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Aging ballistic Lévy walks
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Aging can be observed for numerous physical systems. In such systems statistical properties [like probability
distribution, mean square displacement (MSD), first-passage time] depend on a time span ta between the
initialization and the beginning of observations. In this paper we study aging properties of ballistic Lévy
walks and two closely related jump models: wait-first and jump-first. We calculate explicitly their probability
distributions and MSDs. It turns out that despite similarities these models react very differently to the delay ta .
Aging weakly affects the shape of probability density function and MSD of standard Lévy walks. For the jump
models the shape of the probability density function is changed drastically. Moreover for the wait-first jump
model we observe a different behavior of MSD when ta � t and ta � t .
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I. INTRODUCTION

Suppose we begin observations of a system which was
initialized at t = 0 after some time ta . There can be many
reasons why we would want to do this, from technical
restrictions of a measuring device to sheer curiosity. In many
cases the delay largely changes statistical properties of the
observed process. Such a phenomenon is called aging, a term
which was originally used in the area of glassy materials [1–4].
Aging was also reported for blinking nanocrystals [5–8], where
the changes between on and off state for a single, illuminated
quantum dot during time interval [ta,t + ta] were measured.
It turned out that when the aging time ta increases, more
long on-state and off-state periods can be observed. Similar
behavior is displayed by potassium channels dynamics [9].
For more examples see [10] and references therein.

In a recent paper [11] the authors studied statistical
properties of aging continuous time random walks (CTRWs).
In this article we develop a similar theory for a different, very
useful model for anomalous diffusion—Lévy walk (LW). This
model can be used, for instance, to describe the dynamics
of the already mentioned blinking nanocrystals [5]. Other
striking and sometimes very beautiful examples of applications
include: migration of swarming bacteria [12], light transport
in special optical materials (Lévy glass) [13], and foraging
patterns of animals [14–16]. More examples are described
in a review paper devoted to this model [17], see also [18].
The particle which perform Lévy walk moves with a constant
velocity v (in this article for simplicity we set v = 1) for a time
period which follows a power law ψ(τ ) ∝ τ 1+α with α > 0.
Then it chooses randomly a new direction of the motion [17].
Here we focus on the case α ∈ (0,1) which leads to a ballistic
regime [19].

Lévy walks L(t) can also be analyzed in a context of
coupled continuous time random walks: the so-called wait-first
LWF (t) and jump-first models LJF (t) [17]. The particle which
performs wait-first Lévy walk instead of moving with the
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constant velocity v for time T remains motionless for time T

and then executes a jump which length equals v · T . As a result
trajectories are discontinuous, contrary to the standard LW, see
Fig. 1. The jump-first scenario differs from the wait-first case
with the changed order of waiting and jumping moments. The
CTRW approach to Lévy walks was analyzed in Refs. [20,21].
Although the jump models and the standard Lévy walk appear
to be very similar, they have very different statistical properties.
In Ref. [19] a method to find probability density functions
p(x,t) (PDFs) for all these models in the ballistic regime was
proposed by Froemberg et al. For another approach to this
problem for the jump models see [22]. It is also worth to
mention that PDFs of multidimensional isotropic Lévy walks
were found in Refs. [23,24]. We emphasize that all the results
we present here are calculated for the diffusion limits of LW
and two other coupled CTRW models [25,26].

In what follows we assume aging time ta > 0 and analyze
aging Lévy walk Xa(t), wait-first Ya(t), and jump-first Za(t)
models, where

Xa(t) = L(t + ta) − L(ta),

Ya(t) = LWF (t + ta) − LWF (ta), (1)

Za(t) = LJF (t + ta) − LJF (ta).

We propose a method to compute distributions p(dx,ta,t) of
aging LWs and calculate ensemble and time averaged MSDs.
One should underline here that the distribution function of the
time averaged intensity correlation function for standard LWs
was computed in Ref. [5].

II. AGING CONTINUOUS LÉVY WALKS

In this section we calculate the distribution p(dx,ta,t) of
aging Lévy walk Xa(t). The forward renewal time Wta after ta
for the non-aging process L(t) has the distribution [11,27–30]

f (ta,w) = sin(πα)

π

tαa

wa(ta + w)
10�w, (2)

where 1A(w) denotes the indicator function which equals 1
when A(w) is true and 0 otherwise. This issue can be also
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FIG. 1. Sample trajectories of Lévy walks. Forward renewal
time - Wta , backward renewal time - Vta .

studied in the language of stable subordinators [31]. Now, at the
moment of the renewal the process L(t) is time-homogeneous
and Markovian [32] so L(t + ta) − L(ta + Wta ) has the same
distribution as L(t − Wta ) on the set {ω ∈ � : Wta (ω) � t}.
Moreover L(t + ta) − L(ta + Wta ) is independent from Wta

and L(ta + Wta ). We also notice that at the moment ta the
particle can be moving upward and downward with the same
probability. In the first case at the moment ta + Wta the particle
is located at L(ta) + Wta and

L(t + ta) − L(ta) = L(t + ta) − L(ta + Wta ) + Wta ,

whereas in the second case at L(t) + Wta and

L(t + ta) − L(ta) = L(t + ta) − L(ta + Wta ) − Wta ,

see Fig. 1. Therefore

p
(
dx,ta,t,Wta � t

) =
∫ t

w=0
f (ta,w)

φt−w(x − w) + φt−w(x + w)

2
dwdx

= sin(πα)tαa
2π

∫ t

w=0

φt−w(x − w) + φt−w(x + w)

wα(w + ta)
dwdx,

(3)

where

φt (y) = sin(πα)

π

(t − y)α(t + y)α−1 + (t + y)α(t − y)α−1

(t − y)2α + (t + y)2α + 2 cos(πα)(t2 − y2)α
1|y|<t

(4)

is a PDF of non-aging Lévy walk [19]—Lamperti distribution [33]. If there is no renewal between ta and t + ta we have

p
(
dx,ta,t,Wta > t

) =
∫ ∞

t

f (ta,w)dw

(
δ−t (dx) + δt (dx)

2

)
= sin(πα)

2απ

(
ta

t

)α

2F 1

[
1,α,1 + α,− ta

t

]
(δ−t (dx) + δt (dx)). (5)

Adding p(dx,ta,t,Wta � t) and p(dx,ta,t,Wta > t) yields

p(dx,ta,t) = sin(πα)

2απ

(
ta

t

)α

2F 1

[
1,α,1 + α,− ta

t

]
(δ−t (dx) + δt (dx))

+ sin(πα)tαa
2π

∫ t

w=0

φt−w(x − w) + φt−w(x + w)

wα(w + ta)
dwdx1|x|<t , (6)

where φt (r) is given by Eq. (4). The PDF of the aging Lévy walk has a similar shape to the standard Lévy walk—see Fig. 2.
However now the distribution has additionally two δ peaks at x = t and x = −t which correspond to the probability that the
particle moves straight in one direction for the whole time period (0,t). In the special case α = 0.5 the distribution p(dx,ta,t)
can be written in a simpler form:

p(dx,ta,t) = 1

π
arctan

(√
ta

t

)
(δ−t (dx) + δt (dx)) + 1

2π

(
1√

(t + 2ta + x)(t − x)
+ 1√

(t + 2ta − x)(t + x)

)
1|x|<tdx. (7)

We notice that when ta → 0 (no aging), the δ peaks disappear
and the PDF tends to the PDF of the non-aging Lévy walk.

We also compared the analytical results with the densities
estimated via Monte Carlo methods. It turns out (see Fig. 2)
that the theory and simulations match very well. The algorithm

to simulate trajectories of non-aging Lévy walks X(t) was
presented in Refs. [23,34]. To adjust it for aging Lévy walks
Xta (t) we used their definition given by Eq. (1). A similar
approach can be applied for the modifications of Lévy walks,
as discussed in the next sections.
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FIG. 2. Lines—PDFs of different Lévy walks, ta = 1, t = 1, and
α = 0.4. Pluses and crosses—PDFs estimated using Monte Carlo
methods from 106 trajectories of LW and wait-first LW, respectively.

A. Ensemble average

Knowing the distribution p(dx,ta,t) we can calculate
immediately an ensemble averaged mean square displacement
for the aging Lévy walk for all α ∈ (0,1):

〈
X2

a(t)
〉 =

∫
R

x2p(dx,ta,t)

= t2
a + (1 − α)(t + ta)2

− sin(πα)

π (1 − α)
tαa t1−α(ta + (1 − a)(ta + t))

+ sin(πα)

απ
(t + ta)tαa t−α(α(t + ta) − 2ta)

× 2F 1

[
1,α,1 + α,− ta

t

]
. (8)

One can also deduce this form of MSD from [35] where the
correlation function was computed. It can be shown that the
mean square displacement has the following asymptotics:

〈
X2

a(t)
〉 ≈

{
t2, t � ta
(1 − α)t2, t � ta

. (9)

Indeed, when t � ta , this can be easily read from Eq. (8). We
recover the result for ensemble averaged MSD of non-aging
Lévy walk [35–37]. In the opposite case we apply the identities
for the hypergeometric functions [38] and obtain

〈
X2

a(t)
〉 = t2 − sin(πα)

π (1 − α)
2F 1

[
1,α,1 + α,− t

ta

](
t

ta

)1−a

× (
(2 − α)t2

a + (1 − a)t ta

+ (t + ta)((α − 2)ta + αt)
)
. (10)

Now we take into account the asymptotic behavior for
2F 1[1,α,1 + α,z] when |z| → 0 and Eq. (9) follows. As we

can see, the aging has a weak effect on MSD behavior—it
only changes the constant. Recall that for the aging CTRW the
situation was different—a regime change was observed [29]:

〈
x2

a (t)
〉 ≈

{
t tα−1

a /
(α), t � ta
tα/
(1 + α), t � ta

. (11)

B. Time average

We can also calculate an expected value of a time averaged
MSD for aging Lévy walks

〈δ2(�,ta,T )〉

=
〈

1

T − �

∫ ta+T −�

ta

(X(t ′ + �) − X(t ′))2dt ′
〉

= 1

T − �

∫ ta+T −�

ta

〈
X2

t ′ (�)
〉
dt ′, (12)

where 〈X2
t ′ (�)〉 is given by Eq. (8). In a highly aged regime

ta � T � � we obtain an equivalence between time and
ensemble average

〈δ2(�,ta,T )〉 ∼ �2 ∼ 〈
X2

a(�)
〉
. (13)

A very similar phenomena was also observed for aging CTRWs
[11].

III. AGING WAIT-FIRST LÉVY WALKS

For aging wait-first model Ya(t) the situation is different.
Let Wta be the forward renewal time after ta for the non-aging
process Y (t). To calculate distribution p(dx,ta,t) of Ya(t) we
cannot repeat the same reasoning as for aging Lévy walks. The
position of the particle at the moment ta + Wta is unknown,
even if we know the value of Wta . At this moment the particle
performs a jump, but the length of this jump depends on
how long the particle was resting. We have to include in our
equation Vta —the backward renewal time. Then the particle at
time ta + Wta is located at LWF (ta) ± (Wta + Vta ) with equal
probability—jumping up and down is equally probable. The
joint distribution of a random vector (Vta ,Wta ) can be computed
from Theorem 2.3 in Ref. [32]:

f (ta,v,w) = α sin(πα)

π

1

(w + v)1+α(ta − v)1−α
10�v�ta 10�w.

(14)

Therefore, in case there is a renewal between t and ta we get

p
(
dx,ta,t,Wta�t

) = α sin(πα)

2π

∫ ta

v=0

∫ t

w=0

× φt−w(x−v−w)+φt−w(x+v+w)

(w+v)1+α(ta−v)1−a

× dvdwdx1|x|<t+ta , (15)

where

φt (r) = 2 sin(πα)

π

× |r|α−1(t − |r|)α
(t + r)2α + (t − r)2α + 2 cos(πα)(t2 − r2)α

1|r|<t

(16)
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FIG. 3. Lines—ensemble averaged MSD (ta,t), ta = 1, and α =
0.4. Pluses and crosses—ensemble averaged MSDs estimated using
Monte Carlo methods from 104 trajectories of LW and wait-first
model, respectively.

is a PDF of non-aging wait-first model. In case Wta > t the
particle remains in the same position, that is Ya(t) = Ya(0)
and

p
(
dx,ta,t,Wta > t

)
= sin(πα)

απ

(
ta

t

)α

2F 1

[
1,α,1 + α,− ta

t

]
δ0(dx). (17)

Adding Eqs. (15) and (17) we obtain

p(dx,ta,t) = sin(πα)

απ

(
ta

t

)α

2F 1

[
1,α,1 + α,− ta

t

]
δ0(dx)

+ α sin(πα)

2π

∫ ta

v=0

∫ t

w=0

× φt−w(x − v − w) + φt−w(x + v + w)

(w + v)1+α(ta − v)1−a

× dvdwdx1|x|<t+ta , (18)

where φt (r) is given by Eq. (16). The density of aging wait-first
model is supported on (−ta − t,ta + t), whereas the density of
aging LW on (−t,t)—Fig. 2. This is connected with the fact,
that for wait-first model, when we start our observations, the
particle could be resting for a very long time close to ta and
then it can perform a long jump (up to ta + t). In other words
|Ya(t)| � t + ta , whereas for a non-aging process we have
|Y (t)| � t .

A. Ensemble average

We now turn to the ensemble average of the aging wait-
first model Ya(t). After using the formula for the distribution
p(dx,ta,t) we get〈
Y 2

a (t)
〉 =

∫
R

x2p(dx,ta,t) = α(1 − α)

2

(
(t + ta)2 − t2

a

)
. (19)

Consequently,

〈
Y 2

a (t)
〉 ≈

{
α(1 − α)tat, ta � t
α(1−α)

2 t2, ta � t
. (20)

We observe a completely different behavior of MSD in slightly
and highly aged systems. It is curious that for standard aging
Lévy walks this was not the case—the result was the same
up to a multiplication by the constant [Eq. (9)], see Fig. 3.
The difference can be explained in the following way. If we
start our observations at ta , then the initial waiting time is
significantly shorter than the next jump, so the displacement
is bigger compared to the standard model without aging. This
fact implies that the MSD for the aging particle is linear for
short times. When ta � t this phenomenon has little effect
on the position of the particle at time ta + t and we recover
the ballistic regime. On the other hand if the particle moves
according to the standard Lévy walk, the velocity of the particle
is always constant. If we start our observation at ta only a
distribution of subsequent turns is changed compared to the
non-aging system. Thus the ballistic regime holds for aging
Lévy walk both for short and long times.

B. Time average

Similarly as in the case of the aging standard LW, we
calculate the time average of the aging wait-first model

〈δ2(�,ta,T )〉

=
〈

1

T − �

∫ ta+T −�

ta

(Y (t ′ + �) − Y (t ′))2dt ′
〉

= 1

T − �

∫ ta+T −�

ta

〈
Y 2

t ′ (�)
〉
dt ′

= α(1 − α)

2
(T + 2ta)�. (21)

Although the behavior of the time-averaged MSD for the
standard and wait-first model is different, in this case we also
observe that in a highly aged system (ta � T ) we have the
following equivalence (analogous to Eq. (13) and the result
for aging CTRWs from [11]):

〈δ2(�,ta,T )〉 ∼ α(1 − α)ta� ∼ 〈
Y 2

a (�)
〉
. (22)

IV. AGING JUMP-FIRST LÉVY WALKS

The case of aging jump-first model Za(t) is a little bit similar
to the aging LWs. Once again we set Wta to be the forward
renewal time after ta for the non-aging jump-first model
Z(t). We do not need the backward renewal time. At time
point ta + Wta the particle ends its waiting period so Z((ta +
Wta )−) = Z(ta), which distinguishes the jump-first model from
the LW. Further movement Z(ta + Wta + t) − Z((ta + Wta )−)
is independent from the position Z((ta + Wta )−) and Wta . Thus

p(dx,ta,t) = sin(πα)

απ

(
ta

t

)α

2F 1

[
1,α,1 + α,− ta

t

]
δ0(dx)

+ sin(πα)tαa
π

∫ t

w=0

φt−w(x)

wα(w + ta)
dwdx, (23)
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FIG. 4. Lines—densities of aging Zta (1) and non-aging Z(1)
jump-first models. Aging time ta = 1, α = 0.4. Pluses—the density
estimated using MC methods from 106 trajectories.

where

φt (r) = sin(πα)

π

tα

r

{ sign r

|r+t |α+|r−t |α t � |r|
|r+t |α−|r−t |α

|r+t |2α+|r−t |2α+2 cos(πα)|r2−t2|α t > |r| .

(24)

Figure 4 shows the density of the absolutely continuous part of
the distribution p(dx,ta,t). We observe that the aging changes
the shape of the PDF. Two sharp peaks at x = t and x =
−t characteristic for the non-aging process disappear and a
singularity at x = 0 emerges.

We do not study the effect of aging for the time and
ensemble averaged MSDs since for this process both are
infinite. This can be deduced by analyzing the absolutely
continuous part of p(dx,ta,t) when x → ∞. We have φt (r) ≈
c1t

αr−1−α when r � t , where c1 is a constant. Therefore from
Eq. (23) we obtain that for set ta and t the continuous part of
p(dx,ta,t) has the asymptotics p(dx,ta,t) ∝ c2x

−1−αdx when
x → ∞, where c2 is a constant which depends on ta and t .
Since α ∈ (0,1) the MSD is infinite. The non-aging jump-first
model has the same property (see [19]).

V. CONCLUSIONS

We considered three different anomalous diffusion models
in the context of aging. We computed their distributions
p(dx,ta,t) and used them for finding time and ensemble aver-
aged MSDs. It turns out that the delay between the initialization
of the system and the beginning of the observations affects
those models in different way: the standard Lévy walks appear
to be the least prone to aging. It is an open problem if it is
possible to apply the methods from this paper to other velocity
models of Lévy walks [19,39].
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147, 74 (2012).

[35] D. Froemberg and E. Barkai, Phys. Rev. E 87, 030104(R) (2013).
[36] D. Froemberg and E. Barkai, Phys. Rev. E 88, 024101 (2013).
[37] D. Froemberg and E. Barkai, Eur. Phys. J. B 86, 331 (2013).
[38] M. Abramowitz and I. A. Stegun, Hypergeometric Functions,

Chap. 15 in Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables (Dover, New York, 1972),
pp. 555–566.

[39] A. Rebenshtok and E. Barkai, J. Stat. Phys. 133, 565 (2008).

022126-6

https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.110.020602
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1103/PhysRevLett.90.104101
https://doi.org/10.1063/1.1559676
https://doi.org/10.1063/1.1559676
https://doi.org/10.1063/1.1559676
https://doi.org/10.1063/1.1559676
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1214/13-AOP905
https://doi.org/10.1214/13-AOP905
https://doi.org/10.1214/13-AOP905
https://doi.org/10.1214/13-AOP905
https://doi.org/10.1090/S0002-9947-1958-0094863-X
https://doi.org/10.1090/S0002-9947-1958-0094863-X
https://doi.org/10.1090/S0002-9947-1958-0094863-X
https://doi.org/10.1090/S0002-9947-1958-0094863-X
https://doi.org/10.1007/s10955-012-0465-2
https://doi.org/10.1007/s10955-012-0465-2
https://doi.org/10.1007/s10955-012-0465-2
https://doi.org/10.1007/s10955-012-0465-2
https://doi.org/10.1103/PhysRevE.87.030104
https://doi.org/10.1103/PhysRevE.87.030104
https://doi.org/10.1103/PhysRevE.87.030104
https://doi.org/10.1103/PhysRevE.87.030104
https://doi.org/10.1103/PhysRevE.88.024101
https://doi.org/10.1103/PhysRevE.88.024101
https://doi.org/10.1103/PhysRevE.88.024101
https://doi.org/10.1103/PhysRevE.88.024101
https://doi.org/10.1140/epjb/e2013-40436-1
https://doi.org/10.1140/epjb/e2013-40436-1
https://doi.org/10.1140/epjb/e2013-40436-1
https://doi.org/10.1140/epjb/e2013-40436-1
https://doi.org/10.1007/s10955-008-9610-3
https://doi.org/10.1007/s10955-008-9610-3
https://doi.org/10.1007/s10955-008-9610-3
https://doi.org/10.1007/s10955-008-9610-3



