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Kinetically constrained models are lattice-gas models that are used for describing glassy systems. By
construction, their equilibrium state is trivial and there are no equal-time correlations between the occupancy
of different sites. We drive such models out of equilibrium by connecting them to two reservoirs of different
densities, and we measure the response of the system to this perturbation. We find that under the proper
coarse-graining, the behavior of these models may be expressed by a nonlinear diffusion equation, with a model-
and density-dependent diffusion coefficient. We find a simple approximation for the diffusion coefficient, and
we show that the relatively mild discrepancy between the approximation and our numerical results arises due to
non-negligible correlations that appear as the system is driven out of equilibrium, even when the density gradient
is infinitesimally small. Similar correlations appear when such kinetically constrained models are driven out
of equilibrium by applying a uniform external force. We suggest that these correlations are the reason for the
same discrepancy between the approximate diffusion coefficient and the numerical results for a broader group
of models—nongradient lattice-gas models—for which kinetically constrained models are arguably the simplest
example thereof.
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I. INTRODUCTION

Kinetically constrained models (KCMs) are a family
of lattice-gas models designed to investigate glass-forming
liquids [1,2]. By construction, the equilibrium state of these
models is trivial. However, their dynamics are cooperatively
slow and they exhibit many hallmarks of glassy systems,
such as dynamical heterogeneities [3–14], nonexponential
relaxation [8–20], and ageing [21–23], and in certain situations
they may exhibit an ergodicity-breaking jamming transition,
beyond which a finite fraction of the particles are permanently
frozen [24–28].

Most of the research on KCMs has focused on relaxation
processes within the equilibrium state, however there are also
several works on KCMs out of equilibrium. Such works in-
vestigated out-of-equilibrium systems relaxing to equilibrium
[29], and systems driven out of equilibrium by applying an
external field [30–33] and by connecting them to external
reservoirs [34–37]. A different work considered spin diffusion
in a heterogeneous KCM with spin-spin interactions and a
kinetic-constraint that depends on the entire system [38].

In KCMs there are only hard-core interactions between
particles, meaning that each site on the lattice can be occupied
by at most one particle. However, the hopping rate of a particle
to an adjacent vacant site depends on the configuration of the
neighboring sites. For example, in the Kob-Andersen (KA)
[16] model on a d-dimensional hypercubic lattice, a particle
can hop to an adjacent vacant site if at least m of its 2d nearest
neighbors are vacant both before and after the move, and
thus the hopping rate in this model is either 0 if the move
is not allowed, or some constant if the move is allowed. The
simple symmetric exclusion principle (SSEP) model [39] is
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recovered in the case m = 1. Because there are only hard-core
interactions, in equilibrium there are no correlations between
the occupancy of sites at the same time, and each site is
independently occupied with probability ρ and vacant with
probability 1 − ρ. Of course, there are correlations between
the occupancy of different sites at different times.

Here we investigate what happens when the system is driven
out of equilibrium by connecting it to reservoirs with different
densities; see Fig. 1. In such a setup, the local density gradient
�∇ρ creates a current of particles in the system, �J , which for
weak gradients should scale linearly with �∇ρ. Thus we can
infer the diffusion coefficient, D, by Fick’s law,

�J = −D �∇ρ. (1)

Such setups have been investigated before in the m = 3 KA
model in three dimensions [34–36], and in a one-dimensional
KCM in which a particle can move to an adjacent vacant site if
it has at least two neighboring vacant sites either before or after
the move [37], which may be thought of as the m = 1 1

2 KA
model. In [35] an approximation for the diffusion coefficient
was found using the assumption that there is a critical density at
ρc = 0.881. However, this assumption was later proven wrong
[40] and shown to be a finite-size effect. Despite this, using
the assumption that the critical density is at ρc = 0.881 yields
a very good approximation for systems with accessible length
scales. Although the critical density for infinite systems is
1, astronomically huge systems are required to approach this
limit [41]. In [37] a gradient lattice model with noncooperative
dynamics was considered (see the definition of gradient models
below). These two properties made the derivation of the
diffusion coefficient tractable. When the kinetic constraints
are removed, the current can be calculated exactly, even if the
system is subject to a uniform external force [42].

In this paper, we first consider KCMs in general and then
concentrate on two specific models as examples: the KA model
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FIG. 1. A sketch of the setup we consider here. The lattice in the
middle is a system of Lx = 10 by Ly = 5 sites, which is connected
to two particle reservoirs with two different densities ρL and ρR . In
the y direction, we employ periodic boundary conditions.

in two dimensions and the spiral model [24,25], the kinetic
rules of which are shown in Fig. 2. We will show that under the
proper coarse-graining, the average particle density satisfies a
nonlinear diffusion equation,

∂ρ

∂t
= ∂

∂x

[
D(ρ)

∂ρ

∂x

]
, (2)

with a model-dependent, density-dependent diffusion coeffi-
cient D(ρ). We derive a simple approximation for the diffusion
coefficient in general KCMs and show that the origin for
the discrepancy between the simple approximation and the
simulation results is non-negligible correlations that appear in
the system even for an infinitesimally small perturbation out
of equilibrium.

We note here that lattice-gas models can be divided into
two groups, namely gradient models and nongradient models,
where in gradient models the current may be written as a
discrete gradient of some function of the density, and in
nongradient models it may not [43,44]. In gradient models,
the expression we derive here for the diffusion coefficient
is an exact result. However, generally KCMs, such as the

FIG. 2. The kinetic rules for the spiral model [24,25]. The eight
neighbors of each site on the square lattice are divided into four
groups: North, South, East, and West. A site (x) is unblocked if either
its North or South group is completely vacant and either its East or
West group is completely vacant. A particle can move to an adjacent
vacant site if it is in an unblocked site both before and after the move
[32].

specific models we consider here, are nongradient models,
and we therefore do not expect the derivation to perfectly
agree with the numerical results. The correlations we find here
are related to the correlations that appear when the system is
driven out of equilibrium by applying an external field [31,33].
Finally, we further suggest a method to analytically derive the
diffusion coefficient exactly for general KCMs, which is very
cumbersome and beyond the scope of this paper.

The remainder of the paper is organized as follows: In
Sec. II we define in detail the system’s setup and emphasize the
difference between the bulk- and self-diffusion coefficients. In
Sec. III we present our approximate derivation for the diffusion
coefficient. In Sec. IV we compare the derived expression to
simulation results and demonstrate that the discrepancy is not a
finite-size effect but a genuine difference. In Sec. V we discuss
the origin of this discrepancy: non-negligible correlations that
appear only when the system is driven out of equilibrium.
We further show why in gradient models, even if correlations
develop, the derived expression of the diffusion coefficient
is exact, and not an approximation. In Sec. VI we consider
the fluctuations in the current and relate them to the diffusion
coefficient via the fluctuation-dissipation theorem. In Sec. VII
we numerically find the diffusion coefficient, and we find
a better, but still relatively simple, approximation for it by
combining the analytical approximation with a numerical
observation. Section VIII summarizes the paper.

II. SETUP

In what follows, we consider a two-dimensional square
lattice of size Lx × Ly , and we will measure distances in
units of the lattice constant. In the y direction, we consider
periodic boundary conditions. In the x direction, the system is
connected to reservoirs with densities ρL and ρR , such that at
all times the sites with x coordinates Lx + 1 or Lx + 2 (0 or
−1) are occupied with probability ρR (ρL) independently of
the occupancy of all other sites. As stated before, this implies
δ correlations between the occupancy of sites in the reservoirs,
both in space and in time, which is very different from the
dynamics of the sites inside the system, which at least for the
same site are obviously highly correlated in time. Moreover, in
the nonequilibrium situation that we will consider, correlations
develop between the occupancy of neighboring sites within
the system. We further note that the kinetic constraints hold
also for particles exiting the system and entering it from the
reservoirs.

Note that in this paper we focus on bulk diffusion, which
in general is different from self-diffusion (see Fig. 3) that is
defined from the mean-squared displacement in equilibrium,

Dself = 1

2d
lim
t→∞

〈r2〉
t

, (3)

where r is the distance after time t of a particle from its initial
position. For example, in the SSEP model, the bulk diffusion
coefficient does not depend on the density, while the self-
diffusion coefficient decreases monotonically with increasing
density [43,45].

In the m = 2 KA model in two dimensions, it was shown
that for high densities the self-diffusion coefficient may be
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FIG. 3. A comparison between the bulk diffusion coefficient, D,
and the self-diffusion coefficient, Ds , in the KA m = 2 model and in
the spiral model (SP). Symbols are results of numerical simulations.
The analytical approximation for DKA

s , Eq. (4), agrees with the
numerical simulations only for ρ � 0.6. The dashed lines for the
self-diffusion coefficients are a guide to the eye. The results for
the bulk diffusion are our no-correlation (NC) approximation: Eq. (13)
for the KA model and Eq. (18) for the spiral model.

approximated by [46]

DKA
s ≈ exp

(
2λ

ln ρ

)
, (4)

where λ = π2/18 ≈ 0.55 [47]. We note here that this value of
λ is usually associated with the joint limits of infinite system
size and unity particle density, while for finite-size systems
with finite particle density there is an effective value of λeff ≈
0.25 [41].

In the two-dimensional spiral model, the self-diffusion co-
efficient vanishes at the critical density of directed percolation
ρc ≈ 0.7 [28]. We will show that in either model the bulk
diffusion coefficient, however, does not vanish in an infinite
system at any finite density, but it may vanish in a finite
system depending on its size and on the boundary condition.
Consider a finite (but large) rectangular two-dimensional
system connected to two different particle reservoirs in the
x direction, and with periodic boundary conditions in the y

direction, as sketched in Fig. 1. The occupancy of the sites in
the reservoirs is δ-correlated in both space and time, which
means that at each time step a site in the left reservoir, for
example, is occupied with probability ρL and vacant with
probability 1 − ρL irrespective of the occupancy of any other
site (in the system or in the reservoir) at any time. Therefore,
when checking whether there are permanently frozen clusters
in the system, the sites in the reservoirs may be considered to
be vacant since their occupancy fluctuates rapidly, and at some
point they will be vacant.

For the bulk diffusion to vanish, there must be frozen
clusters in the system. In the spiral model, a completely
occupied column acts as such a frozen cluster. The probability
of at least one such fully occupied column occurring is
1 − (1 − ρLy )

Lx , which for Lx = Ly = 100 is smaller than
3 × 10−3 even for the highest density we consider here
(ρ = 0.9), and is thus negligible. Another possible frozen
cluster is a directed path along the diagonal. However, in order

FIG. 4. Frozen and nonfrozen clusters in the spiral model. The
gray zones are the two reservoirs. Each particle marked in red has a
neighbor in its N and S groups (see Fig. 2 for the model’s kinetic
constraint), so the entire red cluster is frozen for either hard-wall
or periodic boundaries. For hard-wall boundary conditions, each
diagonal of blue particles is a different cluster, while for periodic
boundary conditions all the diagonals comprise one connected cluster.
Each blue particle except the two particles near the edges has
neighbors in its N and S groups. For hard-wall boundaries, the walls
act as occupied neighbors for the blue particles at the edges, and so
all the blue particles are frozen. For periodic boundary conditions,
the blue particles at the edges are mobile and thus none of the blue
particles are frozen.

for this directed cluster to appear, it must be held at its edges
by other frozen particles, and in the setup we consider here the
reservoirs at the x direction are not frozen; see Fig. 4. If there
were hard-wall boundary conditions in the y direction, and the
system was long enough, there would have been frozen clusters
spanning the system above the critical density, and the bulk
diffusion coefficient would vanish. In the finite systems that
we simulate, we consider only periodic boundary conditions,
so the bulk diffusion coefficient continuously goes to zero only
at ρ = 1 both for the KA model and for the spiral model.

Figure 3 shows the substantial qualitative differences
between the bulk diffusion coefficients and the self-diffusion
coefficients in the m = 2 KA model and in the spiral
model. For the bulk diffusion coefficients, the plot shows the
approximations, which we derive in the following sections,
Eq. (13) for the KA model and Eq. (18) for the spiral model.

III. NO-CORRELATIONS APPROXIMATION FOR
THE DIFFUSION COEFFICIENT

In this section, we first derive an approximation for the
diffusion coefficient by neglecting correlations between the
occupancy of different sites, and after that we show that these
correlations are in fact important in KCMs. Nonetheless, the
approximate results are very close to the results of numerical
simulations that we subsequently present. We define by nα(�r,t)
the occupancy of site �r at time t under the stochastic dynamic
trajectory α, and by

ρ(�r,t) = 〈nα(�r,t)〉 (5)

the occupancy of site �r at time t averaged over all possible
stochastic trajectories. We measure time in units in which each
particle attempts to move at a rate that is equal to unity, hence
the evolution equation of ρ(�r,t) is

∂ρ(�r,t)
∂t

=
〈∑

d̂

[nα(�r + d̂,t) − nα(�r,t)]Kα,d̂ (�r,t)
〉
, (6)

where d̂ = ±x̂ or ±ŷ, and Kα,d̂ (�r,t) encodes the kinetic
constraint such that K = 1 if a move is possible between
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sites �r and �r + d̂ and K = 0 otherwise. Note that under this
construction, Kα,d̂ (�r,t) does not depend on the occupancy of
sites �r and �r + d̂. Also note that each term inside the sum on
the right-hand side of Eq. (6) is the current in the d̂ direction
between �r + d̂ and �r , and the sum of all terms is the discrete
divergence of the current.

Also note that in general

Kα,d̂ (�r,t) = Kα,−d̂ (�r + d̂,t), (7)

and thus Eq. (6) may be written as

∂ρ(�r,t)
∂t

= 〈[nα(�r + x̂,t) − nα(�r,t)]Kα,x̂(�r,t).
+ [nα(�r − x̂,t) − nα(�r,t)]Kα,x̂(�r − x̂,t)

+ [nα(�r + ŷ,t) − nα(�r,t)]Kα,ŷ(�r,t)
+ [nα(�r − ŷ,t) − nα(�r,t)]Kα,ŷ(�r − ŷ,t)〉. (8)

From the translational symmetry in the y direction, we find
that the last two terms cancel each other, and thus at the steady
state the current

�J = 〈[nα(�r + x̂,t) − nα(�r,t)]Kα,x̂(�r,t)〉x̂ (9)

does not depend on �r , as expected.

A. Kob-Andersen model

In the m = 2 KA model, for a particle to move it needs to
have at least two neighboring vacancies both before and after
the move. On the square lattice, since initially the target site
is vacant and finally the origin site is vacant, this is equivalent
to requiring that not all three remaining sites are occupied. We
may write this condition as

KKA
α,d̂

(�r,t) = [1 − nα(�r − d̂)nα(�r + d̂⊥)nα(�r − d̂⊥)]

× [1 − nα(�r + 2d̂)nα(�r + d̂ + d̂⊥)

× nα(�r + d̂ − d̂⊥)], (10)

where d̂⊥ is the perpendicular direction to d̂ , and we dropped
the dependence of nα on t for brevity.

We now introduce an uncontrolled approximation in which
we neglect correlations between occupancies of sites, such that
for any group of sites G,〈∏

�r∈G

nα(�r,t)
〉

=
∏
�r∈G

〈nα(�r,t)〉 =
∏
�r∈G

ρ(�r,t), (11)

and we consider the limit L → ∞. In this limit the gradients
are weak, and we may therefore expand Eq. (6) to second
order in the gradients around �r . We then obtain Eq. (2) with
the diffusion coefficient given by

DNC(ρ) = K(ρ), (12)

where the subscript NC represents the fact that we assumed
there are no correlations, and K(ρ) is the function K with each
nα(�r,t) replaced by ρ. For example, in the m = 2 KA model
in two dimensions, we find

DKA
NC (ρ) = K

KA
(ρ) = (1 − ρ3)2. (13)

This results from the fact that the kinetic constraint requires
that at least one of the three neighbors (not including the

target site) of the origin site is empty and at least one of the
corresponding three sites of the target site is empty.

This expression for the diffusion coefficient is very similar
to the NC approximation of the current in the presence of an
external field [31,33]. In those papers, the authors considered
the m = 2 KA model on a square two-dimensional lattice
with periodic boundary conditions on all sides, but with
a homogeneous applied field in the x direction, such that
a particle moves in the negative x direction with a lower
probability than in the other three directions. In the extreme
case in which the particle cannot move against the field, the
average current is given by

�J field(�r) = 〈nα(�r,t)[1 − nα(�r + x̂,t)]Kα,x̂(�r,t)〉x̂, (14)

which in the steady state under the no-correlations approxima-
tion may be expressed using the diffusion coefficient

�J field
NC (ρ) = ρ(1 − ρ)DNC(ρ)x̂. (15)

Similarly to what we find here, this approximation works rather
well at low densities and exhibits small deviations at high
densities [31,33].

Note that in general K(ρ) is equivalent to the probability
that a move is possible between two adjacent sites given that
one of them is occupied and the other is vacant. In the KA
model in general dimensions and m � d, a particle can move
if at least m of its neighbors are vacant before and after the
move. Since the target site is vacant before the move, and the
origin site is vacant after the move, the kinetic rule is equivalent
to saying that a particle can move to an adjacent vacant site if
at least m − 1 of its neighbors, not including the target site, are
vacant, and that at least m − 1 of the neighbors of the target
site, not including the origin site, are vacant. Since there is
no overlap between the 2d − 1 neighbors of the origin site
(excluding the target site), and between the 2d − 1 neighbors
of the target site (excluding the origin site), we find that

DKA
NC (ρ) = K

KA
(ρ)

=
[

1 −
m−2∑
n=0

(
2d − 1

n

)
(1 − ρ)nρ2d−1−n

]2

, (16)

where the summation variable n is the number of nearest-
neighbor vacant sites. Performing the sum yields

DKA
NC (ρ) = K

KA
(ρ)

= (m − 1)2B2

(
−1 − ρ

ρ
; m − 1,1 − 2d

)
, (17)

where B(z; a,b) is the incomplete beta function [48].

B. Spiral model

For the two-dimensional spiral model, the kinetic constraint
involves the ten sites surrounding the origin and target sites.
We follow the labeling of sites in Fig. 5 and assume that a
particle attempts to move from site 6 to site 7, such that site
6 is occupied before the move and site 7 is vacant before the
move. For the particle to move (see Fig. 2 above), it is required
that before the move either both its N neighbors (sites 2 and 3)
are vacant or both its S neighbors (sites 9 and 10) are vacant,
and that either both its E neighbors (sites 7 and 11) are vacant
or both its W neighbors (sites 1 and 5) are vacant. Similarly,

022124-4



HYDRODYNAMICS IN KINETICALLY CONSTRAINED . . . PHYSICAL REVIEW E 95, 022124 (2017)

FIG. 5. A graphic illustration of the rules for an attempted move
between sites 6 and 7 in the spiral model. At each site of the 12 sites,
the color on the left corresponds to its relation to site 6 and the color
on the right corresponds to its relation to site 7. The four groups are
defined by color: N (red), S (green), E (blue), and W (purple). The
black color represents the origin/target sites.

it must obey the rule after moving, i.e., in relation to site 7.
Note that before the move site 7 is vacant, and after the move
site 6 is vacant. In principle, we now need to consider all 210

possibilities for the occupancy of the ten surrounding sites,
with each site occupied independently with probability ρ and
vacant with probability v = 1 − ρ. However, we first note that
sites 2, 3, 10, and 11 are neighbors of both sites 6 and 7, so we
start checking from them.

(i) Case 1: If all four sites 2, 3, 10, and 11 are vacant, then
the W and S groups of site 7 and the N and E groups of site
6 are all vacant, which means that the move is allowed. This
occurs with probability (1 − ρ)4.

(ii) Case 2: If site 3 is occupied and sites 2, 10, and 11 are
vacant, then the W and S groups of site 7 and the E group of
site 6 are all vacant. The N group of site 6 is not all vacant,
so in order for the move to be allowed, its S group must be all
vacant, i.e., site 9 must be vacant. This occurs with probability
(1 − ρ)4ρ. From symmetry, this is equivalent to the case in
which site 10 is occupied and sites 2, 3, and 11 are vacant.

(iii) Case 3: If site 2 is occupied and sites 10 and 11 are
vacant (regardless of the state of site 3), then the S group of
site 7 and the E group of site 6 are all vacant, while the W

group of site 7 and the N group of site 6 are not all vacant.
Thus, in order to facilitate the move, sites 8, 9, and 12 must
also be vacant. This occurs with probability (1 − ρ)5ρ. From
symmetry, this is equivalent to the case in which site 11 is
occupied and sites 2 and 3 are vacant.

(iv) Case 4: If sites 2 and 11 are occupied, then the W and
S groups of site 7 and the N and E groups of site 6 are not all
vacant, which means that sites 1, 3, 4, 5, 8, 9, 10, and 12 must
be vacant. This occurs with probability (1 − ρ)8ρ2.

In all other cases, the move is not allowed. Therefore,
summing all the cases, we find that the probability that the
move is allowed is given by

DSP
NC(ρ) = K

SP
(ρ)

= (1 − ρ)4+2(1 − ρ)4ρ+2(1 − ρ)5ρ+(1 − ρ)8ρ2

= (1 − ρ)4[1 + 2ρ(2 − ρ) + (1 − ρ)4ρ2], (18)

Ρ
Ρ
Ρ

Ρ

Ρ

Ρ
Ρ
Ρ

Ρ

Ρ

FIG. 6. The normalized density profiles at the steady state for
the KA model (a) and the spiral model (b). The symbols are from
the simulations done on a 400 × 100 system, the solid lines are the
NC approximation, Eq. (23), and the dashed lines are the NC + ρeff

approximation, Eq. (53). Some of the lines cannot be seen since they
fall on the simulations.

which constitutes the no-correlation approximation for the
diffusion coefficient in the spiral model.

IV. DENSITY PROFILES

We now want to check the quality of the NC approximation.
We do this by comparing the density profile ρNC(x,t) found
by solving the nonlinear diffusion equation, Eq. (2), with
D(ρ) = DNC(ρ), Eqs. (13) and (18), and the density profile
ρ(x,t) obtained from numerical simulations of the two models.
Figure 6 shows that the steady-state density profiles in the
simulations are lower than in the approximation. This means
that the correlations between sites, which we neglected,
cause the true diffusion coefficient to be lower than its
approximation. We will show that the difference between the
two is not merely a finite-size effect, but a genuine difference.
The setup we consider is that the initial condition in both
cases is ρ(x,0) = ρ0, and the density of the reservoir at
x = 0 is ρL = 0, and at x = Lx it is ρR = ρ0. To compare
different system sizes, we plot the density as a function of the
normalized position x/Lx .

To quantify the difference between the numerical result and
our NC approximation, we compare the total normalized mass

022124-5



EIAL TEOMY AND YAIR SHOKEF PHYSICAL REVIEW E 95, 022124 (2017)

in the system at the steady state,

M = 1

Lx

∫ Lx

0
ρ(x)dx. (19)

In the steady state, we integrate the diffusion equation with
respect to x such that

c1 = D[ρ(x)]
dρ

dx
. (20)

Integrating again with respect to x yields

c1x + c0 =
∫ ρ(x)

ρ(0)
D[ρ(x ′)]

dρ(x ′)
dx ′ dx ′. (21)

Setting x = 0 in Eq. (21) yields c0 = 0. Setting x = Lx in
Eq. (21) yields

c1Lx =
∫ ρR

ρL

D(ρ)dρ. (22)

Combining Eqs. (19), (20), and (22) yields

M =
∫ ρR

ρL
ρD(ρ)dρ∫ ρR

ρL
D(ρ)dρ

. (23)

Therefore, we can analytically compute MNC for the above
polynomial expressions, Eqs. (13) and (18), for the no-
correlations approximate diffusion coefficient DNC(ρ).

From Fig. 7(a) we see that �M = MNC − M(Lx) does
not converge to 0 as Lx is increased, which means that the

Ρ
Ρ
Ρ

Ρ
Ρ

Ρ

FIG. 7. (a) The relative difference between the total mass in the
steady state according to the NC approximation and between the
simulations, �M

MNC
. (b) An extrapolation of �M/MNC at L → ∞. No

data are shown for the KA model at ρ0 � 0.4 since the difference
there is very hard to resolve and is practically equal to zero.

difference is clearly not a finite-size effect. From Fig. 7(b) we
see that the difference grows with the density, as expected.

One may argue that the difference arises due to the
large density gradients in the system, which are not well
resolved in the simulation. However, in the steady state,
the largest gradient in the density profile, Gmax = Lxmax
[ρ(x) − ρ(x − 1)], is at x = Lx , and in the cases we
checked, we find numerically that GKA

max(ρ0 = 0.8) ≈
2.6, GKA

max(ρ0 = 0.9) ≈ 8.7, GSP
max(ρ0 = 0.5) ≈ 1.9, GSP

max
(ρ0 = 0.7) ≈ 14, and GSP

max(ρ0 = 0.9) ≈ 1060. To resolve this
gradient, we require Lx � Gmax, which is satisfied in all the
cases we checked except for the spiral model at ρ0 = 0.9. We
further note that while increasing Lx adds data points close
to x = Lx , it does not change the density profile evaluated at
smaller x/Lx . We verified that in the simulations, the system
indeed reached the steady state by first numerically solving the
diffusion equation with D = DNC and finding the time it takes
the total mass of the system to reach within 1% of its value in
the steady state, and then running the dynamical simulations
up to a time that is ten times longer than that.

From these results, we see that even in the most extreme
case, the relative difference in the density profile between
the NC approximation and the simulations is at most 0.2.
This is rather good as an approximation, however it is much
larger than the relative difference seen in other nongradient
lattice models using the same type of approximation [43].
In particular, KCMs are in general nongradient models, and
thus we expect the diffusion coefficient to differ from the NC
approximation.

Figure 8 shows the density profiles at different times. The
main difference between the approximate NC solution and
the simulations is a kink that appears at intermediate times
before the system reaches the steady state. We investigate the
dynamics of this kink by defining its position as the value of
x for which ρ(xf ,t) = ρ0 − δ, where we arbitrarily choose
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FIG. 8. The density profile from the NC approximation (dashed
blue) and the 400 × 100 simulations (red) at different times for the
KA model and the spiral model at different densities.
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Ρ

Ρ

Ρ

Ρ
Ρ

Ρ
Ρ

FIG. 9. (a) The propagation of the front for the spiral model at
ρ0 = 0.7 and the KA model at ρ0 = 0.9 for various system sizes as
indicated in the legend. The dashed line is the NC solution, which
deviates substantially from the simulation results. (b) The relative
difference of Vf between the simulations and the NC solution as a
function of system size for the two models and for various densities
as indicated in the legend.

δ = 0.02. From Fig. 9(a) we see that

xf

Lx

= Vf

√
t (24)

in both the simulations and the NC solution. The scaling of xf

with
√

t is expected as this is a diffusive process. However,
while Vf from the simulations appears roughly independent of
system size, it is substantially different from Vf from the NC
solution. Again, from Fig. 9(b) we see that it is not a finite-size
effect, but a genuine difference.

V. CORRELATIONS

If ρL = ρR , the system is in equilibrium and there are indeed
no correlations between sites. However, when ρL �= ρR there
are correlations. The question is whether they have an effect on
the diffusion coefficient. We will show that in gradient models
the correlations do not affect the diffusion coefficient, while in
nongradient models they might affect it.

Consider a very small density gradient such that

ρR = ρL + ε (25)

c1 c2 c2 c3 c4 c5

FIG. 10. The six groups of sites included in the correlation
function of the KA model.

with ε � 1. The small density gradient creates a small current
in the system,

�J (�r) = 〈[nα(�r + d̂,t) − nα(�r,t)]Kα,d̂ (�r,t)〉d̂, (26)

which at the steady state is independent of �r . The diffusion
coefficient of the system is defined by

D = lim
Lx→∞

ε→0

�J · x̂
Lx

ε
, (27)

where the current is calculated at the steady state. We now
define the correlation function

C�r,d̂ = 〈[nα(�r + d̂,t) − nα(�r,t)]Kα,d̂ (�r,t)〉
− [ρ(�r + d̂,t) − ρ(�r,t)]〈K�r,d̂〉, (28)

where 〈K�r,d̂〉 is the average taken over each site independently.
As an example for nongradient models, consider the m = 2 KA
model in two dimensions, for which〈

KKA
�r,d̂

〉 = [1 − ρ(�r − d̂,t)ρ(�r + d̂⊥,t)ρ(�r − d̂⊥,t)]

× [1 − ρ(�r + 2d̂,t)ρ(�r + d̂ + d̂⊥,t)

× ρ(�r + d̂ − d̂⊥,t)]. (29)

The correlation function for the KA model is a sum of six
correlation functions of groups of different sites, as shown in
Fig. 10, and it may be written as

CKA
�r,d̂ = c1(�r) − c2(�r) + c2(�r + x̂) − c3(�r + x̂)

+ c4(�r) − c5(�r + x̂), (30)

with

c1(�r) = 〈nα(�r)nα(�r − x̂)nα(�r + ŷ)nα(�r − ŷ)〉
− ρ3(�r)ρ(�r − x̂),

c2(�r) = 〈nα(�r + x̂)nα(�r − x̂)nα(�r + ŷ)nα(�r − ŷ)〉
− ρ2(�r)ρ(�r + x̂)ρ(�r − x̂),

c3(�r) = 〈nα(�r)nα(�r + x̂)nα(�r + ŷ)nα(�r − ŷ)〉
− ρ3(�r)ρ(�r + x̂),

c4(�r) = 〈nα(�r)nα(�r − x̂)nα(�r + ŷ)nα(�r − ŷ).

× nα(�r + x̂ + ŷ)nα(�r + x̂ − ŷ)nα(�r + 2x̂)〉
− ρ3(�r)ρ(�r − x̂)ρ2(�r + x̂)ρ(�r + 2x̂),

c5(�r) = 〈nα(�r)nα(�r + x̂)nα(�r + ŷ)nα(�r − ŷ).

× nα(�r − x̂ + ŷ)nα(�r − x̂ − ŷ)nα(�r − 2x̂)〉
− ρ3(�r)ρ(�r + x̂)ρ2(�r − x̂)ρ(�r − 2x̂). (31)

When the inversion symmetry is broken, as in the setup we
consider here, the terms in Eq. (30) do not necessarily cancel
each other. We believe that the correlations we see here are in
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fact strongly related to the correlations that were investigated
in [31,33] for the driven KA model. In equilibrium, blocked
regions can become unblocked by particles moving away from
these regions in all directions. When there is a preferred
direction, as is the case both in our work and in [31,33], blocked
regions may remain blocked for longer periods of time than
in equilibrium. Since these blocked regions are more common
in out-of-equilibrium situations than in equilibrium, there are
correlations between the occupancy of neighboring sites.

The correlation function can in general be written as

C�r,d̂ = C
(1)
�r,d̂

ε

Lx

+ o

(
ε

Lx

)
, (32)

where C
(1)
�r,d̂ does not depend on ε or on Lx . If C

(1)
�r,d̂ = 0, the

correlations do not affect the diffusion coefficient. We will
now show that in nongradient models it is not necessarily
equal to zero in general, while in gradient models it is equal to
zero. First, note that regardless of the diffusion coefficient, for
an infinitesimal density gradient to leading order the density
profile is linear:

ρ(�r,t) = ρL + rxε

Lx

+ o

(
ε

Lx

)
. (33)

For any group of sites G we may write an evolution equation

∂

∂t

〈∏
�r∈G

nα(�r,t)
〉

=
〈∑

�r∈G

∏
�r′∈G

�r′ �=�r

nα(�r ′,t)
∑

d̂

�r+d̂ /∈G

× [nα(�r + d̂,t) − nα(�r,t)]Kα,d̂ (�r,t)
〉
. (34)

We now assume that for any group G the correlations between
the relevant sites, CG, are at most of order ε/Lx ,

CG = ε

Lx

C
(1)
G + o

(
ε

Lx

)
. (35)

Setting this assumption in Eq. (34) in the steady state for the
groups that comprise Kα,x̂(�r,t) in the m = 2 KA model (for
example) yields

0 = {
ρ4(�r,t)[1−ρ(�r,t)][1−ρ3(�r,t)] + C

(1)
K

} ε

Lx

+ o

(
ε

Lx

)
,

(36)

where C
(1)
K is the sum of all the first-order terms in the

correlators of the groups comprising Kα,x̂(�r,t). For general
values of ρ(�r,t), we find that the correlator is not zero,
C

(1)
K �= 0. Hence, the correlations between some groups of sites

are of order ε/Lx . Note that this does not contradict [49], where
it was shown that correlations between two sites are of order
ε2/Lx , since here we consider correlations between more than
two sites. As a further note, we believe that the correlators can
be analytically calculated using the formalism introduced in
[50], but this is beyond the scope of this paper.

For gradient models, we want to show that C
(1)
�r,d̂ = 0 [see

Eq. (32)]. To do this, we note that by definition the current in

gradient models may be written as

�J · d̂ = f (�r + d̂) − f (�r), (37)

where f (�r) is some model-dependent function of the occu-
pancy of sites in the neighborhood of the site �r . In the limit
ε

Lx
� 1, we may expand f (�r) by

f (�r) = f̄ (�r) + ε

Lx

Cf (�r) + o

(
ε

Lx

)
, (38)

where f̄ (�r) is the equilibrium value of f (�r). Therefore, the
current, Eq. (37), may be written as

�J · d̂ = f̄ (�r + d̂) − f̄ (�r)

+ ε

Lx

[Cf (�r + d̂) − Cf (�r)] + o

(
ε

Lx

)
. (39)

We therefore identify in gradient models that

C
(1)
�r,x̂ = lim

ε
Lx

→0
Cf (�r + d̂) − Cf (�r). (40)

In the joint limit ε � 1 and L � 1, the density gradients are
of order ε

Lx
and thus the gradient of any function that depends

on the density, and does not depend explicitly on ε
Lx

, is also of
order ε

Lx
. Therefore,

Cf (�r + d̂) − Cf (�r) = O

(
ε

Lx

)
(41)

and we conclude that C
(1)
�r,x̂ = 0. This means that in gradient

models, the correlations that appear when the system is driven
out of equilibrium, even if they are of order O( ε

Lx
), do not affect

the first-order term of the current, since their main contribution
is via their discrete derivative, which is of order O( ε2

L2
x
). Thus,

the first-order term of the current is determined solely by
the behavior of the system at equilibrium, f̄ . Hence, the
no-correlation derivation is an approximation for nongradient
models and an exact derivation for gradient models.

VI. FLUCTUATIONS

Until now, we discussed how the diffusion coefficient is
related to the average current in the system when it is driven
out of equilibrium. In fact, from the fluctuation-dissipation
theorem, one finds that the diffusion is also related to the
fluctuations in the current when the system is in equilibrium
[51],

D(ρ) = 1

2

d2F

dρ2
lim
t→∞

Lx→∞

Lx

〈
J 2

α (t)
〉

t
, (42)

where F is the free energy of the system, which for noninter-
acting lattice gases (such as KCMs) is given by [51]

F = ρ ln ρ + (1 − ρ) ln(1 − ρ), (43)

and �Jα(t) is the integrated current in the system from time 0
to time t under trajectory α when the system is in equilibrium.
Thus, for KCMs the diffusion coefficient may be written as

D(ρ) = 1

2ρ(1 − ρ)
lim
t→∞

Lx→∞

Lx

〈
J 2

α (t)
〉

t
. (44)
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Ρ

FIG. 11. The fluctuations in the instantaneous current 〈j 2
inst〉 vs

the density ρ. The symbols are simulation results and the continuous
lines are the analytical results, Eq. (45).

Measuring the fluctuations in the current in the proper
limits is computationally demanding. Even though by con-
struction there are no correlations between the occupancies
of different sites at the same time in KCMs, there are
long-time dynamical heterogeneities, which means that there
are correlations between the occupancy of different sites at
different times, and therefore also of the current at different
times. Instead of measuring the long-time fluctuations, we
measure a related quantity, the fluctuations in the instantaneous
current at equilibrium 〈j 2

inst〉. Namely, at each time step of the
simulation, we measure the instantaneous current, and then
we average over the fluctuations. At each time step, either a
move occurs and thus j 2

inst = 1, or a move does not occur and
then j 2

inst = 0. Since the system is in equilibrium, there is no
correlation between the occupancy of different sites and thus
〈j 2

inst〉 is equal to the probability that a move occurs,〈
j 2

inst

〉 = ρ(1 − ρ)DNC(ρ). (45)

Figure 11 shows the excellent agreement between the numer-
ical measurement of 〈j 2

inst〉 and Eq. (45).
The main conclusion here is that although in equilibrium

there are no correlations between the occupancy of differ-
ent sites at the same time, there are correlations between
the occupancy of different sites at different time. These
temporal correlations are related to the spatial, same time,
non-negligible correlations that appear when the system is
driven out of equilibrium. The origin of these correlations in
equilibrium is the dynamic heterogeneities, one of the main
characteristics of KCMs in general.

VII. FINDING THE DIFFUSION COEFFICIENT
NUMERICALLY

Now that we know that the diffusion coefficient is different
from the result of the NC approximation, we want to find
it numerically. To do this, we performed two types of
simulations; one involves a small difference in the densities of
the two reservoirs, and the second involves a large difference
in the densities. In the first method, we use the definition of the
diffusion coefficient [Eq. (27)] directly, we simulate a system
connected to two reservoirs with an infinitesimal density

difference ε � 1, and we measure the current in the system.
We then decrease ε and increase the system size Lx until the
results converge. Theoretically, the two limits commute, but in
practice if ε is too small, the density gradient will be smaller
than the finite-size effects and the statistical fluctuations. In
the second type of simulations, as described in Sec. IV, we
consider a system connected to two reservoirs, one with density
ρL = 0 and the other with a finite density ρR = ρ0. We let the
system evolve and measure the steady-state density profile
ρ(x). To get the diffusion coefficient from the steady-state
density profile, we integrate Eq. (2) in the steady state over x,

0 = D(ρ(x))
dρ(x)

dx
− D(ρ(0))

dρ(0)

dx
. (46)

Since ρ(0) = 0, we can arbitrarily set D(0) = 1, and thus

D(ρ) =
dρ(0)
dx

dρ(x)
dx

. (47)

Note that Eq. (47) does not depend on ρ0.
Figure 12 shows the diffusion coefficient derived from

these two methods, and the approximated diffusion coefficient,
Eqs. (13) for the KA model and (18) for the spiral model.
We first note that D as derived from Eq. (47) indeed does
not depend on ρ0, and that it agrees with the first method of
deriving the diffusion coefficient. This supports the fact that

Ρ
Ρ
Ρ
Ρ
Ρ
Ρ
Ρ
Ρ
Ρ

Ρ

Ρ
Ρ
Ρ
Ρ
Ρ
Ρ
Ρ
Ρ
Ρ

Ρ

FIG. 12. A comparison between the diffusion coefficient derived
by the approximation DNC (black continuous line), Eqs. (13) and (18),
by the approximation DNC+ρeff (black dotted line), Eq. (53), by the
derivative of the density profile for various ρ0 (small full squares),
Eq. (47), and by the small gradient for various ε (larger empty circles),
Eq. (27).
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the deviations we observe from the NC result are physical and
are not sensitive to the numerical method. Second, we note
that as expected, the diffusion coefficient is smaller than the
NC approximation.

Effective reservoir density approximation

A peculiar phenomenon that we observed numerically is
that for each value of the reservoir density ρ0 there is some
effective density ρeff such that the density profile in the steady
state may be very well approximated by

ρ(x; ρ0) = ρ0

ρeff
ρNC(x; ρeff), (48)

where ρNC(x; ρeff) is the steady-state solution of the diffusion
equation with D = DNC and the boundary conditions ρL = 0
and ρR = ρeff. This is shown in Fig. 6(a) for the KA model
and in Fig. 6(b) for the spiral model for several densities,
but it works in all the densities we checked in both the KA
and the spiral models. Note that ρeff can be higher than 1.
Figure 13 shows the value of ρeff versus ρ0. Even in the
spiral model, where the difference is more pronounced, we find
that the relative difference is smaller than 0.2. Based on this
observation, we now find an approximation for the diffusion
coefficient, DNC+ρeff .

Since ρ(x; ρ0) is monotonic with respect to x we can invert
it, and thus Eq. (48) is equivalent to

x(zρ0; ρ0) = x(zρeff; ρeff), (49)

where z ∈ [0,1]. Combining Eqs. (21) and (22) yields∫ zρ0

0 D(ρ)dρ∫ ρ0

0 D(ρ)dρ
=

∫ zρeff

0 DNC(ρ)dρ∫ ρeff

0 DNC(ρ)dρ
, (50)

because the left-hand side of Eq. (49) is found by the true
diffusion coefficient D, and the right-hand side is found by the
approximate diffusion coefficient DNC. We now change the
integration variable in the integrals on the right-hand side to

ρ ′ = ρ
ρ0

ρeff
, (51)

Ρ

Ρ

Ρ

FIG. 13. The normalized effective density vs ρ0 for the spiral
model (red squares) and the KA model (blue circles). No data are
shown for the KA model at ρ0 � 0.4 since there it is very hard to
resolve the difference.

such that ∫ zρ0

0 D(ρ)dρ∫ ρ0

0 D(ρ)dρ
=

∫ zρ0

0 DNC
(
ρ ′ ρeff

ρ0

)
dρ ′∫ ρ0

0 DNC
(
ρ ′ ρeff

ρ0

)
dρ ′ . (52)

Since the limits on the integrals on both sides are the same,
and the functions are monotonic, we may deduce that the
integrands are the same,

D(ρ) = DNC

(
ρ

ρeff

ρ0

)
≡ DNC+ρeff (ρ). (53)

Now, since D(ρ) does not depend on ρ0, we deduce that ρeff is a
linear function of ρ0, with a model-dependent slope s. Based on
Fig. 13, and considering only the higher values of ρ0 where the
difference is more pronounced, we estimate this slope as sKA =
1.05 and sSP = 1.13. However, this means that D(ρ = 1/s) =
DNC(1) = 0, which we do not see happening in the simulations
(1/sKA ≈ 0.95 and 1/sSP ≈ 0.88, and we considered ρ0 up to
0.9). For the KA model, the value of 0.95 is suspiciously close
to the critical density of square systems of size L = 100 (as
in the simulations), but since this phenomenon occurs even at
rather low densities, we do not expect any true relation. Thus,
we conclude that the seeming equality in Eq. (48) is actually
just a very good approximation, and therefore Eq. (53) is also
just a very good approximation.

VIII. SUMMARY

In this paper, we showed that lattice-gas kinetically con-
strained models can be coarse-grained to a hydrodynamic de-
scription with a nontrivial and nonlinear diffusion coefficient.
This diffusion coefficient is measured by driving the system
out of equilibrium by an infinitesimally small density gradient.
We showed that in general KCMs, this diffusion coefficient
is well approximated by a polynomial of the density that
can be easily obtained from the kinetic constraints. However,
the exact value of the diffusion coefficient depends also on
infinitesimally small spatial correlations between sites that
appear as the system is driven out of equilibrium due to even
infinitesimally small density gradients. From the fluctuation-
dissipation theorem, we may infer then that the fluctuations
(derived from long-time measurements at equilibrium), which
are related to the dissipation (derived from instantaneous
measurements out of equilibrium), are also nontrivial. Thus,
we may use the measurements of the diffusion coefficient to
evaluate very long time correlations in equilibrium, which are
nontrivial and not easy to measure since the relaxation time in
KCMs is extremely long.

These correlations are strongly related to the correlations
that appear as the system is driven out of equilibrium by an
external field [31,33]. They are not exactly the same, since here
the control parameter is the particle density, while in [31,33]
the control parameters are both the density and the strength
of the applied field. Although they are different, they both
arise due to the breaking of inversion symmetry, and it would
be interesting to study possible general relations between the
diffusion coefficient and the field-induced current.

Finding an exact analytical expression for the diffusion
coefficient is a promising research direction that would shed
light on the dynamics of these models. Several possible
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approaches are to investigate very small systems and exactly
solve the master equation for them; to use the formalism
introduced in [50], in which the correlations are expressed
as a multiplication of model-specific left and right vectors,
representing the two reservoirs, and an infinite number of
matrices, representing the local transition matrices for single
sites; or to use the systematic approach developed in [44],
in which the diffusion coefficient was calculated by using
variational calculations on successively larger portions of the
system. In all of these approaches, the calculations would be
less cumbersome if a relatively simple model is investigated.
We propose a variation of the model used in [37], in which
a particle can move on a one-dimensional lattice from site r

to site r + 1 if site r + 1 is vacant, and if either site r − 1
is vacant or site r + 2 is vacant. The difference between this
proposed model and the one used in [37] is that the hopping
rate is either 0 if both sites r − 1 and r + 2 are occupied, or 1
otherwise. Unlike the model used in [37], our proposed model
is nongradient, and we thus expect the diffusion coefficient to
differ from the NC approximation.

In the two-dimensional models we investigated here nu-
merically, namely the m = 2 KA model and the spiral model,
the diffusion coefficient is continuous with respect to the
density. We suspect, however, that using the same setup in
our extension of the spiral model to three dimensions [28]
will create some interesting phenomena. In that model, when
the density is above the critical density of two-dimensional
directed percolation, there are frozen quasi-one-dimensional

clusters in each of the y-z planes perpendicular to the density
gradient, which we assumed is in the x direction, even for
periodic boundary conditions. Several questions come to mind:
do these clusters cause the system to freeze, or are other
particles able to travel between these frozen clusters, similarly
to what happens in this model when it is not connected to
reservoirs [52]? If the particles can travel between the frozen
clusters, is there some higher density at which the diffusion
stops? Is there a singularity in the diffusion coefficient or its
derivative with respect to the density? Is there some density
at which the motion becomes subdiffusive? When the initial
condition is a completely empty system, these clusters cannot
appear due to the microscopic reversibility of the dynamics, so
what happens then? These questions can guide future research
on this topic. Similarly, driven KCMs may also exhibit a rich
phase diagram. By using the domain-wall theory developed in
[53] with the derived (or numerically measured) value of the
diffusion coefficient, this phase diagram can be investigated.
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