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Networks of particles connected by springs model many condensed-matter systems, from colloids interacting
with a short-range potential and complex fluids near jamming, to self-assembled lattices and various
metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic
approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many
interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for
the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although
the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be
calculated and depends on only two parameters, characterizing the depth and range of the potential. The result
holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state
(rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does
crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition
functions of all known rigid clusters up to N < 21 and show the cluster landscape is dominated by hyperstatic
clusters (those with more than 3N — 6 contacts); singular and isostatic clusters are far less frequent, despite their
extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a
close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as smallas N = 10.
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I. INTRODUCTION

Particles that live on the mesoscale commonly interact over
ranges much shorter than their diameters. Naturally occurring
systems include Cgp molecules [1,2] and colloids interacting
via depletion [3,4]. A widely studied synthetic system is
colloidal particles coated with strands of DNA or other
functional tethers, which create highly specific interactions
with range roughly the length of a tether [5-9]. Rather
than model the details of the interparticle interaction, which
are often not important for macroscale observations, it is
convenient to model the interaction in the sticky limit, which
considers a central-force potential with a single well that is
narrow and deep [10,11].

As the range of the interaction goes to zero, the space
of energy-preserving motions available to a finite system of
particles is identical to that of a bar framework, with nodes
located at the particle centers and bars connecting pairs of
particles that are touching, as in Fig. 1. The energy of the
system is proportional to the number of contacts, or bars in the
framework. When thermal fluctuations allow the structure to
slightly deviate from this space, the resulting entropy can be
derived from the harmonic response of the network, provided
all vibrational modes have nonzero frequency. The result
contains a dimensionless geometric factor and a single physical
parameter, characterizing the temperature and stiffness of the
interaction potential [11].

This limit is appealing because it clearly separates the
effects of geometry of the particles from those of the interaction
potential [12,13], allowing one to more easily vary the
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latter to study self-assembly processes, for example. It was
originally considered by Baxter to study phase transitions in
fluids of particles with short-range interactions [10], though
singularities related to the ones we will solve for have
prevented it from being more widely used [14]. The sticky
limit can also be used as a controlled approximation for the
entropy of a system of hard particles without attraction near
close packing [15].

A natural starting point for investigating the consequences
of the sticky limit is to consider a collection of finitely many
spheres. In the sticky limit the lowest-energy states have the
maximum number of contacts, and they are typically mechan-
ically rigid. A recent body of work has focused on computing
the set of rigid clusters of N spheres and understanding their
thermodynamic properties [16-20]. This program aims partly
at identifying a set of geometrical possibilities for processes
like self-assembly [21,22] and self-replication [23], and partly
at understanding the question of emergence: how does a finite
system of particles transition from a small size, where the
preferred order might be incompatible with crystalline order,
to a large one where it assembles into a highly structured
close-packed lattice [24-29]?

A major roadblock for such a program is the treatment
of singular clusters, those with vibrational modes with zero
frequency that do not extend to finite motions (singular modes),
so-called because they correspond to singularities of a system
of algebraic equations. Current methods for treating the sticky
limit do not work directly for these systems because the entropy
associated with the singular modes diverges. The smallest
singular cluster occurs at a mere N = 9 [17], preventing the
sticky limit from being applied to systems that size or larger
with current methods. Yet singular clusters are not a rarity
that can be glibly ignored: they account for about 2.5% of the
known rigid clusters of N spheres [20]. A related problem is
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hyperstatic rigid clusters, those with more than the 3N — 6
contacts required for a cluster to be rigid generically. The free
energy of hyperstatic clusters also diverges in the traditional
sticky limit, a fact that has hindered the limit from being
more widely applied to study bulk systems [14]. The smallest
hyperstatic cluster has N = 10 spheres [17]. Observations
of colloids with a short-range depletion interaction found
the N =9 singular cluster occurred with disproportionate
frequency, and for N > 10 the majority of observed clusters
were either singular or hyperstatic [16]. This suggests there
could be a competition between the higher entropy of a singular
mode and the lower energy of an additional contact. We wish
to evaluate this competition and determine if singular clusters
could be thermodynamically stable as the number of spheres
increases into the bulk regime.

In this paper we extend the sticky limit to systems with
singular modes and nonisostatic numbers of contacts. We show
that, provided the system is second-order rigid, its partition
function depends on only two parameters, characterizing
the depth and range of the pair potential. This is only one
more parameter than is required in the nonsingular case. The
property of being second-order rigid is explained in the text
and characterizes all known rigid clusters. Our approach is
to calculate the partition function from an expansion of the
potential energy function up to fourth-order in the particle
displacements. The result diverges as the range of the potential
approaches zero, but by using the leading asymptotic term, we
obtain a finite result if the range is taken as a small, nonzero
parameter.

This computation makes specific predictions for the proba-
bilities of observing singular clusters in equilibrium, which we
confirm by comparing to simulations of particles interacting
with a short but finite-range potential. We then calculate the
free energies of all known rigid clusters of spheres up to
N < 14 and of hyperstatic clusters for 15 < N < 21, and
show that the added entropy of singular clusters never beats the
lower energy of the maximally hyperstatic clusters at realistic
values of stickiness, except when the singular clusters are
maximally hyperstatic. Since the most hyperstatic clusters
are fragments of a close-packed lattice (or close to such),
this observation explicitly and quantitatively demonstrates
the emergence of order even at small system size. Finally,
our results suggest a universal scaling, not yet explained, of
the configurational and vibrational entropies of sticky sphere
clusters as a function of the number of contacts.

The problem of calculating the effects of singular modes
extends far beyond the system specifically under study in
this paper. Any system whose motions are limited by soft
constraints, in the limit that the constraints become very stiff,
could exhibit infinitesimally free motions that do not extend to
finite degrees of freedom. In particular, singular modes exist
and seem to play an important role in the mechanical and
thermodynamic stability of many metamaterials, a class of
systems of growing interest in material science, composed
of mesoscopic or macroscopic building blocks and designed
to have properties that are hard or impossible to engineer in
traditional materials. For example, metamaterials based on
ball-and-spring networks may be designed to have singular
modes on purpose so they fail under stress at desired
locations [30]. Origami mechanisms designed to have a single
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extended degree of freedom may, as has been observed, end
up with extensively many infinitesimal degrees of freedom,
with important implications to the mechanics of actuating
the mechanism [31]. As low-frequency modes seem to play
an important role in the rheology of athermal fluids made
of isotropic particles [32,33], zero-frequency modes, which
occur in extensive number at the jamming point of anisotropic
particles [34], could also have a significant effect.

While the mechanical effects above are athermal, zero-
temperature effects, in this paper we focus on the thermal
effects of singular modes. Such effects are already relevant
for some metamaterials and will become relevant for others as
the trend toward miniaturization is followed and such systems
are fabricated at smaller and smaller scales. An abundance
of low-frequency vibrational modes increases the entropy of
a system and can often be a crucial factor stabilizing one
structure over another when they are energetically equivalent:
for example, such an effect favors a face-centered-cubic close-
packing structure over a hexagonally close-packed structure in
many systems [15], stabilizes marginally coordinated lattices
in patchy colloids [35], and favors an ordered structure over
a zigzag structure in a rhombus lattice [36]. If given two
energetically equivalent structures, one has singular modes,
this effect becomes even stronger: the entropic factor favoring
the singular structure grows larger and larger as the constraints
become stiffer, as we show in this paper. It is conceivable thatin
such cases the singular structure could be thermodynamically
favored in an appropriate limit even when it is energetically
disfavored. We derive the conditions for such a scenario to
occur, but we find that they are not present in the case of a
system of N sticky spheres for any N < 21.

II. THE STICKY LIMIT
A. Rigid clusters

We start by explaining how to calculate the free energy
in the sticky limit for a cluster of N identical spheres with
diameter d, forming a clusterr =r; ®r, @ ... ®ry € RV,
where r; € R is a vector specifying the position of the
center of the ith sphere, and r is the corresponding point
in a 3N-dimensional configuration space. We suppose the
cluster has B bonds between pairs of interacting spheres
E ={(i1,j1),...,(B,j)}. When the range of interaction
is infinitesimally short, each bonded pair will be exactly
touching, so the cluster lies in the solution set to the system of
equations,

Ir, —r;>=d* (,j)eE. (1)

We focus for illustration on clusters that are rigid, though
the calculations extend naturally to floppy ones. A cluster is
defined to be rigid if it lies on a connected component of
the solution set to Eq. (1) that contains only rotations and
translations [37,38]. Physically, being rigid means one cannot
continuously deform the cluster internally by any finite amount
while maintaining all contacts. This is a nonlinear notion that is
not equivalent to counting the number of infinitesimal degrees
of freedom, as in the Maxwell-Calladine theorem [39].

An example of a cluster that is rigid but has an infinitesimal
degree of freedom is shown in Fig. 1. Thisis aclusterof N = 9
spheres, consisting of two bipyramids that share a sphere at
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FIG. 1. Left: the smallest singular cluster of sticky spheres,
consisting of nine spheres. Right: a framework representation of the
cluster with the singular mode indicated by red arrows. The singular
mode is a vibrational mode with zero frequency, which cannot be
extended to any finite deformation without incurring an energy cost,
or equivalently without breaking a contact.

a common vertex and are connected by three parallel bonds.
When one bipyramid is rotated along the axis going through
the shared vertex and parallel to the bonds, the three bond
lengths do not change to linear order in the displacement, so
this rotation is an infinitesimal degree of freedom. The bond
lengths do change at quadratic order in the displacement. In
fact, any finite motion that is not a rigid body motion changes
at least one bond length, and the cluster is rigid.

We suppose the potential energy of the system is U(r) =
Zl<i<j<N V(|r; —r;]), a sum of pair potentials V(r) that
depend on the distance » between each pair. The pair potential
is assumed to have a minimum at d and approach zero rapidly
as r — d exceeds a certain characteristic interaction length
€. For r —d « —e, we assume the potential is positive and
much larger in magnitude than its minimum value. As a
particular example, we consider the Morse potential V(r) =
Ee Pr=D(e=r=D _2) where the position of the minimum
of the pair potential determines the diameter, d = 1, and the
parameter p determines the range of the interaction, € = 1/p.

The sticky limit occurs when the well of the pair potential
is both narrow and deep. This limit can be constructed from
any interaction potential with reasonable decay, by simultane-
ously rescaling the lengthscale r — d and the depth of V(r)
(see Fig. 2). The sticky limit has traditionally been considered
under scalings such that the contribution of the well to the
partition function for a single pair of spheres approaches a
constant [10,14]. Using Laplace’s method (see Appendix A 1)
this constant is shown to be proportional to

S2m e

T Gar
where £ = —V(d), a = V"(d) ~ /€%, and B = (kgT)~" is
the inverse of temperature 7' times the Boltzmann constant.
Since it represents the equilibrium tendency of spheres to stick
to each other, it is called the sticky parameter [11].

The sticky parameter characterizes the thermodynamic
tradeoff between the free energy of a particle in a bulk
fluid of fixed packing fraction ¢, exp(—p Fuia/N) ~ d°/¢,
and a particle in an isostatic network of bonded particles,
exp(—B Fiso/N) ~ (Bad?)~3/>¢3F¢ | Therefore, the limit € —
0as0 < k < ocoisrelevant for studying the instability of a fluid
toward forming an isostatic bonded network [40]. However, a
close-packed network has six bonds per particle in the bulk
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FIG. 2. The sticky sphere limit of a Morse pair potential, V(r) =
Ee Pr=D[e=rr=D _ 2] where the depth £ — oo and the range
e=1/p— 0.

limit and so the relevant limit for studying its formation is
0< limeﬁo(ﬁadz)’l/zezﬁg < 00, which requires k — 0. As
the number of spheres N in a finite system rises, the relevant
clusters might vary from isostatic to close-packed, so one
might wish to consider different limits. Our calculation allows
the limits € — 0 and £ — oo to be taken in any way desired,
as we show that it does not change the form of the leading term
in the partition function.

To evaluate the free energy of the different rigid clusters that
N spheres can form, we need to incorporate the contribution
from vibrations about the minimum-energy configurations
as well as from rigid body motions that do not change
the energy. Such a calculation is familiar from the classical
thermodynamic treatment of an ideal gas of polyatomic
molecules [41]. For completeness, we go through the entire
calculation in broad strokes in the main text and fully in
Appendix A. However, our calculation has several differences
from classical treatments: (i) we go beyond the harmonic
approximation, which fails precisely for the clusters we are
most interested in; (ii) we consider the partition function in the
sticky limit of a fairly general pair potential, which leads to an
expression depending on only two parameters; (iii) we show
the connection between the vibrational modes of a cluster and
its mechanical properties as a framework; and (iv) we take care
to keep track of error terms and explicitly bound the scaling
of subleading terms. Since we are interested in mesoscale
particles, we do not take into consideration quantum effects.
Moreover, our calculation is different from simply including
all anharmonic corrections to the free energy, as has been done
numerically in molecular dynamics studies of Lennard-Jones
clusters [42]. Calculating these is usually a Sisyphean task,
requiring heavy lifting and providing only minor corrections.
However, when the vibrational spectrum contains zero modes,
these corrections become crucial. Thankfully, as we show, the
anharmonic corrections need only be calculated for the zero
modes, though care must be taken to account for the coupling
between the zero and nonzero modes, which has previously
been neglected [16].
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The contribution to the canonical partition function from
each rigid cluster is given by

Z, = / exp[—pU)1d*N Y, 3)
Nl‘

where N, is an integration domain constructed by taking
all configurations corresponding to the cluster of interest,
including translations, rotations, permutations, and reflections,
and fattening it by a length that is small compared to the
particle diameter d and large compared to the interaction range
€ (see Appendix A 3.) We take the total partition function to
be the sum of the contributions from all the rigid clusters,
ignoring floppy clusters in this paper. The free energy is
F. = —B"'log Z,.

We may remove rigid-body degrees of freedom by a change
of variables. If we let W C R3V be the linear subspace of
infinitesimal rigid-body motions, then we may restrict the
integral to its orthogonal complement W+, and include a factor
I equal to the square root of the determinant of the moment of
inertia tensor (Appendix A 3). Summing over permutations
contributes a factor of N!/o, where o is the size of the
Euclidean symmetry group of the cluster [43]. If the spheres
lie in a container of volume €2, then the free volume for each
cluster is nearly Q as long as V > d°.

To evaluate the remaining parts of the integral in Eq. (3) we
expand each term V (r;; 4 0r;;) in powers of dr;;, where we
write (-);; for (-); — (-);. The expansion up to second order in
the displacements yields (see Eq. (A4) for detailed expansions
and error bounds)

U(r 4 8r) = —BE + 3 (3r,Msr), 4)

where M is a symmetric linear map, whose matrix represen-
tation is usually referred to as the dynamical matrix. When
Eq. (4) is plugged into the integral in Eq. (3), the integral
converges if and only if M, considered as a map W+ — W+,
is positive definite, that is, all its eigenvalues are positive. The
result gives the harmonic approximation for the vibrational
partition function.

To see what the positive definiteness of the dynamical
matrix implies about the rigidity of the cluster, let us consider
how one might deform a cluster along a path p(z) with
p(0) = r without changing any of the bond lengths. Taking
one derivative of Eq. (1) shows that

r;; - p;;(0)=0 forall(i,)) € E. o)

Defining the linear map R : R3" — R2 that maps p’(0) to the
B-dimensional vector with entries given by the left hand sides
of Eq. (5), we see that p(¢) maintains the constraints Eq. (1)
only if p’(0) is in the null space of R. The matrix representation
of R is known as the rigidity matrix in the mathematical study
of framework rigidity. An element of the null space of R
is called a flex, and it is trivial if it is a rigid-body motion
(that is, in W). If the only flexes are trivial, then the cluster
is said to be infinitesimally rigid or first-order rigid. This is
sufficient for the cluster to be rigid in the nonlinear sense [38].
The dynamical map (matrix) and the rigidity map (matrix) are
related as R*R = Md? /a, where R* is the adjoint (transpose),
so the harmonic approximation converges exactly when the
cluster is first-order rigid.
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The harmonic approximation fails when the null space
of the dynamical matrix extends beyond W, or equivalently
when nontrivial flexes of the rigidity matrix exist. These are
infinitesimal degrees of freedom that may or may not be
extendable to finite degrees of freedom. If they are not, we
call them singular directions (or modes or flexes). The cluster
in Fig. 1 has a singular direction corresponding the twisting
motion described above.

To integrate along these singular directions we continue
the expansion of the potential energy function. Let X be the
space of singular direction: X = ns(M)N W+, where ns(-)
denotes the null space. Let Y = [ns(M)]* be its orthogonal
complement in W+, For every 6r € W' we may write ér =
X +Yy, where x € X,y € Y. We plug this decomposition into
the potential energy function, use the fact that x;; - r;; = 0 for
all (i, j) € E by Eq. (5), and keep terms up to O(Ix]* + [yD?
(see Eq. (AS) for these calculations and error bounds). We
obtain, neglecting the error terms,

U(x.y) = —BE + ad*Uy(x) + ad (i (x).y) + 3a(y.My). (6)

Here M = M/a, Uy(x) is a real scalar, and ii;(x) € ¥ is a
3 N-dimensional vector, constructed as

~ 1
Oo®)= D em(xij - xij)’, (7
@i,j)eE
[ (x)]; = Z ﬁ(xi‘i . 7)) T8 (8)
j st . j)eE

If Ux,y) — U(0,0) is positive for all nonzero (x,y) we can
calculate the leading-order term of the partition function (see
Eq. (A18)):

1QePBE 2 ¥ d? Kl —0() e
Zr=——— = — e dx), (9
(det M|y)/20 \ ap ap x

where dy,dy are the dimensions of X and Y, and
- 1 . -
ox) = e I)gl}l;l U(dx,y)

- 1 .
= Uy(dX) — E(ﬁl(di),M_lﬁl(di)) (10)

is a dimensionally reduced quartic form that gives the
minimum of the potential at a fixed displacement along
the singular directions. Letting y = ePe a = (a,de)l/ 4 and
Biso = 3N — 6, we can write Eq. (9) as

1S

Zr — Qd3N73(2n)7B‘TOVB(X*ZBISO‘HiXZr’ (11)

where
I L1 . .
Zr = —(detM|Y)‘z(2n)—‘%/e—Q<x>di. (12)
Ud3 X

Equations (11) and (12) are our main result. They express
the partition function for a sticky rigid cluster as a product
of a number of dimensional quantities that depend on the
pair potential, temperature, and particle dimensions, times a
dimensionless quantity z,. We call z, the geometrical partition
function because it depends only on the positions of the
particles, which are given by solving the geometry problem
defined by Eq. (1) and not on any externally controllable
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parameters. The interaction potential and temperature enter
only in combination through the two parameters y and «,
which measure, respectively, the contribution of each extra
bond and each singular direction. Remarkably, only the second
derivative of the interaction potential affects the free energy.
All higher-order derivatives contribute to subleading order.

When does the remaining integral in Eq. (12) converge?
We will show it converges for all clusters that are second-
order rigid. To explain what this means, consider again the
hypothetical deformation of the cluster p(¢), and now take the
second time derivative of Eq. (1):

r;; - pj;(0) + lIp;; 01> = 0, (13)

for all (i,j) € E. A given flex p’(0) can be extended to a
second-order motion only if there is a solution p”(0) to the
linear Eq. (13). If such a solution exists, the pair (p’(0),p” (0)) is
called a second-order flex. If there is no nontrivial second-order
flex, then the cluster is second-order rigid. Second-order
rigidity is a sufficient condition for rigidity [38]. However,
analogous higher-order versions do not necessarily imply
rigidity [44].

Since U(X’Y) - U(0,0) = Z(i,j)eE 2(17[(1'17 . yij) + %(Xij .
X[j)]z, then U(x,y) = U(0,0) for some x € X and y € Y if
andonlyif r;; - y;; + %(x,-j -X;;) = Oforall (i, j) € E, namely,
(x,2y) is a second-order flex. If the cluster is second-order rigid
then no such flex exists, so U(x,y) > U(0,0) for all nonzero
(x,y), and Eq. (12) converges.

B. Square well potential

We have assumed a potential with nonzero second deriva-
tive at the minimum, but Baxter’s original sticky-sphere limit
considered a square well potential of depth £ and width e,
where the derivatives V) (d) vanish for all n [10]. However,
we can show (Appendix A 4) that while this difference changes
the prefactors in the calculation, it does not change how the
partition function scales with the parameters y and o, which
are defined for a square well potential to be y = /¢, o =
(d/€)'/?. Therefore, our calculations are a natural extension of
Baxter’s limit.

C. Floppy clusters

We have derived Eq. (11) for rigid clusters, but a similar
calculation can be performed for floppy clusters, those with
internal degrees of freedom along which the cluster can deform
by some finite amount. In this case, some of the zero vibrational
modes extend to finite degrees of freedom, and some do not so
they are singular directions. We suppose the internal degrees
of freedom form a manifold M with dimension m, and that the
number of singular modes dy is constant over the manifold.
Now X, Y are the linear subspaces along which the cluster
is rigid, with X representing the singular directions and Y the
nonzero vibrational modes. The zero vibrational modes are the
union of X and the tangent space to M. If M has dimension
m, then we must have dim(X) + dim(Y) +m = 3n — 6.

The additional calculations to deal with the floppy degrees
of freedom closely resemble those performed in Ref. [11] and
result in an integral over the internal degrees of freedom of a
cluster. The resulting partition function still has the form of
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tot

Eq. (11), where the geometric partition function is now z;

given by
z :/ Zr(X)dop(x), (14)
M

with z,(x) given by Eq. (12), and in both Egs. (11) and (12) we
must set Biso = 3N — 6 — m. Here do,, is the natural surface
measure on the manifold, described in detail in Ref. [11].

III. FREE ENERGY LANDSCAPE OF SMALL CLUSTERS

Equation (11) shows that extra bonds and singular di-
rections contribute to the stability of a rigid cluster by
factors y and o, which both diverge in the sticky limit. This
observation raises some natural questions: for finite values
of these parameters, which kinds of cluster tend to dominate
the partition function? How does this answer depend on N?
And, with a sight toward emergence, how do close-packing
fragments come to dominate the landscape as N — co?

We address these questions by calculating the geomet-
rical partition functions for all known rigid clusters (see
Appendix B 1 for methods). We use the enumeration of rigid
clusters produced by Holmes-Cerfon [20], which includes
rigid clusters up to N = 14, and rigid clusters containing a
given number of contacts or more up to N = 21 [45]. These
are thought to be nearly complete lists of rigid clusters for each
N and for each specified number of contacts. All clusters in the
lists are second-order rigid to numerical tolerance, so Eq. (11)
converges. We use the results to characterize the competition
between singular and hyperstatic clusters at each value of N.

A. N<8

All clusters of these sizes are regular (isostatic and
nonsingular). For N < 5, there is only a single rigid cluster
for each value of N: a single sphere, a dimer, a triangle, a
tetrahedron, and a triangular bipyramid. For N = 6,7, and
8, multiple rigid clusters exist, all nonsingular, and all with
the same number of bonds. The most important factor in the
partition function is the symmetry number, with low-symmetry
clusters dominating high-symmetry clusters [16,46,47].

B. N=9

The smallest singular rigid cluster, illustrated in Fig. 1,
occurs at N = 9. Including this cluster, there are 52 rigid
clusters, not counting enantiomers, all with the same number
of bonds [17]. So, the partition function is given, up to constant
factors,by Z = az; + Z,Siz Z;, where z; is the geometric term
in Eq. (11) for the ith cluster, the singular cluster being first.
The equilibrium probability of the singular cluster is then

o

P = ,
K+«

15)

with K = % leiz z; &~ 235. In the sticky sphere limit, « —
00, and this probability approaches one. However, we expect
this estimate to hold even for finite «.

To test this prediction, we sampled from the canonical
ensemble of nine spheres interacting via a Morse-harmonic
potential with various ranges and depths using a Monte Carlo
simulation (see Appendix B 2 for methods). The diameter is
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FIG. 3. Simulation results for N = 9 sticky spheres with « & 220
and p = 30, 40, 50, 60, 70, 80, 100, 120, and 140 interpreted using
different bond cutoffs. The dashed line shows the theoretically
predicted frequency of the singular cluster, Eq. (15). Error bars are
standard deviation estimates.

taken to be 1, and the range of the interaction is characterized
by a parameter p. For a given value of the range parameter p the
pair potential is active over a distance of about 5/ p, after which
it has decayed to about 1.3% of its minimum depth. For each
sampled structure we construct an adjacency matrix by speci-
fying a cutoff distance for bonds and identify the rigid cluster,
if any, whose adjacency matrix is isomorphic to the constructed
one. For small values of the range parameter p (corresponding
to a large interaction range), this method was extremely sen-
sitive to the cutoff being used, but for p = 70 (corresponding
to « 2 18), the calculated cluster frequencies converged and
agreed with the theoretical prediction, as illustrated in Fig. 3.

The discrepancy for small p likely arises because of
interaction between nonnearest neighbors. The rigid cluster
geometries are minima of U(r) only in the limit p~! — 0 and
are deformed for p~! > 0 due to interactions between spheres
that are not in contact in the ideal structure. The minimum
gap in the rigid clusters of 9 spheres is hpi, ~ 0.05d, which
occurs in seven of the 52 clusters, and 30 clusters have gaps of
0.09d or less. When p~! / hmin € 1, the deformations of the
local minima are substantial. Small gaps also lead to problems
in the identification of cluster geometries in our numerical
sample, since they could be identified as bonds.

Even though Eq. (15) applied only in the limit that ¢ — o0,
and so P, — 1, we observe remarkable agreement even when
Py is only around 8%.

Experiments that observed colloids interacting via a de-
pletion interaction found the singular cluster occurred with
frequency 11% (95% confidence interval 4%—-27%) [16]. A
calculation neglecting the coupling between the zero and
nonzero modes predicted only a 3% probability for the
singular cluster [16], and the excess stability was surmised
to correspond to the free energy of about half of an extra bond.
The range of attraction was estimated to be about 1.05 times
the particle diameter, which corresponds to a range parameter
of p ~ 30 [46,48]. The depth of interaction was estimated to
be about 4k T, but this gives a sticky parameter of k = 1.6
for which clusters should melt; a depth of ~8kgT is probably
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closer to the truth so that ¥ &~ 60, and is consistent with recent
simulations [49]. These values give o & 11 so the theoretically
predicted probability is P; =~ 0.045, within the experimental
confidence interval. These parameters are in the regime where
non-nearest-neighbor interactions are relevant, so we cannot
hope the calculation will agree exactly with the experimentally
observed value, but it is still notable that the two are consistent.

C.10<N<21

To analyze the landscape for higher N, we partition the
rigid clusters based on the number of extra bonds AB = B —
(BN — 6) above or below the isostatic number, and the number
of singular zero modes dx. The canonical partition function is
then

3IN—6 dyx. AB
Z =k Z Xy ZAB.dy» (16)
AB,dy

where zap 4, 1s the sum of the geometric contributions of all
the clusters in a given partition (see Appendix C for values),
and we have used the fact that the sticky parameter Eq. (2) is

K=" (17)

We analyze the landscapes for N > 10 by determining which
term in Eq. (16) is the largest for different values of « and y .

The phase diagram for N = 10, shown in Fig. 4, indicates
where on the parameter space each term dominates. There are
four terms in the partition function, corresponding to clusters
that are regular (AB = 0, dx = 0), singular isostatic (AB =
0, dx = 1), hyperstatic (AB =1, dx = 0), and hypostatic
(AB = —1,dx = 2). When y is large enough and « is fixed or
grows more slowly than y, the hyperstatic cluster dominates.
We also see that for fixed y and large enough «, the hypostatic
cluster appears to dominate. However, in that region of
parameter space, the sticky parameter « tends to zero and we do
not expect the spheres to leave the fluid phase and stick to each
other. Figure 4 shows lines of constant « for « = 10 and 1000;
these are values between which we could reasonably expect
to see clusters that equilibrate over experimental timescales,
rather than a gas or a glass. Figure 4 also shows the relative
frequencies as a function of « for k = 40, a reasonable value
to observe in experiments [12], where we see the transition
from the region dominated by regular clusters, favored by
the higher number of distinct clusters, to that dominated by
the hyperstatic cluster, favored by lower energy. The singular
clusters peak in frequency near this transition, but never rise
above 3.6%. The hypostatic cluster is extremely rare and never
reaches above 0.03% despite its high vibrational entropy.

For N = 11 to 14, we use the enumeration of rigid clusters
to construct similar phase diagrams, shown in Fig. 5. Again, in
the region of x where we can expect to observe the formation
of equilibrated clusters, we primarily see a transition between
regular clusters and the most hyperstatic ones. The exception
is N = 13, for which two of the eight most hyperstatic clusters
are singular and dominate in the sticky limit.

For N =15 to 21, the maximum value of AB is
5,6,7,8,9,10, and 11, respectively, and only clusters with
fewer than four missing bonds compared to the maximum
were enumerated [20]. The phase diagrams computed in Fig. 6
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FIG. 4. Top: phase diagram for N = 10 spheres. Colors (shading)
indicate which kind of cluster has the largest partition function for
each value of y, o, where the clusters are grouped by the number of
extra contacts A B and the number of singular modes dyx . Dashed lines
are k = 10 (top), « = 1000 (bottom). Bottom: Relative frequency of
the types of rigid clusters of 10 spheres as a function of « (roughly
the inverse square root width of the potential), at k = 40.
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FIG. 5. Phase diagrams for rigid clusters of N = 11-14 spheres.
Labeling is the same as described in the caption of Fig. 4.
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are therefore not a complete description of rigid clusters,
but their common appearance and patterns is a telling signal
of emergence. In particular, as in most previous cases, at
fixed ¥ 2 1 and increasing «, we observe a transition from
dominance of the least hyperstatic nonsingular clusters among
those enumerated to dominance of the most hyperstatic. For
N =11 to 14, the former are regular clusters, but regular
clusters are too numerous to have been enumerated for
N > 15. This transition occurs in a narrow range of y, with
possibly a few intermediate regions.

IV. DISCUSSION
A. Toward larger N

Our observations about the free-energy landscape of clus-
ters of up to 21 sticky spheres suggest two conjectures about
the landscape as N increases:

(1) For most values of N, singular clusters are rare at
experimentally relevant values of «.

(2) The phase diagrams of rigid clusters have a universal
shape, which is approached even at small N.

The first conjecture, if true, goes much of the way
toward explaining the phenomenon of emergence. It implies
that despite the apparent competition between the higher
vibrational entropy of singular clusters and the lower energy
of hyperstatic clusters, the latter always wins. Since the most
hyperstatic clusters are close to fragments of a close-packed
lattice with defects only on the surface, close-packing order
should arise for sticky spheres even for small clusters.

Based on Eq. (11), we have already noted that each extra
bond contributes to the stability of a rigid cluster by a factor y,
and each singular mode contributes by a factor . This surmise
neglects the geometric factor, which might be correlated with
the number of bonds or singular modes, and we return to
such correlations shortly. Since y o xa?, and assuming that
k 2 1, it follows that as « — 00, each extra bond contributes
at least twice as much as each singular mode. In this sense,
the observation of Meng et al. that a zero mode contributes to
stability about half as much as an extra bond turns out to be
rather prescient, even as it was surmised from experiments far
from the Baxter limit [16].

Therefore, the only way a rigid cluster with fewer than the
maximum number of bonds can become dominant at large o
is if it had two singular modes for each missing bond. This
scenario does not seem to occur for any value of N. In fact,
the only exceptions to the rarity of singular clusters are when
singular clusters exist among the most hyperstatic ones, as
they do for N =9 and 13. We do not know if such clusters
might exist for larger values of N. Such “magic numbers,”
associated with special clusters and deviating from the trend
toward bulk behavior, are familiar in other systems, such as
atomic clusters [50-53].

Motivated by the first conjecture, we limit our attention to
nonsingular clusters and consider the second conjecture. The
transition from a region dominated by regular clusters to one
dominated by hyperstatic ones occurs not perfectly abruptly
but nevertheless over a small range of y. Such behavior implies
that the total geometric partition function zap (we drop the
second subscript for the remainder of the section, implicitly
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FIG. 6. Phase diagrams for rigid clusters of 15-21 spheres. Labeling is the same as described in the caption of Fig. 4.

taking dxy = 0) decreases exponentially as a function of AB
with a roughly consistent rate zpp ~ exp(—AAB), as can in
fact be seen in Fig. 7. The rate, and therefore also the center
of the transition, at y = exp(A), seems to trend upwards as
a function of N. We do not know if this rate approaches a
constant as N increases, though we hypothesize it might, as
such a limiting rate appears necessary for the total number of
clusters to grow exponentially with N, an issue we will discuss
in a future publication.

Which factor in the partition function contributes most
strongly to this exponential scaling? Part of it is due to the
number of distinct clusters with a given number of bonds,
nap, whose logarithm can be thought of as a configurational
entropy. Figure 7 shows nap decreases exponentially with
A B, and the gain in configuration entropy for each lost bond
appears to grow with N. The average geometric partition
function of a typical single cluster with a certain number of
bonds also appears to decrease exponentially as a function
of AB, with most of this decreases accounted for by the
decrease in the average vibrational factor (det M)~'/? per
cluster. The deviations from the exponential fits for these
individual components are more pronounced than in the case

of the total geometric partition function, but the consistent
exponential scaling is notable. The rotational contributions,
from the moment of inertia and symmetry factors, do not
depend strongly on the number of bonds (Appendix B 3.)

To further investigate how these observations bear on the
question of emergence of long-range order, we consider a
metric for the bond-orientational order. We use the order
metric Qg, which is widely used in the study of the structure
of liquids (see Appendix B 4 for a definition) [54]. Figure 8
shows that bond-orientational order is strongly correlated with
the existence and number of extra bonds. Isostatic clusters
have particularly low bond-orientation order. Deviation from
isostaticity in either direction seems to require the introduction
of partial order, since only when going away from the
generic situation can the algebraic singularities associated
with hypostaticity and hyperstaticity arise. The presence of
even a single extra bond seems to require the structure to
contain two octahedra sharing an edge, and as more bonds are
added, this substructure can grow to incorporate larger and
larger close-packing fragments. The most hyperstatic clusters
observed for each N are fragments of close-packing lattices
with defects only on the surface.
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FIG. 7. Top row: the total geometric partition function of rigid clusters with A B bonds above the isostatic number of bonds as a function
of AB. The dashed line is an exponential fit, logzag = ¢; + c2 AB, with the best fit value of ¢, indicated. The bottom row shows different
contributions to the value of zap: nap is the number of distinct rigid clusters, Z,p is the mean geometric partition function of such a cluster,

and U, is the mean vibrational contribution to the latter.

B. Relation to bulk behavior

In addition to being physically important for their own
sake, finite clusters also carry importance as a formal tool in
low-density expansions of the fluid behavior of bulk systems.
Baxter used the expansion up to the second term to predict a
gas-liquid transition in a fluid of sticky spheres [10]. It has been
previously observed that Baxter’s calculation is theoretically
problematic because later terms in the expansion diverge in
Baxter’s limit [14]. Specifically, Stell and Williams showed
that for N = 12 spheres the partition function diverges, due to
the existence of rigid clusters which remain rigid even when
turning off the interaction between some bonded pair [14]. This
divergence in fact occurs for any hyperstatic cluster, leading
to divergence even for N = 10. Here, we have shown that
singular clusters also lead to a divergence in Baxter’s limit
and so the theoretical problems for the expansion begin even
earlier, at N = 9.

T T
0.5
Dk
. 04| ’ .
.
10 11 ——12
0.3+ —+—13 ——14——15 |
——16 —— 17 —— 18
19 20 ——21
0.2 | | | T T T T

-2 0 2 4 6 8§ 10
AB

FIG. 8. Mean value of the bond-orientational order parameter Q¢
as a function of the number of extra bonds A B. The mean includes
all clusters, regular and singular, weighted uniformly.

Our numerical results show a sharp transition to the
prevalence of isostatic structures over highly hyperstatic,
close-packed ones when the depth of the potential well is less
than a critical value, and we expect it to extend into the bulk
regime.

V. CONCLUSIONS AND FUTURE WORK

We have shown that the free energies of systems of spheres
interacting with a very short-ranged pair potential can be
described by only two parameters, characterizing the depth and
width of the potential. This is true even when the systemisin a
singular energy minimum, where the harmonic approximation
diverges, provided the associated framework is second-order
rigid. We used our results to study the free-energy landscapes
of clusters of a finite number N < 21 of spheres. Previous
work has shown that for N < 8, the most likely clusters
to be observed in equilibrium are the least symmetric ones.
We showed that for larger N, the free-energy landscape is
dominated by the most hyperstatic clusters. These clusters
are usually close to fragments of a close-packed lattice with
defects only on the surface, so we see the emergence of
crystalline order even for N as small as 10. Only for the magic
numbers, N =9 and N = 13, is the maximum number of
contacts achieved by both nonsingular and singular clusters,
and the latter would form with near unit probability in the limit
of zero range interactions. It would be interesting to know if
there are other, larger values of N with singular clusters having
the maximum number of contacts.

We found empirically that the partition function of rigid
clusters of size N with B contacts scales exponentially with B.
If this scaling continues, it leads to a sharp transition between
a region of parameter space where clusters with the largest
possible number of contacts dominate and a region where
the expected number of contacts is extensively less than the
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maximum. This sharp transition may be a finite-size incarna-
tion of the thermodynamic observation that particles with a
short-range interaction have little or no liquid phase, a fact
that has made it hard to create liquids of biomolecules or other
nanoscale objects [55]. We analyzed the factors contributing to
this scaling, but do not have an explanation from first principles
that would suggest the scaling continues for larger sizes, or that
the rates approach a constant as N increases. We leave this as
an open problem that could be addressed using ideas from
geometry and statistical mechanics.

We have focused our calculations on rigid clusters, but one
could use Eq. (14) to compute the partition functions of floppy
clusters or other networks with floppy modes of deformation
(see, e.g., Ref. [56]). This is more challenging because it
involves computing integrals over manifolds, but is still
tractable using specialized parametrizations as in Refs. [11,57]
or thermodynamic integration techniques [58]. Moreover,
current numerical and analytic methods for classifying the
rigidity of bar frameworks focus on testing rigidity, not
floppiness, and new methods are required for determining
what subspace of the space of infinitesimal flexes (zero modes)
extends to finite degrees of freedom in a floppy cluster.

One possible issue with using our result is the evaluation of
the integral f]R" exp[— QO (x)]dx, where Q is a positive quartic
form. Unlike its Gaussian relative, this integral has no general
analytic solution for even moderate values of N [59]. A future
avenue of research is to simplify the integral under stronger
rigidity assumptions, such as prestress stability.

We showed via simulations that the sticky limit describes
real, finite-range potentials, provided the range of the potential
is much shorter than minimum gap between noncontacting
spheres. However, this minimum gap appears to become arbi-
trarily small as N increases [20]. Nevertheless, we expect our
calculations to give qualitative insights into real systems and it
would be interesting to test them with experiments on clusters
larger than N = 9. For example, it could still be the case that
the type of clusters that dominate in equilibrium depends on
only a small number of parameters as the interaction potential
is varied, or that the ones that are close to singular become
more probable as the range of the potential is decreased.

Although the gap size poses a problem for quantitative
agreements in real systems, it may be possible to build on
the present results by including perturbations that account for
non-nearest-neighbor interactions. As non-nearest-neighbor
interactions increase, the energy minima coming from distinct
rigid clusters are expected to merge, leading to critical points
that can be analyzed using catastrophe theory [60] or related
ideas. Singular clusters themselves can be thought of as
multiple, colocated minima that might separate as they are
perturbed by non-nearest-neighbor interactions. By starting
with the sticky limit and slowly increasing the range of the
interaction potential, one might create a bifurcation diagram
of energy landscapes, which shows a finite or low-dimensional
number of possible landscapes; indeed, in related systems
it has been shown that the space of energy-minimizing
configurations is sometimes much lower-dimensional than the
space of interaction potentials [61].

Many systems beyond clusters, particularly metamaterials
and systems near jamming or close packing, are often modeled
as subject to soft constraints in the limit that the stiffness
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of the constraint is taken to infinity. As we have shown
here, this limit is qualitatively different than modeling the
constraints as hard constraints, particularly when the excitation
spectrum includes zero modes. In this paper, we have focused
on the thermodynamic effect of zero modes, calculating their
contribution to the free energy. Such thermal effects are already
observed in many metamaterials and self-assembly systems
and are likely to become important for more of them as they
are fabricated on smaller scales. The zero-temperature effects
of zero modes are also potentially important in metamaterials
and athermal fluids and more work will need to be done to
determine their effect on mechanical stability and yielding
behavior. We hope that the present work will become the
first step in a broader program to provide analytic tools for
going beyond the harmonic approximation and calculating
the thermodynamic and mechanical effects of zero-frequency
vibration modes.
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APPENDIX A: DETAILS ON THE PARTITION
FUNCTION CALCULATIONS

1. Sticky limit

Starting from an arbitrary potential Vy(r), we can define
a one-parameter family of rescaled potentials, parameterized
by the variable e, representing the interaction range. Let
V(r) = C(e)Wl(r —d)d/e + d]. We need to extend V,, for
negative arguments in some way such that Vy(r) — oo as
r — —oo. Assuming such scaling is used to approach the
sticky limit, then all derivatives of V(r) at r = d satisfy the
scaling d"V (r)/dr"|,—q = O(E/€"), where £ = —V(d). We
assume this scaling of the derivatives for deriving all the big-O
error bounds in our calculation. We also assume that Vy(r) — 0
as r — oo in such a way that V(r) — 0 as € — 0 pointwise
forallr > d.

The traditional sticky sphere limit of Baxter [10] is defined
so that the difference between the partition function for two
spheres interacting via V (r) and the partition function for two
hard spheres approaches a constant. Namely,

1 4

0 < lim —/ @ _ Dadr+ 2 <00, (Al
e—0 d3 reR3 3

where B = (kzT)~! is the inverse of temperature 7 times

the Boltzmann constant. The limit can be evaluated using

Laplace’s method as

25/253/2 lirr(l](aﬁdz)_l/z exp(BE), (A2)
€e—
where & =-V(d)=—-C(e)Vy(d) and
C(e)VO”(d)dz/ez.
In our calculation we do not assume this limit, let-
ting € and C approach 0 and oo simultaneously in any

a=V"(d)=
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way desirable. We define the sticky parameter to be x =
Qm)%2(aBd?) "% exp(BE) = 2)'/>a?y even when the
limit is not taken.

2. Expansion of the pairwise potential
We consider the Taylor expansion of V(|r;; + ér;;|) in
powers of dr;;, where |r;;| = d. Applying the chain rule and
using the Taylor expansion of the square root, we get

V(i +861) = V(2 + 81,1 + 2, - 5r,))

=1 2 (1/2\
= Zl—,V“)(d)[Z( L )d‘ (o
= : k=0
!
+2r;; - 8ri,~>"} : (A3)
where (/%) = LTT5Z0(2 —n) is the generalized binomial

coefficient.
When we expand the sum and keep terms up to fourth
degree in dr;;, recalling that V'(d) = 0, we get

V(Ir;; +5I‘ij||)

=—-£+ (rl] ij)2 +

2d2 6d2
(rlj (Srl])(arl] 51‘”)—}—

(rl] 51‘1,)

(rl] Srl])

2d 2 24d 4

4d3(r11 (SI‘,]) (arlj 81‘1/)

+3 dz —5 (81 - 813))* + O(E||81;51 /€%), (A4)
where £ = -V (d),a =V"(d),b=V"({d) —
c=VHd)—-6V"(d)/d+15V"(d)/d>.

Later on in the calculation, we decompose the displacement
into orthogonal components dr = x + y with the property that
r;j -x;; =0 for all (i,j) € E. When we plug this decompo-
sition into Eq. (A4) and keep terms below O(ﬁ(nxn2 +
d|lyl)?), we get

3V'(d)/d, and

V(r; +x;; + Yij|)

=-£
+ 8d2 2d2

(le Xz))( ij yU)+

(Xl] ij) + (Xl] le)(rl] yU)

—(r;; - ¥ij)?

2d2 2d2

+d_2(xij SYi)E oY) + & X )i - Yij)

4d2

—(x;j - yi;)* +o[ (x| +d||y||>3] (A5)

2d2 3d3

3. Free energy of a rigid cluster

Consider the coordinates of the centers of N spheres,
r; € R3, i=1,...,N, which we consider as a single point
r=r; ®...®»ry € R of the configuration space. Let E =
{G1,71), --.,(B,jB)} be the complete list of pairs such that

Ir, —r;>=d* (i,j)€E. (A6)
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We say that the point r describes a rigid cluster if any other
point in the connected component of the solution space to
Eq. (A6) that contains r is related to r by translation and
rotation.

a. Fartition function. We ignore momenta in our phase
space because they contribute a constant term to the partition
function. Therefore, the partition function is defined as

1 / /
= I /r’eQ" exp[—BU(r)]dr’, (A7)

where Q is the region of space to which the particles are
confined. We use €2 to denote also the volume of this region.

b. Domain of integration. The free energy of a particular
rigid cluster r is defined to be —f log Z,, where Z, is the con-
tribution to the total partition function due to the configurations
that are associated with the rigid cluster r. The space of such
configurations, denoted N}, is defined to be the union over all
permutations p € Sy of domains of the form

feQ":r,=U@,) +t+dr;
for some U € O(3),t € R?,8r € R*N such that |5r;] < [},
(A8)

where / is chosen such thate < [ < d.

c. Change of variables. We can remove the rigid-body
degrees of freedom and the permutations from the calculation
by performing a change of variables. Fix r to be some
configuration corresponding to the cluster of interest. Let

={r e R : 6r; =t +s x r; for some t,s} € R3", and
let W+ be its orthogonal complement as a linear subspace of
R3¥. The transformation ¢ : W+ x R?® x SO(3) — R3*" that
maps ¢ : (0r;,t,U) — U(r; + ér;) + t — r; isnonsingular and
its Jacobian determinant is

To(61) = I + O[5, (A9)

where [ is the square root of the determinant of the moment
of inertia tensor about the center of mass. Summing over
permutations contributes a factor of N!/o, where o is the
order of the symmetry group of the cluster, that is, the number
of Euclidean motions (combinations of reflections, rotations,
and translations) that map r to a permutation of itself. In the
new variables, the integrand is independent of U and t, and
we can integrate those variables. The only complication is that
the range over which t varies, the free volume available to
the cluster, can be slightly different for different clusters due
to boundary effects. However, these differences are of order
Q?*3d, compared to the total volume £, so they are negligible
if Q> d*.

Following the change of variables and the integration over

the rigid body degrees of freedom, Z, reduces to

Q

Zy=—
O Jsrew+,|or;|<I

expl—BU (r + 8r)]J,(8r)d(Sr), (A10)

where we have removed a factor of N! and the dimensionless
factor obtained from integrating over SO(3). The inclusion
of N! depends on whether we wish to treat the spheres as
distinguishable or not, but in either case it will not change the
results as it is common to all clusters. The free energy is given
by F. = —B~'log Z,. Finally, we can replace U(r + ér) by
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Ug(r + 8r) = Z(i’j)eE V(r;j + 6r;;) and extend the domain
of integration to the entire linear space W. This contributes an
error of order U, = Z(i’ eE V(r;;) in the energy, whose exact
order compared to other error terms depends on how the pair
potential Vy(r) used to construct the sticky limit approaches
Zero as r — 00:

Q
Zy = —
O Jsrew+

exp[—BUE(r + 6r) + O(BUyp)]Jy(dr)d (Sr).

(A11)

d. Harmonic approximation. To evaluate the integral in

Eq. (A11), we use the expansion Eq. (A4). Keeping terms up
to second order in the displacements yields

Ug(r 4 6r) = —BE + 1(8r,Msr) + O(E||8r|’ /€), (Al12)

where M is a symmetric linear map, whose matrix represen-
tation is usually referred to as the dynamical matrix. When
Eq. (A12) is plugged into the integral in Eq. (A11) without
the error term, the integral converges if and only if M,
considered as a map W+ — W+ is positive definite, that is,
all its eigenvalues are positive. The result gives the harmonic
approximation for the vibrational partition function and the
error term contributes a multiplicative correction of the form
1+ OB~ 2E712 4 BUR).

e. Fourth-order approximation. The harmonic approxi-
mation fails when the null space of the dynamical matrix
extends beyond W, or equivalently when nontrivial flexes of
the rigidity matrix exist. These are infinitesimal degrees of
freedom that, if the cluster is rigid, are not extendable to finite
degrees of freedom. We call them singular directions. Let
X =ns(M)NW+ and Y = [ns(M)]*, so that Wt =X DY
is an orthogonal decomposition of W+ and X is the null
space of M restricted to W. For every ér € W' we may
write ér = X +y where x € X, y € Y. Using the expansion
Eq. (AS), we get

Upg(r+x+y) = —BE 4 Up(x) + (ui(x),y)
+ 31y, U,x)y) + OEllylIP/€?). (A13)

Here Uy(x) is a real scalar, u;(x) € Y is a 3N-dimensional
vector, and U(X) : ¥ — Y is a real symmetric map. These
have the explicit forms

_ 4 e 2 6,733
Up(x) = (UZ);E 8d2(x” x;;))"+ OE&|x|I°/d’€”), (Al4)
[u(x)]; = Z %(Xz‘j S T 7T

jst (. j)eE

+O0E|x|P/d*e* + E|lx|*/d*€?), (A15)

Uy(x) = M + O(E||x|1?/de?). (A16)
We write Up(x) = ad?Uy(x) + O(&||x|°/d>€), u(x) =
adii;(x) + OE||x|]?/d*e* + E||x||*/d*€3), and Ur(X)=a M+
O(&|x||?/de?), where Uy(x) is a homogeneous quartic func-
tion of x, ©1;(x) is a homogeneous quadratic function of x, and
M = Ma is the geometric part of the dynamical matrix. Let

1 .
(y,My).

- ~ 1
U(x.y) = Up(x) + E(fh(X),Y) toz (A7)
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As discussed in the text, U(x,y) is positive for all nonzero
(x,y) if and only if the cluster is second-order rigid.

In this case, we can calculate the leading-order term of the
partition function. We first integrate over Y by completing
the square and computing the simple Gaussian integral. The
remaining integral over X is nontrivial [59], and we leave it
unevaluated, but dimensionally reduce it:

I1Q

o

ePBE -
fdx/dyexp[—aﬂdzU(x,y)—f— O(e))]
X Y

1QePBE 2 dTY
T (et M|y)' o <E>

X/dXCXp[—aﬁdZUmin(X)+ O(e2)]
X

1905 (o \T (\T ([ o
-—< __(Z) (& ~0®) 4%
<detM|y>1/2a<aﬂ> (aﬂ> (fxe X)

x[1+ O(e3)], (A18)

where Upin(x) = Up(x) — 3 (i (x), M '@ (x)) is the minimum
of U(x,y) at fixed X, Q(X) = Upin(dX) is its geometric
part, dy and dy are the dimensions of X and Y, and
the error terms are € = L5 (||x[|> + dllyl)* + L5 |Ix 1Pl vl +
$(||x|| + lylD + BUw, and €; is given by €; by substituting
(aB)~'/? for |y|l, and €3 by substituting (aB/d>)~'/* for
Ix|l. The final error term is e3 = B~ '/4*E~14d~1/2¢1/2
B2E 1 4 BUy,
Neglecting the error, this can be written as

7 = Qd3N—3yBa—2(3N—6)+dXZ’

e Mgz,
(A19)

= (I/d3)071(det M|y)*1/2(2n)(3N76—dX)/2

where o = (afd?)"/* and y = P,

4. Relation to a square-well potential

The calculation presented in the text assumes that the pair
potential V (r) has anonzero second derivative at the minimum.
However, many models of sticky spheres, including Baxter’s
original calculation, use a square-well pair potential given by

400 r<d-—c¢
Vsquare(r)z = d—e<r<d+e.
0 r>d+e

(A20)

Here we show that if the partition function of a rigid cluster for
an analytic potential is given by Zapaiyic ~ exp(—f Unin)e ™
where « = (afd?)'/*, a = V"(r), and M is a real exponent,
then the partition function for the same cluster under a square-
well pair potential is given by Zsquare ~ €Xp(—BUpmin) ™™,
where o = (d/€)'/?, and M is the same exponent as for
Zanayiic- Explicitly, the notation f ~ g above is used to mean
ag < [ < bg asymptotically for some constants a and b.

Let us show a more general result first. Let fi,..., f5 :
RV — R be real continuous functions such that f;(0) = 0.
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FIG. 9. Simulation results for N = 9 sticky spheres with ¥ &~ 220 and p = 30, 40, 50, 60, 70, 80, 100, 120, and 140 interpreted using
different bond cutoffs. We show the observed frequencies of four of the 51 nonsingular clusters. The dashed line shows the theoretically
predicted frequency. Compare to Fig. 3, which plots the same data for the singular cluster.

Define the following integrals:
£ 1
Z, = /R il]exp (—Eﬁaﬁ(rf)dr,

B
zo= [ T]t-e< fiw < eur,
RY =1

B
Di(t) =/ a(t—Zﬁ(rf)dr,
RY i=1

Dy(t) = / 5(; — max f,-(r)2>dr (A21)
RN i=1,....B
‘We have
o 1
Z] :/ Dl(t)exp <—§ﬂat>dt
=l
€2
Z, =f D, (t)dt. (A22)
t=0
‘We also have that
t/B t t
/ Dy(tdt < f D (tdt < / Dy(tHdt', (A23)
'=0 '=0 =0

since max f? < Y f? < Bmax f?. Therefore, we have the
following sequence of implications:

Zi~Ba)™ o D)~ e D)~ M & 2y ~ M.

(A24)

As a special case, we have that if
Zunaiyic = Qa7 Q2rr)= 0 exp(BBE)apd®) ™ z,
then
Zoquare = Qd*N 3 (2m) B0 exp(BBE ) (e /d)*M 7.

However, the geometric parts z and 7z’ can be different from
each other for the two potentials.

APPENDIX B: CALCULATING
THE PARTITION FUNCTIONS

1. Numerical method to calculate the geometric
partition functions

Evaluating most of the quantities in Eq. (12) is straight-
forward. The two quantities that are worth discussing are the
integral over the singular subspace, and the symmetry number.

a. Integrating the exponential of a quartic

Here is how we numerically calculate

[ o
X

If dx = 1, then we use the fact that ffooo e~'dx = 2I°(5/4)
to write Eq. (B1) as 2I'(5/4)(Q(v))~'/4, where v € X is a unit
vector.

If dx > 2 we integrate Eq. (B1) numerically. While one
can derive analytic expressions for the integral, even for a

(BI)
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FIG. 10. Predicted vs. observed frequencies for the 52 different
rigid cluster geometries for N = 9 sticky spheres with « ~ 220 and
p = 120, using a cutoff of 1 + 1/p.

two-dimensional integral these are unwieldy [59, see, e.g.,
Table 2, formula for n = 2,r = 3]. Our numerical method
is as follows: form an orthogonal basis {Vl}l,l of X. For
each direction v;, determine a value s; such that Q(s;v;) €
[10~1°,10~'¢]. Then for 2 < dx < 4 we integrate over a box
[—s1,81] X - -+ X [—S4y,54,] using the trapezoidal rule with
equally spaced points. For dx =5 we use a Monte Carlo
method where we choose points either uniformly, or do
importance sampling from a Gaussian with standard deviation
s; /3 in each direction.

We use 25 points per dimension for the deterministic
integrals, which gives us an error between 10~ and 10~7. We
test this using Matlab’s built-in function integral, which has
a default accuracy of about that amount. For the single integral
with dy =5 we use 10° points, so the error is expected to
be about 1073, Using the trapezoidal rule we obtain excellent

PHYSICAL REVIEW E 95, 022130 (2017)

accuracy with very few points. For smooth periodic functions
the trapezoidal rule achieves exponential convergence once
enough discretization nodes are used so as to sample at the
Nyquist rate. For nonperiodic functions, the error is dominated
by the derivatives of the integrand at its endpoints, and achieves
at least second-order convergence [62].

b. Symmetry numbers

The symmetry number accounts for the total number of
distinct copies of each cluster obtained by permuting the
labeling of the spheres. In our case we count two clusters as
“distinct” if there is no rotation that maps the labeled spheres
of one cluster to the spheres with the same labels in the other
cluster.

The total number of copies of a rigid cluster of N spheres
(including enantiomers) is

!
ﬁ, (B2)
Ay

where a; is the total number of permutations that map an
adjacency matrix to itself and also preserve all the pairwise
distances. The symmetry number for this method of counting is
o = a;. We calculate a; by first computing the automorphism
group of the adjacency matrix using the function allgroup3
in the program nauty [63]. For each element in the auto-
morphism group, we apply the corresponding permutation
to the particles and check if the pairwise distance matrix
is preserved. If so, we increase a; by 1. We have to check
the pairwise distances, because a permutation that preserves
the adjacency matrix can yield a cluster that is distinct from the
original. For example, consider a large octahedral shell, made
of triangles glued together. Pick one triangle, and attach two
spheres to it, one above and one below the triangle, to form a
bipyramid. There is an automorphism of the adjacency matrix,
namely switching the two spheres, that does not correspond to
a rotation or a reflection.

N=10 N=11 N=12 N=13 N=14 N=15
K
10 10* 10%% 10F 104} o< -4.51 10*
1 \x -4.81 * «
* ZAB \ox -5.24 EN \ o -3.99
¥ -7.37 x N
0 . 0 \x -5.92 0 ® 0 \ 0 N 0 *
107}« 1071 * 10 \ 10 * 10 * 10 N
Y \ * \ \k\
\ \ S \ N
* \* * *
-4 -4 -4 -4 -4 -4
10 0 2 4 10 0 2 4 10 0 2 10 0 2 4 10 0 2 4 10 0 2 4
N oc -2.94
104 10 10%% " 10% s ae 10* ® o 24
x -3. N,
* Nap | o -4.44 . o -3.69 ) “ Y
* ZAB \* LN S A
T 10°% 202 10°0 %o 10°k 238 10°% 165 < 57 % | 100
AB L Ny L - L™ x x-1.5
T87 T Ty R R o
107 104 1074 F 70 10 ' 10 10 131G ~
0 2 4 0 2 4 0 2 4 0 2 0 2 4 2 4
AB AB A B AB A B
FIG. 11. Scaling laws for N = 10-14. Same labeling as described in the caption of Fig. 7.
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FIG. 12. Mean symmetry number 1/o and mean moment of inertia factor |I|'/? for regular clusters as a function of AB, for each

N = 10-21. The dashed line is the best-fit line with best-fit slope shown
factor contributes strongly to the exponential scaling of zap.

2. Simulation method

We performed metropolis Monte Carlo simulations for N =
9 spheres interacting via a Morse-Harmonic potential with
range parameter p of the form

et =1 =1 r< 1
Vi = {CXP[—,O(V — Dllexp(—p(r — 1)) =2] r>1
(B3)

We replaced the Morse potential with a spring potential forr <
1 for numerical stability reasons. The entire matched potential
is continuous with continuous first and second derivatives. We
use a periodic simulation cell of size 6 x6x6.

Let r(¢) be the coordinates sampled from the Monte Carlo
trajectory at time ¢. We construct an adjacency matrix such that
a;j(t) = 1ifr;; < reuofr and a;; = 0 otherwise. We set b (1) =
1 for the cluster 1 < k < 52 (if any) whose adjacency matrix

beside it. Vertical axis is a logarithmic scale. This shows that neither

Ay, is isomorphic to A(t) and by (¢) = 0 for all others. The fre-
quency of cluster k is Py = (by)/ 2,5(,2:] (by'). We also measure
the correlation function C(t) = (b (t)bi(t + 1))/ (br)>. The
estimated error for Py is AP,/ P, = ((bk)T/tk)’l/z, where T
is the length of the simulation and t; is the correlation time,
which we estimate as x = > ooy Cx(7).

In the main text, we focus on the observed and predicted
frequencies of the singular cluster. For completeness, we show
in Figs. 9 and 10 some of the results for the nonsingular
clusters. Figure 9 shows that the difficulty of identifying a
cluster for larger values of the range parameter occurs just as
much for regular clusters as for singular ones.

3. Scaling Laws

Figure 11 shows the same scaling laws as Fig. 7, but for
smaller N.
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Figure 12 shows the mean inverse symmetry number §xp = ﬁ 3" o~! for regular clusters with a given AB, and the mean

moment of inertia factor xp = ﬁ > I. The mean inverse symmetry number does not follow an exponential scaling law. The
mean moment of inertia does, but the slope is tiny. This demonstrates that neither the symmetry number, nor the moment of
inertia, are important factors in determining why zZ 5 follows an exponential scaling.

4. Bond-orientational order parameter

Given a cluster r, with bonds E = {(i1, j), .. .,(ip,jp)}, we define the bond-orientational order parameter Q; as follows:

1
qi.m = E Z Yl,m(rij/d)

@i, ))eE
. 1/2
1 5 A
(" , B
0 (21+1m2_:1%’"“> (B4)

where Y; ,,(w), m = —I, ... 1, is a basis for the spherical harmonics of degree / normalized such that f s2 Yim (u)’du = 4x.

The value of the bond-orientational order parameter Q¢ for a large fragment of the face-centered cubic lattice approaches
the value 0.575 (the limit is 0.485 for the hexagonal close-packed lattice). On the other hand, if the bond directions are drawn
randomly from a uniform measure on the sphere, the order parameter will tend to zero.

APPENDIX C: VALUES OF THE GEOMETRIC PARTITION FUNCTIONS

The following tables give the values of zap 4, for each value of N. Each value is shown to three significant digits (if fewer
are shown, it is because the trailing significant digits are zero).

dx \ AB 0

(@ N=6 0 0.0501
dx \ AB 0

(b) N=7 0 0222

dx \ AB 0

© N=8 0 122
dy \ AB 0
0 788
d N =9 ] 0.0335
d \AB -1 0 1
0 - 571 0.0362
© N =10 1 0427 -
2 027 - -
I \AB = — 0 I 2
0 - = 456 0701 000328
1 - — 405 00111 -
6 N=11 2 - 5.37 - - -
3 0.771 - - - -
\AB 2 1 0 1 2 3
0 . — 4.06c103 924 00898  0.000501
1 _ - 35.8 0.225 - -
@ N=12 2 ~ 595 0.158 _ - -
3 95 - - - - -
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I \AB 2 I 0 1 2 3
0 - — 406e+04 101 165 00176
1 _ _ 345 27 000517  0.000482
) N=13 2 _ 604 2.07 _ _ _
3 909 05 _ - _ -
4 0221 - _ _ _ _
I \AB 3 =2 — 0 ] 2 3 )
0 R = 156c105 1.0de103 22 0417 0.0037
] L _ 3.71e + 03 20.8 00791 000488  —
N 2 . 64le+03 217 _ _ _ _
i) N=14 3 ~ o8 11.7 _ _ _ _ _
4 _ 825 - - - - - -
5 0968 _ _ _ _ _ -
I \AB 2 3 3 5
. 0 350 664 0112 0.00163
() N=15 ] 117 0.0471 _ _
dx \AB 3 ) 5 6
0 §78 214 00458 0000727
(k) N =16 1 0.611 - - -
dy \AB a 5 6 7
0 33 0898 00223 0.000257
O N=17 1 0.0304 - - -
dy \AB 5 6 7 g
47 0462 000989 838005
(m) N =18 1 0.012 _ _ _
dy \AB 5 7 g 9
0 78 024 000408 33905
() N=19 1 00107 - - -
dx \AB 7 g 9 T0
0 144 0121 000203  1.23e-05
(0) N=20 1 0.0077 - - -
dx \AB g 9 10 I
0 75 0696 000106  5.08-06
(p) N =21 1 0.00421 - -
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