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Grand-canonical solution of semiflexible self-avoiding trails on the Bethe lattice

W. G. Dantas*

Departamento de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda, RJ 27255-125, Brazil

Tiago J. Oliveira†

Departamento de Fı́sica, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
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We consider a model of semiflexible interacting self-avoiding trails (sISATs) on a lattice, where the walks
are constrained to visit each lattice edge at most once. Such models have been studied as an alternative to the
self-attracting self-avoiding walks (SASAWs) to investigate the collapse transition of polymers, with the attractive
interactions being on site as opposed to nearest-neighbor interactions in SASAWs. The grand-canonical version
of the sISAT model is solved on a four-coordinated Bethe lattice, and four phases appear: non-polymerized (NP),
regular polymerized (P), dense polymerized (DP), and anisotropic nematic (AN), the last one present in the phase
diagram only for sufficiently stiff chains. The last two phases are dense, in the sense that all lattice sites are
visited once in the AN phase and twice in the DP phase. In general, critical NP-P and DP-P transition surfaces
meet with a NP-DP coexistence surface at a line of bicritical points. The region in which the AN phase is stable
is limited by a discontinuous critical transition to the P phase, and we study this somewhat unusual transition in
some detail. In the limit of rods, where the chains are totally rigid, the P phase is absent and the three coexistence
lines (NP-AN, AN-DP, and NP-DP) meet at a triple point, which is the endpoint of the bicritical line.
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I. INTRODUCTION

In the most studied lattice model for the collapse transition
(also called the coil-globule transition) of polymers [1], the
chains are represented by self-avoiding walks, so that the bonds
of the chain are placed on lattice edges and the monomers
are located on the sites. An attractive interaction between
monomers on nearest-neighbor sites which are not linked
by bonds is added. The competition between the repulsive
excluded-volume interactions and the attractive interactions
leads to a change in the polymerization transition of self-
attracting self-avoiding walks (SASAWs) in a grand-canonical
formalism. Experimentally, as the temperature of a polymer
solution is lowered, the chain changes its configuration from
extended (coil) to collapsed (globule), as the temperature
crosses a particular value called the � point. For weak
attraction, the transition between a non-polymerized and a
polymerized phase in the monomer fugacity-temperature plane
is continuous, becoming discontinuous as the attraction is
increased, so that the collapse transition is a tricritical point in
this model. The nature of this transition was studied through a
mapping of the polymer model onto a ferromagnetic O(n)
model in the limit n → 0, due to de Gennes [2,3]. The
contributions to the high-temperature series expansion of the
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magnetic model are represented by self-avoiding walks on
the lattice. Mean-field tricritical exponents are found in three
dimensions, with logarithmic corrections.

In two dimensions, non-classical exponents are expected,
and a major result is due to Duplantier and Saleur (DS),
who managed to derive the exact tricritical exponents for
the SASAW model on a honeycomb lattice [4]. The proposal
of this model, which requires some fine tuning to allow it
to be solved, as a generic result for the collapse transition
has been discussed in the literature soon after its proposal
and leads to numerical results which seem to support its
robustness [5–9]. Another aspect of the problem are the phase
diagrams of the variety of models related to the problem of
the collapse transition. Even a slight change in the SASAW
model, if we assume that the attractive interactions are between
polymer bonds on opposite sides of elementary squares of the
square lattice, leads to a phase diagram which is different from
the one found when the interactions are between monomers
on nearest-neighbor (NN) sites. In this model, an additional
polymerized phase appears, besides the non-polymerized and
the regular polymerized phases, and the critical polymerization
line ends at a critical endpoint [10,11].

The self-avoidance constraint may also be changed, allow-
ing for more than one monomer at the same site but still
restricting the number of polymer bonds on each lattice edge
to at most one [12]. This generalization of SAWs, usually
called trails, has the distinctive feature that the interactions are
now between monomers at the same site. On two-dimensional
lattices, the trails may collide or cross at each site, and
in the original model, which we will call the interacting

2470-0045/2017/95(2)/022132(10) 022132-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.022132


DANTAS, OLIVEIRA, STILCK, AND PRELLBERG PHYSICAL REVIEW E 95, 022132 (2017)

self-avoiding trails (ISAT) model, the statistical weights of
both configurations are the same. If the trails are not allowed
to cross themselves, so that only collisions of the trails on sites
exist, we have a model called vertex interacting self-avoiding
walks (VISAWs), which was exactly solved by Blöte and
Nienhuis (BN) [13] and has critical exponents for the collapse
transition distinct from those found in the DS model. There
has been much discussion in the literature on which of the two
distinct sets of exponents (DS or BN) is the generic result for
the collapse transition of polymers. The BN exponents seem
to be difficult to find in simulations, since numerical results
for the exponents of the BN model seem to be closer to the DS
values [14]. The inclusion of stiffness in the VISAW model,
associating a bending energy to elementary bends of the chain,
leads to an even richer phase diagram [15], with the tricritical
points from both integrable models (DS and BN) residing on
a multicritical line. The robustness of the DS exponents has
also been discussed in a recent paper [16], where it has been
shown that, if crossings of the trails are included in the BN
model so that the lattice is no longer planar, the universality
class is changed.

Although of course the analytic results mentioned above
are of inestimable value, details of the phase diagrams of
the different models are not always easily found with these
techniques, and this is also true for simulations, in particular
in the grand-canonical formalism, where the nature of the
collapse transition was recognized to be tricritical by de
Gennes. It is, therefore, interesting to study these phase dia-
grams with approximate analytic tools, among them solutions
on hierarchical lattices such as the Bethe and the Husimi
lattice. Indeed, the ISAT model was recently studied on a
four-coordinated (q = 4) Husimi lattice built with squares and
on a four- and six-coordinated Bethe lattice [17]. Rich phase
diagrams were found in these studies, with the coil-globule
transition for four-coordinated cases (which are mean-field
approximations for the square lattice) being associated with
a bicritical point. Such behavior was confirmed in a recent
study by Pretti [18], where the ISAT model was generalized
by including an attractive interaction between NN monomers
on single occupied sites not linked by a polymer bond and
solved on Bethe and Husimi lattices with q = 4. The VISAW
model (when the crossings are forbidden and NN interactions
vanish), the SASAW (when crossings and collisions are not
allowed), the model by Wu and Bradley [19] (when collisions
and crossings have the same weight), and the simple ISAT
model (when the NN interaction vanishes) are recovered as
particular cases.

Given the relevance of the semiflexible extension of the
VISAW model [15] in the discussion about the differences
between the DS and the BN critical behavior for the collapse
transition, we investigate another generalization of trail models
by including an energy associated with elementary bends. This
is done here for Bethe lattice, with different statistical weights
associated with crossings and collisions, so that semiflexible
VISAW and semiflexible ISAT are obtained as particular cases
of our model. It is shown that the inclusion of semiflexibility
does not change the nature of the collapse transition when
compared with the flexible ISAT model studied before [17],
but an additional polymerized phase appears inside the regular
polymerized phase, which is both dense and nematic, since all

FIG. 1. Illustration of a self-avoiding trail on a square lattice.
Collisions and crossings are indicated by τc and τx , respectively,
while bends at sites with two incoming bonds are indicated by ω.

lattice sites are visited and all bonds are in the same direction.
For SAWs, the semiflexible and the self-attracting cases were
studied on the Bethe lattice [20]. When both effects are present,
studies on Bethe and Husimi lattices show the appearance of
a second polymerized phase, which is dense and anisotropic
in the sense that bonds in one particular direction are favored
[21,22]. The nature of the collapse transition is changed when
the stiffness is sufficiently high, so that in this case also the
appearance of a second polymerized phase signals the change
of the nature of the collapse transition.

The model we study is defined in more detail in Sec. II and
its solution on a Bethe lattice is presented in Sec. III. Final
discussions and the conclusion may be found in Sec. IV.

II. DEFINITION OF THE MODEL

We consider a semiflexible generalized self-avoiding trail
(sISAT) model. In this model, each lattice edge can be occupied
by at most one polymer bond, which has an activity z =
exp(βμ), where β = 1/(kBT ) and μ is the chemical potential
of a bond. The bonds connect monomers, which are placed on
the sites of the lattice. For a lattice with coordination number
q, each lattice site can be occupied by up to q/2 (for even
q) and (q − 1)/2 (for odd q) monomers. In two dimensions,
walks meeting at a lattice site may either cross or collide,
as is apparent in the generalized ISAT model on a square
lattice depicted in Fig. 1. In higher dimensions, however,
the distinction between collisions and crossings is no longer
clear. We will restrict our attention to lattices with q = 4 here,
whose solutions may be compared with results for the square
lattice. Statistical weights τx and τc will be associated for each
crossing and collision of the chains, respectively. For flexible
chains, when τx = τc we recover the classical ISAT model,
while in the case τx = 0 (crossings forbidden) the VISAW
model is obtained. To analyze the effects of the polymer
stiffness in such models, an additional weight ω = exp(−βεb)
is introduced, associated with one polymer bend. If the energy
εb associated with an elementary bend of the trails is positive
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FIG. 2. A configuration of three chains placed on a Cayley
tree with four generations of sites. The statistical weight of this
configuration is z16ω3τcτx .

(ω < 1), we say that the walks are semiflexible. This is also
illustrated in Fig. 1. The grand-canonical partition function of
the model is given by

Y =
∑

zNτNc

c τNx

x ωNb , (1)

where N , Nc, and Nx are the numbers of bonds, collisions,
and crossings in the system, respectively. Nb is the number
of bends in sites with a single monomer, since the bends
in double visited sites are accounted for in the weight τc,
so that τc = ω2τ ∗, where τ ∗ = exp(−βεc) is the weight of
the collision itself, i.e., of the on-site monomer-monomer
interaction at colliding sites, to which we associate an energy
εc. The monomer-monomer interaction of crossing sites is εx ,
so that τx = exp(−βεx). We will mostly restrict ourselves in
the discussions to εc = εx = ε [τx = τ ∗ = exp(−βε)], so that
the monomer-monomer interaction energy ε is the same for
crossings and collisions, but it is easy to consider εc �= εx , and
this will be done in part of the comments below. The sum in
Eq. (1) is over all allowed configurations of the walks on the
lattice we are considering, which will be the four-coordinated
Bethe lattice here.

III. SOLUTION ON BETHE LATTICE

We solve the model on a four-coordinated Bethe lattice,
which corresponds to the core of a Cayley tree, as shown in
Fig. 2. The extremal monomers of each chain are placed on the
surface of the tree. One possible configuration of three chains
on a Cayley tree with four generations of sites is shown in
Fig. 2.

To solve the model on the Bethe lattice we consider
subtrees, defining partial partition functions (PPFs) for them
for a fixed configuration of the root edge [23]. For the
Bethe lattice, usually only two root configurations are needed,
corresponding to the possibilities of empty or occupied (by
chain bonds) root edges. However, as discussed above, in the
semiflexible case one may expect the appearance of anisotropic
phases, which display orientational (nematic) ordering, so that
bonds in one or more directions are favored. The study of

models which present nematic ordering on such hierarchical
lattices presents some difficulties, particularly for q > 4. One
way to avoid them is to solve these models on other treelike
lattices for which the exact solution is the Bethe approximation
on regular lattices with the same coordination number. One
such lattice is the random locally treelike layered (RLTL)
lattice introduced by Dhar, Rajesh, and Stilck [24] to study
nematic ordering of monodispersed rigid rods. Here we will
follow a simpler option, assuming that, at each site of the q =
4 Bethe lattice, two incoming bonds are in one direction and the
two remaining ones are in a perpendicular direction. Actually,
one should keep in mind that in the thermodynamic limit
this lattice is effectively infinite dimensional, as was shown
by Baxter [23]. Thus, for example, to correctly measure the
Euclidean distance between two sites on an even-coordinated
Bethe lattice, one may embed it in a hypercubic lattice whose
dimension increases with the number of generations [25].
Therefore, we will define partial partition functions for four
root configurations: g0,1 for a root edge in direction 1 not
occupied by a bond, g0,2 for a empty root edge in direction
2, and g1,1 and g1,2 for subtrees with occupied root edges in
directions 1 and 2, respectively.

We may now obtain recursion relations for the PPFs
of a subtree with an additional generation, considering the
operation of attaching a new root site and edge to three subtrees
of the preceding generation. The results are

g′
0,1 = g0,1g

2
0,2 + g0,1g

2
1,2 + 2ωg1,1g1,2g0,2, (2a)

g′
0,2 = g2

0,1g0,2 + g2
1,1g0,2 + 2ωg0,1g1,1g1,2, (2b)

g′
1,1 = z1

[
g1,1g

2
0,2 + 2ωg0,1g0,2g1,2 + τg1,1g

2
1,2

]
, (2c)

g′
1,2 = z2

[
g2

0,1g1,2 + 2ωg0,1g1,1g0,2 + τg2
1,1g1,2

]
, (2d)

where τ ≡ τx + 2τc is the only combination of the weights
of double occupied sites that appears in the Bethe lattice
solution; this will change if longer range correlations are
taken into account, such as on the Husimi lattice. We note
that we include the possibility of bonds in the two directions
having different activities, although we will discuss the
thermodynamic behavior of the model only for z1 = z2 = z.

Here, gi,j and g′
i,j are PPFs of subtrees with M and M+1

generations, respectively. Usually, the PPFs diverge in the
thermodynamic limit (when M → ∞). Thus, it is suitable
to define the ratios

R1 = g1,1

g0,1
, (3a)

R2 = g1,2

g0,2
, (3b)

which should remain finite for non-dense phases, where a finite
fraction of the lattice sites is empty. The recursion relations
for these ratios are

R′
1 = z1

R1 + 2ωR2 + τR1R
2
2

1 + R2
2 + 2ωR1R2

, (4a)

R′
2 = z2

R2 + 2ωR1 + τR2
1R2

1 + R2
1 + 2ωR1R2

. (4b)
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We find four physical fixed points for these recursion
relations when z1 = z2 = z, which are stable in distinct regions
of the parameter space (z,ω,τ ). They are

(1) A non-polymerized (NP) phase: R1 = 0, R2 = 0.
(2) A regular polymerized (P) phase: R1 = R2 �= 0 and

finite.
(3) A dense polymerized (DP) phase: R1 = R2 → ∞.
(4) A dense anisotropic and nematic (AN) phase: R1 → ∞

and R2 → 0 or R1 → 0 and R2 → ∞.
In the dense phases, the edges corresponding to the direction

of the ratio that diverges are all occupied by bonds. It is useful
to define the reciprocal ratios Si = 1/Ri to study the fixed
points which are associated with these phases. For the DP
phase we may rewrite the recursion relation (4) as

S ′
1 = 1

z

S1S
2
2 + S1 + 2ωS2

S2
2 + 2ωS1S2 + τ

, (5a)

S ′
2 = 1

z

S2
1S2 + S2 + 2ωS1

S2
1 + 2ωS1S2 + τ

. (5b)

So that the DP fixed point is now located at the origin
S1 = 0, S2 = 0. For the anisotropic AN phase, there are two
equivalent fixed points where the chains occupy bonds in one
of the two directions. If we consider the fixed point with bonds
in the 1 direction, the recursion relations may be written in
terms of the variables S1 and R2, so that the fixed point again
is located at the origin. The result is

S ′
1 = 1

z

S1 + S1R
2
2 + 2ωR2

1 + 2ωS1R2 + τR2
2

, (6a)

R′
2 = z

S2
1R2 + 2ωS1 + τR2

1 + S2
1 + 2ωS1R2

. (6b)

We notice that the product P = R1R2 attains a finite value
at the AN fixed point, given by

P = z2τ − 1 +
√

(z2τ − 1)2 + 16z2ω2

4ω
. (7)

The region of the parameter space where each fixed point
is stable may be found by studying the eigenvalues of the
Jacobian of the recursion relations:

Ji,j = ∂Q′
i

∂Qj

, (8)

where the Q are the appropriate ratios in each case. In the NP
fixed point R1 = R2 = 0, the secular equation of the recursion
relation (4) is

(z − λ)2 − 4z2ω2 = 0, (9)

so that this fixed point is stable for

z � 1/(1 + 2ω). (10)

The secular equation associated with the DP fixed point S1 =
S2 = 0 is

(
1

zτ
− λ

)2

−
(

2ω

zτ

)2

= 0, (11)

and thus the region where this phase is stable will be

τ � 1 + 2ω

z
. (12)

The secular equation for the AN fixed point S1 = 0, R1 = 0 is

λ2 −
(

1

z
+ zτ

)
λ + τ − 4ω2 = 0. (13)

From which it follows that this fixed point is stable if

τ � 1

z
− 4ω2

z − 1
. (14)

Since τ (as well as z and ω) are non-negative, the AN phase
is stable for allowed values of τ if z � 1/(1 − 4ω2), so that it
exists only when ω < 1/2. This is expected since the chains
should be sufficiently stiff to generate nematic order.

For the isotropic polymerized fixed point P, where R1 =
R2 = R, the elements of the Jacobian are J1,1 = J2,2 = A and
J1,2 = J2,1 = B, with

A = z + (τz − 2ω)R2

1 + (1 + 2ω)R2
, (15a)

B = 2
ωz + (τz − 1 − ω)R2

1 + (1 + 2ω)R2
, (15b)

where the squared ratio of the PPFs is given by

R2 = (1 + 2ω)z − 1

1 + 2ω − zτ
, (16)

and thus the stability condition for this fixed point will be

A + B � 1, (17a)

A − B � 1. (17b)

We find that this condition is obeyed in the region of
the parameter space between the surfaces z = 1/(1 + 2ω),
zτ = 1 + 2ω, and τ = 1/z − 4ω2/(z − 1), which correspond
to the stability limits of the NP, DP, and AN fixed points,
respectively. Note that τAN → τDP when ω → 0, so that the
P phase disappears in this limit. As will be shown below,
although the order parameter is discontinuous at the P-AN
transition, the two stability limits meet at the transition surface.
For ω > 0, the two critical surfaces NP-P and DP-P meet at a
bicritical line, located at

z = 1

1 + 2ω
, (18a)

τ = (1 + 2ω)2. (18b)

Before proceeding, we discuss the possibility of regular
polymerized phases with nematic order, with distinct and finite
ratios in both directions. Summing and subtracting the fixed-
point equations [R′

i = Ri in Eqs. (4)] we obtain

(R1 + R2)[(2ω − zτ + 1)P − z(1 + 2ω) + 1] = 0, (19a)

(R1 − R2)[(2ω + zτ − 1)P − z(1 − 2ω) + 1] = 0, (19b)

where we recall that P = R1R2. If the phase is polymerized
and nematic, the second factors of both equations have to
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vanish. This leads to

P = z − 1

2ω
, (20a)

P = 2ωz

1 − zτ
. (20b)

We notice that the conditions z > 1 and τz < 1 must be
satisfied, and also that the three parameters of the model are
not independent in the nematic phase with finite ratios, since
they are related by the equation

z − 1

2ω
= 2ωz

1 − zτ
, (21)

which happens to be equivalent to the stability limit of the
AN phase above, Eq. (14). Thus, on this surface of the
parameter space, we have a continuous set of marginally
stable (with λ = 1) fixed points P = const., which includes
the regular polymerized fixed point R1 = R2 and the AN fixed
point R1 → ∞, R2 → 0. Therefore, we have a discontinuous
transition between these two phases, but the transition surface
is not between two spinodal surfaces of the two phases
which coexist. Incidentally, we notice that the value of the
product of ratios in the AN phase [Eq. (7)] reduces to
Eq. (20b) on the stability limit of this phase. This rather
unusual feature of the AN-P transition, which is critical but
has a discontinuous order parameter, has been discussed in
the literature before. One simple situation of this kind is
the one-dimensional Ising model with interactions decaying
with the distance between spins as 1/r2 [26]. At zero field,
in this model a discontinuous magnetization is found at
the critical point. The one-dimensional Ising model with
nearest-neighbor interactions has also been studied via exact
renormalization-group transformations by Nelson and Fisher
[27], and, although the phase transition there is degenerate
since it happens at zero temperature, it may also be interpreted
as a critical discontinuous transition. The possibility of such
transitions in the framework of the renormalization group was
discussed in general by Fisher and Berker [28]. This unusual
critical behavior was also found in the stationary behavior of
non-equilibrium models associated with the Ising model and
in the threshold contact process [29].

The partition function of the model on the whole Cayley
tree is obtained by considering the operation of connecting
four subtrees to the central site. The result is

Y = (g0,1g0,2)2 + (g1,1g0,2)2 + (g0,1g1,2)2

+ 4ωg1,1g0,1g1,2g0,2 + τ (g1,1g1,2)2, (22)

where the first term corresponds to the configuration with
no bond incident on the central site, the next three have two
incident bonds and in the last all four edges are occupied. This
expression may also be written as Y = (g0,1g0,2)2y, with

y = 1 + R2
1 + R2

2 + 4ωR1R2 + τ (R1R2)2. (23)

The densities of bonds in both directions, and bends (in non-
colliding sites), collisions and crossings at the central site are
given respectively by

ρz,1 = R2
1 + 2ωR1R2 + τR2

1R
2
2

y
, (24)

ρz,2 = R2
2 + 2ωR1R2 + τR2

1R
2
2

y
, (25)

ρω = 4ωR1R2

y
, (26)

ρc = 2τcR
2
1R

2
2

y
, (27)

ρx = τxR
2
1R

2
2

y
. (28)

As discussed before, the total density of bends is ρb =
ρω + 2ρc. In the NP phase all densities vanish. In the AN
phase with R1 → ∞ and R2 → 0, ρz,1 = 1 and all other
densities vanish. In the DP phase, ρz,1 = ρz,2 = 1, ρω =
0, ρc = 2τx/(2τz + τx), and ρx = τx/(2τc + τx). Finally, in
the P phase, ρz,1 = ρz,2 = [z(1 + 2ω) − 1]/[2z(1 + 2ω) −
1 − τz2], ρω = 4ωR2/y, ρc = 2τcR

4/y, and ρx = τxR
4/y,

where the ratio R is given by Eq. (16).
The bulk free energy per site on the Bethe lattice, which

differs from the one which follows from the partition function
Eq. (22) by the contribution of the surface of the Cayley tree,
may be found following an ansatz by Gujrati [30]. The result
is

φb

kBT
= − lim

M→∞
1

2
ln

YM+1

Y 3
M

. (29)

From the recursion relations (2) we have

φb

kBT
= −1

2
ln

Y ′

Y 3
, (30)

where Y ′ is the partition function calculated with the PPFs
of subtrees with an additional generation with respect to the
unprimed PPFs and the thermodynamic limit is implicit. In
the NP fixed point, g0,1 and g0,2 are dominant over the other
terms in the partition function Eq. (22), so that we may rewrite
Eq. (30) as

φ
(NP)
b = −kBT

2
ln

(g′
0,1)2(g′

0,2)2

[
g2

0,1g
2
0,2

]3 = 0, (31)

where we have used the recursion relations in Eqs. (2). This
result is consistent with the fact that this phase corresponds to
an empty lattice. In the DP phase, the last term of the partition
function dominates over the others, so that

φ
(DP)
b = −kBT

2
ln

τ (g′
1,1)2(g′

1,2)2

(
τg2

1,1g
2
1,2

)3 = −kBT ln(z2τ )

= ε − 2μ − kBT ln[1 + exp(−2βεB )], (32)

where we recall that, in this phase, four bonds are incident
on each site. In the AN phase, supposing that the bonds are
in the 1 direction, the second term of the partition function
dominates, so that

φ
(AN)
b = −kBT

2
ln

(g′
1,1)2(g′

0,2)2

(
g2

1,1g
2
0,2

)3 = −kBT ln z = −μ, (33)

and again this confirms that in this phase each site has two
bonds in direction 1 incident on it. Finally, in the regular
polymerized phase P, where R1 = R2 = R, we may rewrite
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FIG. 3. Phase diagrams for (a) ω = 0.75, (b) ω = 0.25, (c) ω = 0.1, and (d) ω = 0.0. Regular continuous transitions are shown as solid
lines, discontinuous transitions are represented as dashed lines, and the dash-dotted line corresponds to the critical discontinuous transitions.
The dot in panel (d) is the endpoint of the bicritical line, where the three discontinuous transition lines meet.

Eq. (30) as

φ
(P)
b = −kBT

2
ln

(g′
0,1)2(g′

0,2)2

(g0,1g0,2)6y2

= −kBT ln
[τ − (1 + 2ω)2]z2

1 − 2(1 + 2ω)z + τz2
. (34)

A. Phase diagrams

Beyond the critical surfaces (continuous for the NP-P and
P-DP transitions and discontinuous for the P-AN transition),
we note that the NP and DP phases coexist in the region z <

1/(1 + 2ω) and τ > (1 + 2ω)/z. The discontinuous NP-DP
transition is located at the surface where the bulk free energies
per site of the two phases are equal and, from Eqs. (31) and
(32), we find it at τ = 1/z2. This surface ends at the bicritical
line [Eqs. (18)]. As expected, at all other transition surfaces,
the respective bulk free energies of the involved phases are
also equal.

As discussed above, for ω � 1/2 the AN phase is not
present in the phase diagrams; see an example in Fig. 3(a)
for ω = 0.75, which is qualitatively similar to the one
obtained in the flexible case (ω = 1) [17]. For ω < 1/2,
the thermodynamic behavior is still the same, except for the
presence of the AN phase, as well as the critical discontinuous
P-AN surface. Diagrams for ω = 0.25 and ω = 0.1 are shown
in Figs. 3(b) and 3(c), respectively, where one sees that by

decreasing ω the region occupied by the P phase decreases,
while that by the AN phase increases.

Indeed, in the limit of rigid trails ω → 0 (εb → ∞), only
the two dense phases appear, besides the NP phase, since
the P phase between them is absent. The roots of the secular
equation related to the AN phase [Eq. (13)] are 1/z and τxz

in this case, so that the stability limit of this phase for z > 1
is τx = 1/z, which coincides with the stability limit of the DP
phase [Eq. (12)] (since there are no bends, τ = τx). Also, the
stability limits of the AN and NP phases meet at z = 1. As
always, the NP and the DP phases coexist on the line τx =
1/z2. The three transition lines meet at z = τx = 1, as may
be seen in Eqs. (18). As ω → 0, at the discontinuous AN-NP
transition line, located at z = 1, the NP-P critical surface and
the P-AN discontinuous critical surface meet, while the DP-P
critical surface and the P-AN discontinuous critical surface
meet at the DP-AN discontinuous transition line, located at
τx = 1/z. The phase diagram in this limit is shown in Fig. 3(d).
Actually, it is quite simple to obtain the free energy of the
model on the square lattice in this limit of rods, and the same
phase diagram is obtained. This calculation is presented in the
appendix.

B. Densities

In this section, we investigate the behavior of the densities at
the different transitions. We start by noting that the total density
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of bonds ρ = (ρz,1 + ρz,2)/2 assumes the values: ρ = 0 in the
NP phase, ρ = 1 in the DP phase, ρ = 1/2 in the AN phase,
and 0 < ρ < 1 in the P phase. It may be useful to recall that
the order parameter of the polymerization transition is actually
m = ρ1/2, as is shown by the mapping of the problem onto the
magnetic n-vector model in the limit n → 0 [31]. Moreover,
we may define a nematic order parameter as

Q = ρz,1 − ρz,2 = R2
1 − R2

2

1 + R2
1 + R2

2 + 4ωR1R2 + τR2
1R

2
2

,

(35)

which is |Q| = 1 in the AN phase and Q = 0 otherwise,
indicating that any transition to the AN phase is discontinuous.
Indeed, this is confirmed in Fig. 4, which shows the variation
of ρ with z, for τ = 0.5 and several values of ω. Close to
the NP-P transition we have ρ ≈ (z − zc), consistent with a
mean-field exponent β = 1/2 for the order parameter.

Along the P-AN transition surface, we have ρ(P) = (z −
1)/(z − 1 + 2ωz) for the P phase, which increases with z, from
ρ = 2ω/(1 + 2ω) [at z = 1/(1 − 4ω2)] to ρ = 1/(1 + 2ω)
(for z → ∞). Between these limits, there exists a line, given by
z = 1/(1 − 2ω), where ρ is continuous (i.e., ρ(P) = ρ(AN) =
1/2), but Q (and so, the transition) is still discontinuous. Still
on the P-AN critical surface, the infinite set of marginally sta-
ble solutions R1R2 = const. have densities ρ1 = R2

1/(z + R2
1)

and ρ2 = (z − 1)2/[(z − 1)2 + 4ω2zR1]. Thereby, for fixed ω

and z, ρ1 increases (ρ2 decreases) from 0 to 1 (from 1 to 0)
when R1 changes from 0 to ∞. In both limits, we recover the
AN result and, when ρ1 = ρ2 the P phase is obtained. We note
that, in this phase, ρ �= 1/2 for all values of ω, z, and R1,
except at the line z = 1/(1 − 2ω), where ρ = 1/2 regardless
the value of R1.

C. Nematic susceptibility

Let us discuss in some more detail the AN-P transition by
studying the behavior of the appropriate susceptibility close to
it. Given the activities z1 and z2 of bonds in each direction, we
may define

z = z1 + z2

2
(36)

and

z̄ = z1 − z2

2
. (37)

The activity z̄ is the appropriate field-like variable conjugated
to the nematic order parameter, so that we define the nematic
susceptibility as

χN =
(

∂Q

∂z̄

)
z,ω,τ

, (38)

where the nematic order parameter Q is defined in Eq. (35).
To obtain an expression for χN in the P phase, we start with
the fixed-point equations which follow from the recursion
relations (4), remembering that z1 = z + z̄ and z2 = z − z̄.
Differentiating these equations with respect to z̄, we obtain

0 1 2 3z
0.0

0.2

0.4

0.6

0.8

1.0

ρ

DP

NP

P

(a)

0 1 2 3z
0.0

0.2

0.4

0.6

0.8

1.0

ρ

DP

NP
P

(b)

P

AN

0 1 2 3z
0.0

0.2

0.4

0.6

0.8

1.0

ρ

DP

NP

(c)

AN

FIG. 4. Total densities of bonds as functions of z for τ = 0.5 and
(a) ω = 0.25, (b) ω = 0.1, and (c) ω = 0.0.

a system of linear equations for the derivatives of the ratios,
whose solution is (for z̄ = 0)

(
∂R1

∂z̄

)
z,ω,τ

= F (R1,R2; z,ω,τ )

D(R1,R2; z,ω,τ )
, (39a)

(
∂R2

∂z̄

)
z,ω,τ

= −F (R2,R1; z,ω,τ )

D(R2,R1; z,ω,τ )
, (39b)

022132-7



DANTAS, OLIVEIRA, STILCK, AND PRELLBERG PHYSICAL REVIEW E 95, 022132 (2017)

where we have

F (R1,R2; z,ω,τ ) = (1 − z − 4ω2z)R1 + 2ω(1 − 2z)R2 + (1 + 4ω2 − τz)R3
1 + 4ω(3 − 2τz)R2

1R2

+ (2 + τ + 8ω2 − 3τz)R1R
2
2 + 3τ (1 − τz)R3

1R
2
2 + 4τωR2

1R
3
2 + 2τωR4

1R2, (40)

D(R1,R2; z,ω,τ ) = 1 + z2 − 2z(1 + 2ω2z) + [4ω2z + (1 − τz)(1 − z)]
(
R2

1 + R2
2

)
+ 8ω(1 − τz2)R1R2 + 3[4ω2 − (1 − τz)2]R2

1R
2
2 . (41)

Now we may obtain an expression for the susceptibility as
a function of the parameters z, τ , and ω, as well as of the
ratios R1 and R2 and their derivatives with respect to z̄. The
expression is too long to be given here, but if we particularize it
to the P phase, where R1 = R2 = R, with R given by Eq. (16),
it simplifies to

χN = 2(1 + 2ω − τz)(1 − z − 2ωz)

[1 − 2(1 + 2ω)z + τz2][1 − (1 + τ − 4ω2)z + τz2]
.

(42)

At the P-AN transition τcritical = 1/z − 4ω2/(z − 1), as ex-
pected the denominator in Eq. (42) vanishes, and thus we may
write this equation as

χN = 2(1 + 2ω − τz)(1 − z − 2ωz)

z(z − 1)[1 − 2(1 + 2ω)z + τz2](τ − τcritical)
. (43)

We thus conclude that, in agreement with the findings of
Fisher and Berker [28] for discontinuous critical transitions,
the transition from the regular polymerized to the nematic
phase is characterized by the critical exponents β = 0, since
the nematic order parameter is discontinuous, and γ = 1, as is
clear in Eq. (43). Of course, the divergence may also be seen if
we cross the critical line in another direction, such as parallel
to the axis which represents the bond activity z, as long as we
really cross it and do not touch the critical line tangentially. In
Fig. 5 some of these curves are shown close to the transition
activity.

1 1.1 1.2 1.3 1.4
z

0

10

20

30

40

50

χ N

FIG. 5. Susceptibility χN in the P phase as a function of the bond
activity z for τ = 0.1, close to the P-AN transition. The curves, from
left to right, correspond to ω = 0.15 (blue), ω = 0.20 (red), and
ω = 0.25 (black). Dashed lines indicate the corresponding critical
activities.

IV. FINAL DISCUSSIONS AND CONCLUSION

Semiflexible trails on a Bethe lattice with coordination
number equal to four show a very rich phase diagram in the
parameter space defined by the activity of a bond (z), the
statistical weights of a crossing and a collision (τc and τx), and
the statistical weight of an elementary bend in the trail (ω).
For sufficiently flexible chains (ω > 1/2) the phase diagrams
are qualitatively similar to the one found in the flexible case
(ω = 1), studied in Ref. [17], with non-polymerized (NP),
regular polymerized (P), and dense polymerized (DP) phases
meeting at a bicritical point. When the Boltzmann factor of
bends is smaller than 1/2, an additional polymerized phase
appears inside the P phase. In this phase all lattice sites are
visited by the trails and all bonds are in one of the two possible
directions, thus characterizing it as anisotropic and nematic
(AN). The nature of the P-AN transition is quite unusual: while
the nematic order parameter is discontinuous, it also has a
critical nature, characterized by the fact that the stability limits
of both phases coincide with the transition line. This type of
criticality was studied in the framework of the renormalization
group by Fisher and Berker [28], and for the present case
we have verified their result that the susceptibility critical
exponent γ should be equal to 1. In the limit of rigid chains
ω = 0 the P phase is no longer stable, and three coexistence
lines (AN-NP, AN-DP, and NP-DP) meet at a triple point which
is the endpoint of the bicritical line.

Some features of the results presented here may be due to
the particular lattice on which the model is solved. On the
Bethe lattice, since there are no closed paths, any collision
may be replaced by a crossing and vice versa, so that the two
statistical weights associated with these configurations only
appear in the combination τx + 2τc; this should no longer be
true on a lattice with closed paths. Also, the phases DP and AN
are totally frozen in the Bethe lattice solution: all lattice edges
are occupied by bonds in the former, the same happening for
all edges in one of the two directions in the latter. This also
should change on lattices which are closer to regular ones. It
is thus of interest to study this problem on the Husimi lattice,
where small loops are present, and we are presently working
on this.

It is interesting to compare the behavior of the ISAT
model, where we choose τx = τ ∗ and τc = ω2τ ∗, and the
VISAW model, for which τx = 0 and τc = ω2τ ∗. In the former,
the bicritical line is located at τ ∗

BC = (1 + 2ω)2/(1 + 2ω2),
while for the VISAW model it is at τ ∗

BC = (1 + 2ω)2/2ω2.
These behaviors are compared in Fig. 6. In the ISAT model, as
the stiffness of the chains is increased, the collapse transition
becomes easier, since τ ∗ decreases as ω decreases. For the
VISAW model, we notice an opposite behavior, with τ ∗ → ∞
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ISAT

FIG. 6. Bicritical lines in terms of (on-site) monomer-monomer
interaction τ ∗ against ω for ISAT and VISAW models.

when ω → 0, so that an infinite (on-site) monomer-monomer
interaction is needed to collapse the chains. This is expected,
since crossings are forbidden in VISAW and, thus, the stiffness
will make the collapse more difficult. Moreover, this suggests
that the globule phase for VISAW is similar to the one in the
SASAW model. On the other hand, the results for ISATs show
that its collapsed phase is quite different from the one found in
previous models. Again we could expect that such behavior
should change on lattices with closed paths, as suggested
by the results for the semiflexible VISAW on the square
lattice [15].
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APPENDIX: RODS (ω = 0) ON THE SQUARE
LATTICE

The particular case of the model where bends are forbidden
(ω = 0) and therefore there are also no collisions (since
τc = 0) allows for a simple solution on the square lattice, which
is a generalization of the case with no crossings discussed in
Ref. [32]. We may use a transfer-matrix calculation to obtain
the free energy, although this may also be done by using
combinatorial arguments. We start defining the model on a
strip of the square lattice in the (x,y) plane with finite width
Ly and length Lx , as shown in Fig. 7. Boundary conditions are
periodic in both directions.

The states of the transfer matrix T will be defined by the
set of Ly horizontal edges between two successive vertical
lines of the lattice. We therefore have Nc = 2Ly possible
configurations, which may be defined by a vector |j 〉 =

y

x

FIG. 7. A possible configuration of one vertical and two horizon-
tal rods on a strip with Lx = 5 and Ly = 3. The element of the transfer
matrix corresponding to the two successive (1,0,1) configurations of
horizontal edges indicated by the dashed lines is z2

1z
3
2τ

2
x .

(η1,j ,η2,j , . . . ,ηLy,j ), where ηi,j = 0 (1) if the edge i is empty
(occupied). The grand partition function will be

� = TrTLx =
Nc∑
i=1

λ
Lx

i , (A1)

where λi are the eigenvalues of the transfer matrix. In
the thermodynamic limit Lx → ∞, the partition function is
dominated by the leading eigenvalue λ1, so that the free energy
per site will be

φb = − lim
Lx→∞

ln �

LxLy

= ln λ1

Ly

. (A2)

By construction, the transfer matrix is diagonal, and its
eigenvalues are

λi = Ti,i = 〈i|T|i〉 = z
si

1 + z
Ly

2 (z1τx)si , (A3)

where si = sj = ∑
k=1,Ly

ηk is the number of horizontal rods
and z1 and z2 are the activities of horizontal and vertical
rods, respectively. The two contributions in the right-hand
side of Eq. (A3) correspond to having or not a vertical rod
between the two horizontal edge sets, respectively. The number
of states with si rods is Ly!/[si!(Ly − si)!]. The functions
λi(s) are convex, so that the maxima should be located at
s = 0 or s = Ly . Now λ(0) = 1 + z

Ly

2 , and λ(Ly) = z
Ly

1 +
(z1z2τx)Ly . The transition between these two phases occurs
at z

Ly

1 − z
Ly

2 + (z1z2τx)Ly = 1, which reduces to z2τx = 1 in
the symmetric case z1 = z2 = z. Thus, even in one dimension
(finite values of Ly), a discontinuous phase transition happens
between a phase A with no horizontal rods (ρ1 = 0) and a
density

ρ2 = z2

Lyλ(0)

∂λ(0)

∂z2
= z

Ly

2

1 + z
Ly

2

(A4)

for vertical ones, and a phase B where all horizontal edges are
occupied by bonds (ρ1 = 1) and the density of vertical bonds
is ρ2 = (z2τx)Ly /[1 + (z2τx)Ly ].

In the two-dimensional limit Ly → ∞, we find three
phases, and the regions in the parameter space where each
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of them minimizes the free energy will be determined by
x = max(1,z1,z2,z1z2τx):

(1) Non-polymerized NP, where the densities of rods
vanish (ρ1 = ρ2 = 0), if x = 1.

(2) Anisotropic nematic (AN), where all horizontal edges
and no vertical edge is occupied (ρ1 = 1 and ρ2 = 0), if x =
z1; or all vertical and no horizontal edge is occupied (ρ1 = 0
and ρ2 = 1), if x = z2.

(3) A dense polymerized (DP) phase, where all edges are
occupied (ρ1 = 1 and ρ2 = 1), if x = z1z2τx .

In the symmetric case, when z1 = z2 = z, the NP phase
is stable for z ≤ 1, the AN phase is stable in the region
of the parameter space where z ≥ 1 and τx ≤ 1/z and
finally the stability region of the DP phase is given by
τx ≥ 1/z. Recalling that the NP and DP phases came out
from λi(0) and λi(Ly), respectively, they coexist at τx =
1/z2. These results turn out to be identical to those for the
Bethe lattice solution (in this particular case, with ω = 0),
leading to the phase diagram obtained above and depicted in
Fig. 3(d).
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