
D0

12
+ φ11

D0
1

) + x1

(
φ12
D0

21
+ φ22

D0
2

)]−1

; D0

12, D
0
21, �12, �21


 = 
(�12,�21; x1) D0
1,D

0
2

Yan et al. + NRTL [70] D12 =
[
x2

(
φ21
D0

12
+ φ11

D0
1

)
+ x1

(
φ12
D0

21
+ φ22

D0
2

)]−1

; D0

12, D
0
21, τ12, τ21, ā


 = 
(τ12,τ21,ā; x1) D0
1,D

0
2

Zhou et al. + NRTL [14] D12 = (
D0

12

)V̄ φ22/V̄2
(
D0

21

)V̄ φ11/V̄1

; 
 = 
(τ12,τ21,ā; x1) D0

12,D
0
21 τ12, τ21, ā

Zhou et al. + Wilson [14] D12 = (
D0

12

)V̄mφ22/V̄2
(
D0

21

)V̄mφ11/V̄1

; 
 = 
(�12,�21; x1) D0

12,D
0
21 �12,�21

Bosse and Bart + Wilson [16] D12 = (
D0

12

)x2
(
D0

21

)x1 e− GE

RT 
; GE = GE(�12,�21; x1); D0
12,D

0
21 �12, �21


 = 
(�12,�21; x1)

Modified Darken D12 = (
D0

12x2 + D0
21x1

)

; 
 = 
(�12,�21; x1) D0

12,D
0
21 �12, �21

+ Wilson [68,70]
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TABLE II. (Continued.)

Parameters of model

Approach Equation Specific Nonspecific CDPCa

Modified Darkenb D12 = (
D0

12x2 + D0
21x1

)

; 
 = 
(τ12,τ21,ā; x1) D0

12, D
0
21 τ12, τ21, ā

+NRTL (version 1)c [14,68]
Vignes + Wilson [13,14] D12 = (

D0
12

)x2
(
D0

21

)x1

; 
 = 
(�12,�21; x1) D0

12, D
0
21 �12, �21

aConcentration-dependent physical characteristic. Such functions are determined experimentally without theoretical description in correspond-
ing cited works.
bOriginal Darken equation is D12 = (D∗

1x2 + D∗
2x1)
. D∗

i is the tracer diffusivity of the ith component (it depends on the concentration of the
solution), but it is often replaced by a value at infinite dilution (which leads to the modified Darken equation).
cThe modified Darken + NRTL (version 1) model differs from the modified Darken + NRTL (version 2) model only by the way of extraction
of interaction parameters a12, a21 in the thermodynamic factor model. They may be regressed from mutual diffusion data (as in version 2) or
obtained from other experimental data (as in version 1).

As follows from Table I, our theory produces good results.
At the current stage of developing this model, the material
parameters b12, b13, and b23 cannot be determined from
independent data. But they can be obtained using diffusion
characteristics at infinite dilution (see Appendix A). Thereby,
there are no adjustable parameters in this model.

VII. CONCLUSIONS

The proposed approach can be applied to the description
of mutual diffusion in nonideal liquid solutions. Based on the
obtained results, we can conclude the following:

(a) Intermolecular interactions between mixture compo-
nents can be taken into account as a formation of molecular
complexes. Thus an initially binary (before mixing) solution
has to be modeled as a multicomponent system (three or more
components).

(b) For acetone-chloroform mixtures, the three-component
model can be successfully used to explain the specifics of the
coefficient of mutual diffusion.

(c) The concentrations of the complexes are needed to
explain the nonlinearity of diffusion. These values can be
obtained from other experiments (optical spectroscopy and
NMR) or calculated from experimental mutual diffusion data.

(d) The proposed theory could be generalized for other
multicomponent mixtures (two types of complexes or more).
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APPENDIX A

The case of the simplest complex (1:1) formation is
considered below. It corresponds to n = 1, m = 1 in Eq. (19).
Experimentally measured data for D

expt
1 and their derivatives

∂D
expt
1 /∂ϕtot

1 at the limiting points10 (ϕtot
1 = 0, or ϕtot

2 = 0) may
be used for determination of the unknown parameters b12, b13,

10Note that the volume conservation law in Eqs. (10) and (24) should
be kept.

b23, and Kϕ . The following system of four equations can found
from Eqs. (26) and (39):

B1 ≡ D
expt
12

(
ϕtot

1 = 0
) = b12 + (Kϕᾱ1) b23

1 + (Kϕᾱ1)
, (A1)

B2 ≡ D
expt
12 (ϕtot

2 = 0) = b12 + (Kϕᾱ2) b13

1 + (Kϕᾱ2)
, (A2)

B3 ≡ dD
expt
12

dϕtot
1

(
ϕtot

1 = 0
)

= +2 (Kϕᾱ1)(1 + Kϕ)
(b12 − b23)

(1 + (Kϕᾱ1))3
, (A3)

B4 ≡ dD
expt
12

dϕtot
1

(
ϕtot

2 = 0
)

= −2 (Kϕᾱ2)(1 + Kϕ)
(b12 − b13)

(1 + (Kϕᾱ2))3
. (A4)

The solution of Eqs. (A1) and (A2) allows the determination
of all the necessary parameters: bnm = bnm(B1,B2,B3,B4).
Thus, in this case, the theory which uses a three-component
model of the liquid solution does not have any adjustable
parameters. The problem of calculation accuracy is still
open, because a big step in concentration change (typical for
experimental conditions) may produce big uncertainty of some
coefficients (in particular, Kϕ).

To improve the precision of the calculation, data from
independent experiments11 can be used, as it was demonstrated
above for the case of acetone-chloroform solutions.

APPENDIX B

Table II represents some of the most widely used ap-
proaches for description of the concentration dependence of
the mutual diffusion coefficient in binary liquid mixtures.
Many of them require additional thermodynamic models for
determination of excess Gibbs energy GE and, thus, for
determination of the thermodynamic factor 
. These models
are represented in Table III. Classification in Table II was made
not only by the model of mutual diffusion used but also by

11Constant Kϕ can be obtained, for example, from NMR or optical
experiments.
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TABLE III. Some thermodynamic models of the solution.

Model Excess Gibbs energy, GE Parameters

Wilson [74] GE

RT
= − ∑k

i=1 xi ln
∑k

j=1 xj�ij , �12,�21

�ii = �jj = 1

NRTL [75] GE

RT
= ∑k

i=1 xi

(∑k
j=1 τjiGji xj∑k

l=1 Gli xl

)
, τ12,τ21,ā

Gij = exp(−āτij ) τ12,τ21,ā

UNIQUAC [76]
GE

RT
= ∑

i

[
xi ln φi

xi

−NC

2 xiqi ln φi

θi
− xiqi ln

(∑
k θj τji

)] τ12, τ21,

τii = τjj = 1, θi = xi qi

xi qi+xj qj
= xi qi

q
r1, r2, q1,

φi = xi ri
xi ri+xj rj

= xi ri
r

q2, NC = 10

the thermodynamic models used. Additionally, classification
of the required parameters of the model was made. All
parameters were divided in two parts: specific and nonspecific.
Specific parameters of the model can be determined from
diffusion experiments only. Nonspecific parameters may be
determined from other available experiments. Some models

need additional values of physical quantities which depend
on solution concentration (e.g., viscosity of mixture); such
types of quantities are aggregated in the CDPC column of
Table II.

The thermodynamic factor 
 is connected with excess
Gibbs energy in the following way:


 = 1 + x1x2

RT

(
∂2GE

∂x2
1

+ ∂2GE

∂x2
2

− 2
∂2GE

∂x1∂x2

)
. (B1)

Local composition models (Wilson, NRTL, UNIQUAC) are
widely used for description of the thermodynamic factor in
mutual diffusivity equations. These models do not have rigor-
ous theoretical backgrounds and are semiempirical [71], but
incorporation of more advanced thermodynamics models leads
to significant complication of expressions for the description of
mutual diffusion coefficients. Thermodynamic models, which
are regarded in Table II, are represented in Table III. Parameters
�12 and �21 (Wilson model) and τ12 and τ21 (NRTL and
UNIQUAC models) represent interaction between the mixture
components and are regressed from experimental data (for
more details see Ref. [71]).
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