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Stochastic thermodynamics of Langevin systems under time-delayed feedback control. II.
Nonequilibrium steady-state fluctuations
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4 place Jussieu, 75252 Paris Cedex 05, France

2Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
(Received 19 December 2016; published 21 February 2017)

This paper is the second in a series devoted to the study of Langevin systems subjected to a continuous
time-delayed feedback control. The goal of our previous paper [Phys. Rev. E 91, 042114 (2015)] was to
derive second-law-like inequalities that provide bounds to the average extracted work. Here we study stochastic
fluctuations of time-integrated observables such as the heat exchanged with the environment, the extracted work,
or the (apparent) entropy production. We use a path-integral formalism and focus on the long-time behavior in
the stationary cooling regime, stressing the role of rare events. This is illustrated by a detailed analytical and
numerical study of a Langevin harmonic oscillator driven by a linear feedback.
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I. INTRODUCTION

This paper is part of an ongoing effort to include the
effect of time delay in the thermodynamic description of small
stochastic systems subjected to a continuous feedback control.
Time delay is now recognized to play an essential role in many
physical, biological, and information systems and also occurs
very frequently in experimental setups. Moreover, within the
last two decades, including a delay between the detection and
the control operation has emerged as an important feedback
strategy for controlling transport or stabilizing irregular motion
in classical or quantum systems, especially in the presence
of noise (see, e.g., the collection of papers in Refs. [1–3]).
Accordingly, there is much interest in the mathematical and
control theory literature for exploring the plethora of complex
phenomena produced by the combination of time delay and
noise.

On the other hand, it is much less common to analyze
time-delayed feedback loops from the perspective of energetic
and information exchanges, which is the main focus of
the emerging fields of stochastic and information thermo-
dynamics [4,5]. One reason is the non-Markovian nature of
the dynamics, which makes the theoretical description more
challenging (for instance, one cannot resort to a spectral
approach using Fokker-Planck operators). This is not an
impossible task, though, and in a previous work [6], hereafter
referred to as paper I, we have initiated a theoretical study of
an underdamped Langevin equation that models the motion of
a nanomechanical resonator in contact with a thermal reservoir
and subjected to a time-delayed, position-dependent force. The
role of the control force is to damp thermal fluctuations and to
maintain the resonator in a nonequilibrium steady state (NESS)
where its average (configurational or kinetic) temperature is
much smaller than the temperature of the environment. Heat
is thus permanently extracted from the bath and converted
into work, which means that the feedback control operates as
an autonomous Maxwell’s demon. We then derived a series
of second-law-like inequalities that provide bounds to the
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average extracted work. One of these bounds, obtained by
(formally) time reversing the feedback, is intimately related to
the non-Markovian character of the dynamics.

However, fluctuations dominate at the nanoscale [7], and
it is not sufficient to merely describe observables by their
typical value. It is also important to study the large-deviation
statistics that characterizes the fluctuations at long times. This
is the purpose of the present work where we extend the study of
paper I by considering the nonequilibrium fluctuations of three
time-integrated thermodynamic quantities, the heat, the work,
and a so-called “apparent” entropy production (to be defined
below). These observables have the same average value in the
stationary state, but their fluctuations may differ because of
the unbounded growth of temporal boundary terms. As it turns
out, these fluctuations are very dependent on the time delay,
and this issue is the central theme of this work.

The paper is organized as follows. We first review in
Sec. II some basic facts about the model, the observables, and
the calculation of the large deviation rate functions. Then,
in Sec. III, we introduce two different conjugate dynamics
and use them to derive two expressions of the dissipated heat
as a ratio of path probabilities. This allows us to express
the path-integral representations of the cumulant generating
functions in three different ways, which will play an important
role in our study. Section IV, which is the central part of the
paper, is devoted to a detailed numerical and analytical study
of the large-deviation statistics for a harmonic oscillator driven
by a linear feedback. The main objective of the theoretical
analysis is to explain the intriguing effect of the delay
on the probability distributions of the observables in the
long-time limit. Special attention is paid to the behavior of
the corresponding scaled cumulant generating functions and
to the connection between rare fluctuations of the temporal
boundary terms and the asymptotic behavior of the
conjugate dynamics. We finally derive two stationary-state
fluctuation theorems for the work performed by the
feedback force. Summary and closing remarks are presented
in Sec. V. Some additional but important pieces of
information are given in two appendices. In particular,
Appendix B offers a complete analytical study of the
fluctuations in the (Markovian) small-delay limit where the
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feedback generates an additional viscous damping and the
so-called “molecular refrigerator” model studied in
Refs. [8–10] is recovered.

We have tried to make the present paper self-contained as
much as possible. However, we warn the reader that some
analytical developments rely strongly on paper I, in particular
on Sec. V B 2.

II. MODEL AND OBSERVABLES

As in paper I, we consider an underdamped Brownian parti-
cle of mass m immersed in a thermal environment with viscous
damping γ and temperature T . The dynamical evolution is
governed by the one-dimensional Langevin equation

mv̇t = −γ vt + F (xt ) + Ff b(t) +
√

2γ T ξt , (1)

where vt = ẋt ,F (x) = −dV (x)/dx is a conservative force,
and ξt is a zero-mean Gaussian white noise with unit
variance (throughout the paper, temperatures and entropies
are measured in units of the Boltzmann constant kB). Ff b(t) is
the feedback control force, which depends on the position of
the particle at time t − τ :

Ff b(t) = Ff b(xt−τ ), (2)

where τ > 0 is the time delay. This model is intended
to describe an autonomous feedback process in which the
instantaneous state of the system (here the position of the
Brownian particle) is continuously monitored with perfect
accuracy, but some time is needed to implement the control.
Clearly, τ must be smaller than any relaxation time in the
system for the control to be efficient. We stress that it is
the stochastic force Ff b(t) that makes the system’s dynamics
non-Markovian and not the interaction with the environment.

Our goal is to study the fluctuations of a time-integrated ob-
servable At such as the work done by the feedback force or the
heat exchanged with the environment during the time interval
[0,t], assuming that the system has reached a nonequilibrium
steady state (NESS). As discussed in paper I, this requires to
properly choose the parameters of the feedback loop, such as
the delay or the feedback gain. In fact, multiple NESSs may
exist, which is a remarkable feature of time-delayed systems
(see, e.g., Fig. 2 below). Moreover, we will focus on regions
of the parameter space where the feedback controller acts as
a Maxwell’s demon who permanently extracts heat from the
environment and uses it as work to maintain the system at a
temperature smaller than T .

The time-integrated work and dissipated heat are defined as

Wt [X,Y] =
∫ t

0
dt ′ Ff b(xt ′−τ ) ◦ vt ′ , (3)

and

Qt [X,Y] =
∫ t

0
dt ′ [γ vt ′ −

√
2γ T ξt ′] ◦ vt ′

= −
∫ t

0
dt ′ [mv̇t ′ − F (xt ′) − Ff b(xt ′−τ )] ◦ vt ′ ,

(4)

where the integrals are interpreted with the Stratonovich
prescription. These are standard definitions of work and heat

in stochastic thermodynamics [4,11], except for the fact that
the delay makes the two observables depending on both X,
the system trajectory in phase space in the time interval [0,t],
and Y, the trajectory in the previous interval [−τ,0] [we here
assume that t � τ so that xi ≡ (x0,v0) ≡ yf ]. This of course
is a source of complication for the theoretical description,
although one may suspect that the dependence on Y does not
play a major role at long times. From now on, we will drop
the functional dependence of the observables on X and Y to
simplify the notation. (There are a few other differences with
the notations used in paper I: the time window is now [0,t]
instead of [−T ,T ] and the time-integrated observables are
denoted by calligraphic uppercase symbols, e.g., Wt instead
of w.)

In the following, we will also consider the fluctuations of
the trajectory-dependent functional (dubbed as an “apparent”
entropy production)

�t = �m
t + ln

p0(xi)

p1(xf )
, (5)

where �m
t = βQt [β = (kBT )−1] is the entropy change in the

medium, xf ≡ (xt ,vt ), and p0(x),p1(x) are arbitrary normal-
ized distributions. In the steady state, the natural choice for
these distributions is p0(x) = p1(x) = pst (x), and an observer
unaware of the existence of the feedback control would regard
�t as the total stochastic entropy production (EP) in the
time interval [0,t] [12]. However, �t is negative on average
in the cooling regime, in apparent violation of the second
law, and more generally does not obey an integral fluctuation
theorem (IFT), 〈e−�t 〉 �= 1. Another, but more complicated,
trajectory-dependent functional that may quantify the entropy
production in the system was introduced in paper I. This
functional does satisfy an IFT.

It is important to notice that the three fluctuating quantities
βWt ,βQt , and �t have the same expectation value in the
stationary state:

〈βW t 〉st = 〈βQt 〉st = 〈�t 〉st . (6)

Moreover,Wt andQt are related via the first law that expresses
the conservation of energy at the microscopic level [11],

Qt = Wt − �U(xi ,xf ), (7)

where

�U(xi ,xf ) = 1
2m

(
v2

t − v2
0

) + V (xt ) − V (x0) (8)

is the change in the internal energy of the system after the
time t . Accordingly, the fluctuations of Wt ,Qt , and �U are
not independent.

We are interested in the long-time behavior of the stationary
probability distribution functions (pdfs) Pst (At ), where At

stands for either βWt or βQt or �t . As t → ∞, we expect
these pdfs to acquire the scaling form

Pst (At = at) ∼ e−I (a)t , (9)

where I (a) ≡ − limt→∞(1/t) ln Pst (At = at) is the large de-
viation rate function (LDF) that is used to characterize the
statistics of exponentially rare events [13]. As usual, to obtain
the rate function, we introduce the moment generating or
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characteristic function

ZA(λ,t) = 〈e−λAt 〉st (10)

and the corresponding scaled cumulant generating function
(SCGF)

μA(λ) ≡ lim
t→∞

1

t
ln〈e−λAt 〉st , (11)

whose behavior away from λ = 0 encodes information about
rare trajectories contributing to the tails of the pdf. For generic
values of λ, one expects μA(λ) to be the same function μ(λ) for
βWt ,βQt , and �t since the three observables differ only by
temporal boundary terms like �U(xi ,xf ) or ln p0(xi)/p1(xf ).
This amounts to assuming that the generating functions behave
asymptotically as

ZA(λ,t) ∼ gA(λ)eμ(λ)t , (12)

where the dependence on the observable At is included in the
subleading factor gA(λ) that results from the average over the
initial and final states (in the present case, the initial “state”
involves the whole trajectory Y). The LDFs I (a) are then
obtained via the Legendre transform

I (a) = −λ∗a − μ(λ∗), (13)

with the saddle point λ∗(a) being the root of μ′(λ∗) = −a [13].
However, Eq. (13) breaks down when gA(λ) has singularities
in the region of the saddle-point integration due to rare but
large fluctuations of the boundary terms. Although such terms
typically do not grow with time, they may indeed fluctuate
to order t when the potential V (x) is unbounded, which is the
situation considered here. The leading contribution to the LDF
then comes from the singularity, which induces an exponential
tail in the pdf. This issue is now well documented in the
literature, both theoretically [14–24] and experimentally [25–
27]. In consequence, while the three observables βWt ,βQt ,
and �t have the same expectation value, their LDFs may differ.
In some circumstances, large fluctuations of the boundary
terms may even induce a discontinuity of the SCGF at λ = 1,
as pointed out recently [28]: the asymptotic expression (12) is
then no longer valid and μA(1) �= μ(1). We shall see later that
this is very much dependent on the time delay.

The main difficulty we are facing in the present study is
that no analytical methods are currently known to compute the
SCGFs. If the dynamics were Markovian, one would deter-
mine the largest eigenvalue of the appropriate Fokker-Planck
operator [13]. But there is no such operator in the presence
of delay (except in the small-τ limit where Markovianity is
recovered), and one has to rely on numerical simulations or
to focus on a linear dynamics for which the calculation of
μ(λ) can be carried out by going to the frequency domain.
However, even in this case, the expression of the prefactors
gA(λ) remains out of reach for generic values of λ.

III. CONJUGATE DYNAMICS AND
GENERATING FUNCTIONS

A. Conjugate dynamics and dissipated heat

We begin our study by recalling two expressions for the
heat dissipated along a trajectory that will play a significant
role in the following. We stress that these relations are valid

for trajectories of arbitrary duration. There is no need to take
the limit t → ∞.

The first relation is obtained by introducing a modified
or “conjugate” Langevin dynamics in which the sign of the
viscous damping is flipped:

mv̇t = γ vt + F (xt ) + Ff b(xt−τ ) +
√

2γ T ξt . (14)

This readily yields [28]

βQt = ln
P[X|Y]

P̂[X|Y]
− γ

m
t, (15)

where P[X|Y] and P̂[X|Y] are the conditional probabilities
of realizing the trajectory X with the original and conjugate
dynamics, respectively, given the trajectory Y (and thus the
initial value xi = yf ). These two probabilities can be expressed
in terms of Onsager-Machlup (OM) action functionals [29],

P[X|Y] ∝ e
γ

2m
t e−βS[X,Y] (16a)

P̂[X|Y] ∝ e− γ

2m
t e−βŜ[X,Y], (16b)

where

S[X,Y] = 1

4γ

∫ t

0
dt ′ [mv̇t ′ + γ vt ′ − F (xt ′) − Ff b(xt ′−τ )]2,

(17a)

Ŝ[X,Y] = 1

4γ

∫ t

0
dt ′ [mv̇t ′ − γ vt ′ − F (xt ′) − Ff b(xt ′−τ )]2,

(17b)

and the exponential factors e± γ

2m
t come from the Jacobians

of the transformations ξ (t) → x(t) associated with the two
Langevin dynamics (see Ref. [30] or the supplemental material
of Ref. [28] for a derivation). As usual, the continuous-
time integrals in Eqs. (17) are interpreted as the limit of
discrete sums, as discussed, for instance, in the Appendix B
of Ref. [31]. We recall that there is no need to specify
the interpretation (Ito versus Stratonovitch) of the stochastic
calculus as long as m �= 0. Hereafter, the hat symbol will
refer to quantities associated with the γ → −γ conjugate
dynamics (14).

From Eq. (15), one immediately obtains an IFT for the
dissipated heat [28]:

〈e−βQt 〉 = e
γ

m
t . (18)

In particular, this implies at long times that

μQ(1) = γ

m
. (19)

Moreover, the average dissipated heat satisfies 〈βQt 〉 �
−(γ /m)t by Jensen’s inequality. This bound is trivial, though,
and can be directly obtained by averaging Eq. (4), which yields

〈Qt 〉 = γ

m

∫ t

0
dt ′[Tv(t ′) − T ], (20)

where Tv(t) = m〈v2
t 〉 � 0 is the effective temperature of the

momentum degree of freedom.
The second relation is obtained by performing the time-

reversal operation normally associated with the microscopic
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FIG. 1. Time-reversed paths X† and Y†. When the dynamics is
governed by the acausal Langevin equation (21), the feedback force
depends on the future state of the system, as schematically represented
by the arrowed line.

reversibility condition [32]. The key point is that Qt is no
longer an odd quantity under time reversal because of the time
delay. To recover this symmetry, one must also flip τ into
−τ and introduce another conjugate dynamics defined by the
acausal Langevin equation:

mv̇t = −γ vt + F (xt ) + Ff b(xt+τ ) +
√

2γ T ξt . (21)

The usual local detailed balance equation is then generalized
as [6,33]

βQt = ln
P[X|Y]

P̃[X†|x†i ; Y†]
− ln

Jt

J̃ [X]
, (22)

where P̃[X†|x†i ; Y†] is the probability of realizing the time-
reversed trajectory X† with the conjugate dynamics (hereafter
represented by the tilde symbol), given the initial value
x†i ≡ x†(t = 0) = (xt ,−vt ) and the trajectory Y†. Note that Y†

denotes the time-reversed path in the time interval [t,t + τ ],
so that its initial point is x†f ≡ x†(t) = (x0,−v0), as shown
schematically in Fig. 1.

Therefore, the probability weight of X† must be conditioned
on both the initial value x†i and the future trajectory Y†.
P̃[X†|x†i ; Y†] is then expressed as

P̃[X†|x†i ; Y†] ∝ J̃ [X]e−βS̃[X†,Y†], (23)

where

S̃[X,Y] = 1

4γ

∫ t

0
dt ′ [mv̇t ′ + γ vt ′ − F (xt ′) − Ff b(xt ′+τ )]2

(24)

and J̃ [X] is the Jacobian of the transformation ξ (t) → x(t)
associated with Eq. (21). As shown in paper I, J̃ [X] is a
nontrivial functional of the path in general, but it becomes a
path-independent quantity J̃t like the Jacobian Jt associated
with Eq. (1) in the case of a linear dynamics. (In this work, we
use the notation J̃t and Jt instead of J̃ and J to emphasize
that these quantities depend on the duration of the trajectory.)

Note that the two OM actions S̃[X,Y] and Ŝ[X,Y] are
related by time inversion:

S̃[X,Y] = Ŝ[X†,Y†]. (25)

There is also an IFT associated with Eq. (22), but it involves a
more complicated path functional [see Eqs. (74)–(79) in paper
I] that plays no role in the following. Let us just recall the
corresponding second-law-like inequality for the heat flow in

the NESS [6,33]:

〈βQ̇〉st � −ṠJ , (26)

where

ṠJ ≡ lim
t→∞

1

t

〈
ln

Jt

J̃ [X]

〉
st

. (27)

This bound is in general different from the trivial bound
〈βQ̇〉st � −(γ /m) obtained from Eq. (20) (see, e.g., Fig. 8
below).

B. Generating functions in the NESS

We now focus on the steady-state regime and drop the
suffix “st” in all expressions hereafter to shorten the notation.
Our objective in this section is to express the generating
functions ZA(λ,t) in three different ways by exploiting
expressions (15) and (22) of the dissipated heat. We start from
the definition (10), which we write more explicitly as

ZA(λ,t) =
∫∫

dxi dxf

∫
dP[Y]

∫ xf

xi

DX e−λAtP[X|Y],

(28)

where
∫

dP[Y] · · · is a shorthand notation for
∫

dyi

p(yi)
∫ xi

yi
DY P[Y|yi] · · · and yi ≡ (x−τ ,v−τ ) [hence∫

dP[Y] = p(xi)]. Since the three observables differ only by
temporal boundary terms which are functions of xi and xf ,
we single out one of them, βWt , and define the λ-dependent
quantity:

Kλ[xf ,t |Y] =
∫ xf

xi

DX e−λβWtP[X|Y]. (29)

(The choice of βWt instead of βQt or �t will be justified a
posteriori in Sec. IV B 1.) Loosely speaking, Kλ[xf ,t |Y] is a
kind of biased transition probability from xi to xf . This allows
us to reexpress the three generating functions as

ZA(λ,t) =
∫∫

dxidxf fA,λ(xi ,xf )
∫

dP[Y] Kλ[xf ,t |Y],

(30)

where

fW,λ(xi ,xf ) = 1, (31a)

fQ,λ(xi ,xf ) = eλβ�U(xi ,xf ), (31b)

f�,λ(xi ,xf ) = eλ[β�U(xi ,xf )+ln p(xf )/p(xi )], (31c)

and we have used the first law (7) to define fQ,λ and f�,λ.
We now use Eq. (15) to replace the path probabilityP[X|Y]

by P̂[X|Y] in Eq. (28). We then define

K̂λ[xf ,t |Y] = e
γ

m
t

∫ xf

xi

DX e(1−λ)βWt P̂[X|Y], (32)

which leads to

ZA(λ,t) =
∫∫

dxidxf f̂A,λ(xi ,xf )
∫

dP[Y] K̂λ[xf ,t |Y]

(33)
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with

f̂W,λ(xi ,xf ) = e−β�U(xi ,xf ), (34a)

f̂Q,λ(xi ,xf ) = e(λ−1)β�U(xi ,xf ), (34b)

f̂�,λ(xi ,xf ) = e
(λ−1)β�U(xi ,xf )+λ ln

p(xf )

p(xi ) . (34c)

Likewise, we can use Eq. (22) to replace P[X|Y] by
P̃[X†|x†i ; Y†]. In this case, it is convenient to change the path
integral over X in Eq. (28) into an integral over X†, and define

K̃λ(x†f ,t |x†i ; Y†) =
∫ x†f

x†i

DX† Jt

J̃ [X]
e(1−λ)βWt P̃[X†|x†i ,Y†],

(35)

which leads to

ZA(λ,t) =
∫∫

dx†i dx†f f̃A,λ(xi ,xf )
∫

dP[Y] K̃λ(x†f ,t |x†i ; Y†)

(36)

with

f̃A,λ(xi ,xf ) = f̂A,λ(xi ,xf ). (37)

At first glance, it might seem that we have gained nothing by
replacing Eq. (30) by two other expressions of the generating
functions that are even more complicated. This is true for a
generic value of λ. But the interesting feature of Eqs. (33)
and (36) is the special role played by λ = 1. This makes these
two equations well suited to infer the asymptotic behavior of
the quantities ZA(1,t) = 〈e−At 〉, thus revealing the occurrence
of large statistical fluctuations originating from temporal
boundary terms. However, this requires us to first determine
whether or not the conjugate Langevin equations (14) and (21)
admit a stationary solution. Although this analysis can be done
in a rather general framework, it is quite delicate in the case of
the acausal dynamics (21), and it is more illuminating to focus
on a specific case, the linear model studied in the next section.
We shall thus return to this issue later. A detailed discussion is
presented in Appendix A.

IV. TIME-DELAYED LANGEVIN
HARMONIC OSCILLATOR

To be concrete, we now consider the time-delayed linear
Langevin equation

mv̇t = −γ vt − kxt + k′xt−τ +
√

2γ T ξt , (38)

which is conveniently rewritten in a dimensionless form as

v̇t = − 1

Q0
vt − xt + g

Q0
xt−τ + ξt (39)

by taking the inverse angular resonance frequency ω−1
0 =√

m/k as the unit of time and xc = k−1(2γω0T )1/2 as the
unit of position [34]. In this equation, Q0 = ω0τ0 denotes
the intrinsic quality factor of the oscillator (τ0 = m/γ is
the viscous relaxation time), and g = k′/(γω0) = (k′/k)Q0

represents the gain of the feedback loop. The dynamics of the
system is thus fully characterized by the three independent
dimensionless parameters Q0,g, and τ . The gain g is usually

the control variable in feedback-cooling experimental setups
(see, e.g., Ref. [35]).

In these reduced units, the fluctuating work and heat
(normalized by kBT ) are given by

βWt = 2g

Q2
0

∫ t

0
dt ′ xt ′−τ ◦ vt ′ (40)

and

βQt = βWt − 1
Q0

(
x2

f − x2
i + v2

f − v2
i

)
. (41)

These are quadratic functionals of the noise, and therefore the
corresponding probabilities are not Gaussian. To obtain the
expression of the EP functional �t defined by Eq. (5), we use
the expression of the stationary pdf derived in paper I,

p(x) = 1

2π [〈x2〉〈v2〉]1/2
e
− x2

2〈x2〉 −
v2

2〈v2〉 , (42)

where the mean square position and velocity are expressed
in terms of the configurational and kinetic temperatures
Tx and Tv: 〈x2〉 = (Q0/2)Tx/T and 〈v2〉 = (Q0/2)Tv/T .
These two effective temperatures are given by Eqs. (113)
and (114) in paper I, respectively. We recall that Tx is the
temperature commonly measured in experiments involving
nanomechanical devices [36–38] whereas Tv determines the
heat flow (and thus the extracted work) in the stationary state,
according to

βQ̇ = 1

Q0

(
Tv

T
− 1

)
, (43)

i.e., βQ̇ = (γ /m)(Tv/T − 1) in original units [see Eq. (20)].
Since Tx �= Tv in general, the system does not obey the
standard equipartition theorem (cf. the discussion in paper
I). Inserting Eq. (42) into Eq. (5) then yields

β�t = βWt + 1

Q0

[
T − Tx

Tx

(
x2

t − x2
0

) + T − Tv

Tv

(
v2

t − v2
0

)]
.

(44)

Since we are dealing with a linear dynamics with Gaussian
noise, all stationary path probabilities are Gaussian distribu-
tions [39], and the calculation of the generating functions
ZA(λ,t) from Eqs. (30) and (31) amounts to computing
Gaussian path integrals. For t finite, however, this calculation
cannot be carried out analytically for essentially two reasons.
The first is that the Euler-Lagrange equation for the optimal
trajectory is a forward-backward delay differential equation
that has no closed-form solution in general (it can be solved
only by a perturbative expansion in powers of g). The second
reason is that the explicit expression of P[Y] is unknown [40],
so that the average over initial conditions cannot be performed.

Things become simpler in the long-time limit as one can
use the Fourier transform to obtain an analytical expression of
the SCGF μ(λ); see Eq. (53) below (but, as already stressed,
the value at λ = 1 requires special care). The LDFs are then
obtained via the Legendre transform in Eq. (13). However,
since the behavior of the prefactors gA(λ) is unknown and
singularities may occur, additional assumptions are needed.
Useful insight on this issue is gained by inspecting the small-
τ limit of the Langevin equation, which corresponds to the
Markovian model originally considered in Refs. [8,9]. The
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FIG. 2. Stability diagram of the feedback-controlled oscillator for
Q0 = 34.2 (the time unit is the inverse angular resonance frequency
ω−1

0 ). The oscillator is unstable inside the shaded regions. The acausal
response function χ̃ (s) has all its poles located in the r.h.s. of the
complex s plane inside the regions delimited by the dashed red lines
and two poles in the l.h.s. outside these regions.

feedback then generates an additional viscous damping, and a
complete analytical description of the fluctuations is possible,
as detailed in Appendix B. (A first, but incomplete, analysis
was performed by two of the present authors in Refs. [10].)
This study, together with the additional pieces of information
gathered from the direct numerical simulation of Eq. (38), will
eventually allow us to propose a global scenario.

In order to give the reader a foretaste of the puzzle that
must be resolved, we first present some data obtained from
numerical simulations of the Langevin equation (39). The
theoretical interpretation is postponed to Sec. IV B.

A. Numerical study

Although we have studied the model for various values of
the dimensionless parameters Q0 and g, we here present only
numerical results obtained for Q0 = 34.2 and g/Q0 = 0.25.
We have chosen this set of parameters for several reasons.
In the first place, the value of Q0 corresponds to an actual
experimental system: the AFM microcantilever used in the
experiments of Ref. [41], which is characterized by a resonance
period 2π/ω0 = 116 μs and a viscous relaxation time τ0 =
632 μs. In the second place, the feedback-controlled oscillator
has an interesting dynamical behavior for g/Q0 = 0.25, as
shown in Fig. 2 (see also Fig. 11 in paper I). Specifically, a
stationary state can be reached in two stability lobes 0 < τ <

τ1 and τ2 < τ < τ3, with τ1 ≈ 2.93, τ2 ≈ 7.13, τ3 ≈ 8.55. For
intermediate values of τ or τ > τ3, there is no stationary state.
In the third place, the probability distributions have a nontrivial
behavior as a function of τ , which vividly illustrates the role
of rare events due to boundary temporal terms.

To begin, we show in Fig. 3 an example of the sample-to-
sample fluctuations of βWt ,βQt , and �t for two values of τ

chosen in the second stability lobe τ2 < τ < τ3 (the behavior
is qualitatively similar in the first lobe). The observation time
is t = 100 and the Langevin equation (39) was solved by

Noise realizations

-6

-4

-2

0

2

w
, q

, σ

Noise realizations

-8

-6

-4

-2

0

2

4
(a) (b)

FIG. 3. Stochastic fluctuations of w = βWt /t (solid black line),
q = βQt /t (dotted blue line), and σ = �t/t (dashed red line) for
Q0 = 34.2 g/Q0 = 0.25,τ = 7.6 (a) and τ = 8.4 (b). The figure
shows the results obtained for an observation time t = 100 and 75
independent noise realizations. Lines are a guide for the eyes.

using Heun’s method [42] with a time step �t = 5 × 10−4.
As expected, the fluctuations of the three observables are
strongly correlated. But, remarkably, the contribution of the
temporal boundary terms is still non-negligible despite the
long observation time. In particular, they contribute differently
to the observables depending on the value of τ : for τ = 7.6
(resp. τ = 8.4) it is �t (resp. Qt ) that exhibits the largest
fluctuations. Note that the delay is significantly smaller than
the viscous relaxation time τ0 = Q0/ω0 = 34.2 in both cases,
and that the system operates in the cooling regime: Tx/T ≈
0.42, Tv/T ≈ 0.36, 〈βQ̇〉 ≈ −0.019 for τ = 7.6, and Tx/T ≈
0.72, Tv/T ≈ 0.84, 〈βQ̇〉 ≈ −0.005 for τ = 8.4.

To get a more quantitative picture, the corresponding
stationary pdfs are shown in Figs. 4 and 5. These plots clearly
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FIG. 4. Probability distribution functions P (βWt ) (black circles),
P (βQt ) (blue stars), and P (�t ) (red squares) plotted against the
scaled variable a = At /t (a = w, q, or σ ) for Q0 = 34.2, g/Q0 =
0.25, and τ = 7.6. The observation time is t = 100. Symbols repre-
sent numerical data obtained by solving the Langevin equation (39)
for 2 × 106 realizations of the noise.
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FIG. 5. Same as Fig. 4 for τ = 8.4.

confirm the main feature suggested by Fig. 3: P (�t = σ t) for
τ = 7.6 and P (βQt = qt) for τ = 8.4 differ markedly from
P (βWt = wt). Of course, these results should be interpreted
with care since it is notoriously difficult to sample rare
fluctuations. However, we expect that the picture emerging
from Figs. 4 and 5 would not change qualitatively at larger
times. Moreover, it is consistent with the exact analytical
analysis performed in Appendix B in the small-τ limit and
in the associated Markovian model. This will be rationalized
in the next subsection.

The corresponding estimates of the SCGFs μA(λ) are
plotted in Fig. 6. One noticeable feature is the distinct behavior
of μ�(λ) for τ = 7.6 and of μQ(λ) for τ = 8.4 in the vicinity
of λ = 1. However, it is also manifest that finite-time and/or
finite-sample-size effects are significant. In particular, μ�(λ)
for τ = 7.6 widely differs from the two other SCGFs for
λ � −1 and varies linearly with λ for λ � −1.5, which is
presumably a numerical artifact, as discussed in a more general
context in Ref. [43].

-3 -2 -1 0 1

λ

0

0.05

0.1

0.15

(1
/t)

 ln
 Z

A
(λ

,t)

-0,5 0 0,5 1

λ

0

0.01

0.02

0.03

0.04

(b)(a)

FIG. 6. Numerical estimates of μA(λ) using t = 100 and 2 × 106

realizations of the noise for τ = 7.6 (a) and τ = 8.4 (b): μW (black
circles), μQ (blue stars), and μ� (red squares). The solid black line
represents the theoretical SCGF μ(λ) given by Eq. (53) in the interval
(λmin,λmax) in which this quantity is real.

7.2 7.4 7.6 7.8 8 8.2 8.4
τ

-0.05

0
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0.1

(1
/t)

 ln
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A
(1

,t)

1/Q0

FIG. 7. Numerical estimates of μA(1) = limt→∞(1/t) ln〈e−At 〉 as
a function of τ in the second stability lobe: μW (1) (black circles),
μQ(1) (blue stars), and μ�(1) (red squares). The dashed-dotted black
line is the average extracted work rate 〈βẆext〉 = −〈βQ̇〉, which is
positive for 7.26 � τ � 8.43.

Finally, we focus on the special value λ = 1 and
show in Fig. 7 the numerical estimates of μA(1) =
limt→∞(1/t) ln〈e−At 〉 in the whole stability range 7.13 < τ <

8.55. For information, we also show the average extracted work
rate 〈βẆext〉 = −〈βQ̇〉. We first observe that μQ(1) ≈ 1/Q0

(γ /m in original units) independently of the value of τ . This is
indeed what the IFT (18) tells us. In contrast, both μW (1) and
μ�(1) display a nontrivial behavior with τ : μW (1) is equal to
1/Q0 only in the subinterval 7.37 � τ � 8.32, whereas μ�(1)
varies nonmonotonically with a maximum around τ ≈ 7.9.
This clearly calls for a theoretical explanation.

B. Theoretical analysis

We now present a theoretical scenario that explains why
the three observables, which differ only by temporal boundary
terms, have different fluctuations in the long-time limit and
why this behavior depends on the delay.

1. Calculation of the (boundary-independent) SCGF

We first calculate the SCGF μ(λ) defined by the asymptotic
formula (12), assuming that boundary terms depending on
xi ,xf , or Y play no role in the long-time limit. (We recall that
the trajectory Y is of duration τ .) However, one should keep
in mind that the actual value of μA(1) may differ from μ(1).

In order to compute μ(λ), we impose periodic boundary
conditions on the trajectory X and expand xt in discrete Fourier
series (see, e.g., Refs. [44–48] for similar calculations),

x(t) =
∞∑

n=−∞
xne

−iωnt , (45)

with inverse transform

xn = 1

t

∫ t

0
ds x(s)eiωns, (46)

where ωn = 2πn/t and xn ≡ x(ωn). In the limit t → ∞, the
standard Fourier transform is recovered.

022123-7



M. L. ROSINBERG, G. TARJUS, AND T. MUNAKATA PHYSICAL REVIEW E 95, 022123 (2017)

After inserting into Eq. (40) and neglecting the contribution
coming from Y, we obtain

1

t
βWt ∼ 2g

Q2
0

∞∑
n=−∞

(iωn)xnx−ne
iωnτ

∼ − 4g

Q2
0

∞∑
n=1

ωnxnx−n sin(ωnτ ). (47)

(Of course, this expression is also valid for βQt or �t since
the contribution of the boundary terms are neglected in this
calculation.) We then use the linearity of the Langevin equation
to replace xn by the frequency component ξn of the noise

xn = χ (ωn)ξn, (48)

where

χ (ω) =
[
−ω2 − iω

Q0
+ 1 − g

Q0
eiωτ

]−1

(49)

is the Fourier transform of the response function of the time-
delayed oscillator. Hence,

〈e−λβWt 〉 ∼
∞∏

n=1

∫
dξn P (ξn)e

4λgt

Q2
0

ξnξ−nωn sin(ωnτ )|χ(ωn)|2
(50)

with

P[ξn] = t

π
e−tξnξ−n . (51)

The Gaussian integration over ξn gives

〈e−λβWt 〉 ∼
∞∏

n=1

[
1 − 4λg

Q2
0

ωn sin(ωnτ )|χ (ωn)|2
]−1

, (52)

and we finally obtain

μ(λ) = − lim
t→∞

1

t

∞∑
n=1

ln

[
1 − 4λg

Q2
0

ωn sin(ωnτ )|χ (ωn)|2
]

= − 1

2π

∫ ∞

0
dω ln

[
1 − 4λg

Q2
0

ω sin(ωτ )|χ (ω)|2
]
, (53)

where the summation over n has been replaced by an integral
over ω as t → ∞. For a generic value of λ, the integral must
be computed numerically, and the result is real as long as the
argument of the logarithm stays positive for all values of ω.
Accordingly, μ(λ) is defined in an open domain (λmin,λmax),
with λmin and λmax determined by the minimum and maximum
values of the function f (ω) = (4g/Q2

0)ω sin(ωτ )|χ (ω)|2. The
derivative μ′(λ) diverges at the boundaries, so that the corre-
sponding Legendre transform is asymptotically linear [13].

As regards fluctuation relations, we readily notice from
Eq. (53) that μ(1 − λ) �= μ(λ), which implies that the ob-
servables do not satisfy a conventional stationary-state fluc-
tuation theorem (SSFT) of the Gallavotti-Cohen type [49–
51]: limt→∞(1/t) ln[P (At = at)/P (At = −at)] = a. On the
other hand, alternative SSFTs can be obtained by changing γ

into −γ or τ into −τ . We will say more about this in Sec. B 4.
How does Eq. (53) compare with the numerical estimates

of the SCGFs μA(λ) shown in Fig. 6? We see that the
agreement is very good for μW (λ), although there are still
small discrepancies, in particular for τ = 8.4 and the most

negative values of λ. These small deviations will be used to
infer the numerical value of the prefactor gW (λ) and build a
better approximation of the pdf P (βWt = wt) [see Eq. (71)
below]. Much more significant are the differences with μ�(λ)
for τ = 7.6 and with μQ(λ) for τ = 8.4 in the vicinity of
λ = 1 [leaving aside the spurious linear behavior of μ�(λ) for
τ = 7.6 and λ � −1.5].

Let us investigate this issue in more detail by computing
μ(1). To this aim, we first rewrite Eq. (53) as

μ(λ) = 1

2π

∫ ∞

0
dω ln

Hλ(ω)

H0(ω)
, (54)

where

Hλ(ω)−1 ≡ |χ (ω)|−2 − 4λg

Q2
0

ω sin(ωτ )

=
[
−ω2 + 1 − g

Q0
cos(ωτ )

]2

+ 1

Q2
0

[ω2 + 2g(1 − 2λ)ω sin(ωτ ) + g2 sin2(ωτ )]

(55)

and H0(ω) = |χ (ω)|2. This immediately shows that

H1(ω)−1 =
[
−ω2 + 1− g

Q0
cos(ωτ )

]2

+ 1

Q2
0

[ω−g sin(ωτ )]2

≡ |χ̃(ω)|−2, (56)

where

χ̃(ω) ≡ χ (ω)|τ→−τ =
[
−ω2 − iω

Q0
+ 1 − g

Q0
e−iωτ

]−1

(57)

is the response function of the acausal Langevin equation in
the frequency domain. This allows us to express μ(1) as

μ(1) = 1

2π

∫ +∞

0
dω ln

|χ̃(ω)|2
|χ (ω)|2 = 1

2π

∫ +∞

−∞
dω ln

χ̃ (ω)

χ (ω)
,

(58)

where we have used the fact that the imaginary parts of χ̃ (ω)
and χ (ω) are odd functions of ω to eliminate the modulus [52].
We can then compute the integral over ω by using Cauchy’s
residue theorem, which requires to locate the poles of χ̃ (ω)
in the complex frequency plane [they are not restricted to
be in the lower half plane, in contrast with the poles of the
causal response function χ (ω)]. Fortunately, this nontrivial
task has already been accomplished in paper I in order to
calculate the quantity ṠJ ≡ limt→∞(1/t) lnJt /J̃t involved in
the second-law-like inequality (26) obtained from time reversal
(we recall that the Jacobian J̃ [X] becomes a path-independent
quantity J̃t when the dynamics is linear [6]). Specifically, it
was shown in paper I [Eq. (155)] that

ṠJ = 1

2πi

∫ c+i∞

c−i∞
ds ln

χ̃ (s)

χg=0(s)
, (59)

where s = σ − iω is the Laplace complex variable. (From now
on, we will mostly work with the Laplace variable in order to
directly use the results obtained in paper I, but for simplicity
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we will keep the same notation for the response functions.) We
thus reexpress Eq. (58) as

μ(1) = 1

2πi

∫ 0+i∞

0−i∞
ds ln

χ̃(s)

χ (s)
, (60)

where

χ (s) =
[
s2 + s

Q0
+ 1 − g

Q0
e−sτ

]−1

(61)

and χ̃(s) ≡ χ (s)|τ→−τ . Comparing Eq. (60) to Eq. (59),
one may notice two differences: first, one has χ (s) in the
denominator of the logarithm instead of χg=0(s), and, second,
the integration is performed along the imaginary axis Re(s) =
0 in the complex s plane (since the frequency ω is real).
On the other hand, as was painstakingly discussed in paper
I, the Bromwich contour in Eq. (59) [i.e., the value of c

crucially depends on the location of the poles of χ̃ (s)]. The
first difference turns out to be irrelevant because all the poles
of χ (s) are located in the left-hand-side (l.h.s.) of the complex
s plane. Hence [53],

1

2πi

∫ 0+i∞

0−i∞
ds ln

χ (s)

χg=0(s)
= 0. (62)

On the other hand, the fact that c = 0 in Eq. (60) is relevant in
two circumstances:

(1) When all the poles of χ̃ (s) lie on the right-hand-side
(r.h.s.) of the complex s plane. Then, by using an integration
contour similar to the one in Fig. 4 of paper I (with a
large semicircle on the l.h.s.), the only singularities inside
the contour are the two poles of χg=0(s),s±

0 = 1/(2Q0)[−1 ±
i
√

4Q2
0 − 1]. Cauchy’s residue theorem then gives the simple

result μ(1) = 1/Q0. This differs from ṠJ because this latter
quantity is obtained by also including two poles of χ̃ (s) inside
the contour in order to avoid the branch cuts of the logarithm.
Indeed, as shown in paper I, there must be two, and only two,
poles of χ̃ (s) on the left side of the integration line Re(s) = c.

(2) When χ̃(s) has more than two poles on the l.h.s. In this
case, all these poles contribute to Eq. (60) whereas only the
two poles with the smallest real part contribute to ṠJ .

To sum up, three different cases may occur:
(a) μ(1) = 1/Q0 �= ṠJ when all the poles of χ̃ (s) lie on

the r.h.s of the complex s plane
(b) μ(1) = ṠJ �= 1/Q0 when only two poles lie on the l.h.s

of the complex s plane
(c) μ(1) �= ṠJ �= 1/Q0 when more than two poles lie on

the l.h.s of the complex s plane [54].
This calculation of μ(1), combined with the analysis

performed in Appendix A, allows us to elucidate the intriguing
dependence of μW (1) and μ�(1) on τ exhibited in Fig. 7, and
more generally the behavior of the SCGFs in the vicinity of
λ = 1 observed in Fig. 6. What is done in Appendix A is first
to relate the behavior of the conjugate γ → −γ “hat” and
τ → −τ “tilde” dynamics to the pole structure of χ̃ (s). Then,
in a second time, Eqs. (33) and (36) derived in Sec. III B are
used to deduce the values of μW (1) and μ�(1). Specifically,
it is shown that a stationary state exists with the hat dynamics
when all the poles of χ̃(s) are on the r.h.s of the complex s

plane [case (a) above] and with the tilde dynamics when two

7.2 7.4 7.6 7.8 8 8.2 8.4
τ

-0.05
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0.1

(1
/t)
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(1

,t)

1/Q0

FIG. 8. Comparison between the numerical estimates of μA(1) =
limt→∞(1/t) ln〈e−At 〉 displayed in Fig. 7 and the values of μ(1) (solid
black line) and ṠJ (dashed red line) computed from Eqs. (60) and (59),
respectively. One has μ(1) = ṠJ � 1/Q0 for τ � τp,1 ≈ 7.37 and
τ � τp,2 ≈ 8.32, and μ(1) = 1/Q0 � ṠJ for τp,1 � τ � τp,2. Note
that ṠJ is a tighter bound to the extracted work rate (dashed-dotted
black line) than 1/Q0 for τ < τp,1 and τ > τp,2.

(and only two) poles are on the l.h.s [case (b)]. (When there are
more than two poles on the l.h.s. [case (c)], a stationary state
never exists.) With our present choice for the quality factor
Q0 and the feedback gain g (Q0 = 34.2 and g/Q0 = 0.25),
we find that case (a) is realized for τp,1 < τ < τp,2, with
τp,1 ≈ 7.37,τp,2 ≈ 8.32, and case (b) is realized for τ < τp,1

and τ > τp,2 [for other values of g, the boundary between
cases (a) and (b) is indicated by the dashed red lines in Fig. 2].

The analysis in Appendix A shows that

μW (1) = μ(1) (63)

in both cases, i.e., in the whole stability lobe, as illustrated by
the solid black line in Fig. 8, whereas

μ�(1) = ṠJ = μ(1) for τ < τp,1 and τ > τp,2. (64)

For τp,1 � τ � τp,2, the theoretical analysis indicates only
that

μ�(1) �= μ(1) = 1/Q0. (65)

The latter relation comes from the divergence of the prefactor
g�(1) [cf. Eq. (A9)]. In addition, there is strong evidence from
the numerical data displayed in Fig. 7 that μ�(1) is equal to
ṠJ for all values of τ , as illustrated by the dashed red line in
Fig. 8 [55]. This implies that μ�(λ) is discontinuous at λ = 1
for τp,1 � τ � τp,2, which is consistent with the behavior of
(1/t) ln Z�(λ,t) in the vicinity of λ = 1 observed in Fig. 6 for
τ = 7.6. Similarly, since

μQ(1) = 1/Q0 �= μ(1) = ṠJ for τ < τp,1 and τ > τp,2,

(66)

μQ(λ) is discontinuous at λ = 1, which is also consistent with
the behavior of (1/t) ln ZQ(λ,t) observed in Fig. 6 for τ = 8.4.

More precisely, inspired by the exact boundary layer
analysis performed in Appendix B in the small-τ limit and
in the associated Markovian model (see in particular Fig. 16
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in that Appendix), we conjecture that

Z�(λ,t)e−μ(λ)t ∼ e(ṠJ −1/Q0)t for τp,1 < τ < τp,2,

ZQ(λ,t)e−μ(λ)t ∼ e(1/Q0−ṠJ )t for τ < τp,1 and τ > τp,2

(67)

as t → ∞ and λ → 1. Clearly, this anomalous behav-
ior of the two SCGFs can be ascribed to the un-
bounded (but different) growth of the temporal bound-
ary terms, �t − βWt = ln p(xi)/p(xf ) − β�U(xi ,xf ) and
βQt − βWt = β�U(xi ,xf ). In contrast, μW (λ) is always
equal μ(λ) and is therefore a continuous function of λ, which
is the reason why we have treated Wt differently from Qt and
�t in Sec. III B.

The analysis performed in Appendix A also gives us some
partial information about the values of the prefactors for λ = 1
when these quantities are finite. This is an interesting outcome
since, as we have already pointed out, we are unable to compute
the prefactors in general.

For τp,1 < τ < τp,2, after replacing the stationary distribu-
tions by their Gaussian expressions in Eq. (A8), we obtain

gW (1) = T 2

[(T − Tx)(T + T̂x)]1/2[(T − Tv)(T + T̂v)]1/2
,

(68)

where T̂x and T̂v are the steady-state effective temperatures
associated with the hat dynamics. [Recall that gQ(1) = 1 and
g�(1) diverges in this case.]

For τ < τp,1 and τ > τp,2, the information is more limited
since we cannot compute gW (1) and g�(1) separately [while
gQ(1) diverges]. On the other hand, from Eqs. (A15), the ratio
of these two prefactors is expected to be

gW (1)

g�(1)
= T 2

[T (Tx + T̃x) − TxT̃x]1/2[T (Tv + T̃v) − TvT̃v]1/2
,

(69)

where T̃x and T̃v are the steady-state effective temperatures
associated with the tilde dynamics. The variations of T̂v and T̃v

with τ are shown in Fig. 15 in Appendix A. It is worth noting
that T̂v and T̃v are larger than Tv in the stationary cooling
regime where Tv < T .

2. Calculation of I(w)

We now compute the large deviation rate functions and
start with I (w). Our basic assumption is that the prefactor
gW (λ) has no singularity whatever the value of λ (and not
only for λ = 1 as discussed above). This is supported by the
exact analytical calculations in the Markovian limit reported in
Appendix B and is also in line with the exact behavior observed
in other (Markovian) nonequilibrium models [14,17,20,24]
and checked experimentally [27,56]. Consequently, the LDF
I (w) is always given by the Legendre transform I (w) =
−λ∗w − μ(λ∗) with μ′(λ∗) + w = 0. From Eqs. (54)–(55),
this amounts to solving numerically the equation

1

2π

∫ ∞

−∞
dω ω sin(ωτ )Hλ∗ (ω) = −Q2

0

2g
w (70)
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FIG. 9. Probability distribution functions P (At = at) for τ =
7.6. The symbols are the data obtained from the numerical simulations
(see Fig. 4), the dashed black line is the large-deviation form e−I (w)t ,
and the solid black line is the semiempirical asymptotic expression
given by Eq. (71). The dashed red line on the l.h.s. for σ � −0.048
is the curve e−I1(σ )t obtained from Eq. (73).

so as to obtain the saddle point λ∗ as a function of w. This
leads to the curves e−I (w)t shown in Figs. 9 and 10 as dashed
black lines.

From these figures, however, it is clear that the large
deviation form does not properly describe P (Wt = wt) for
t = 100, in particular in Fig. 10, where the slopes on the
r.h.s. are quite different. This can be traced back to finite-time
corrections which can be computed by using a standard
expansion around the saddle point (see, e.g., Refs. [10,21]),
assuming again the absence of any singularity in gW (λ). This
yields

P (Wt = wt) ≈ gW [λ∗(w)]√
2πμ′′[λ∗(w)]t

e−I (w)t . (71)

Although the analytical expression of gW (λ) for generic values
of λ is unknown, a semiempirical estimate can be obtained
from Fig. 6, assuming that the very small deviations between
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FIG. 10. Same as Fig. 9 for τ = 8.4. The dashed blue line on the
l.h.s. for q � −0.042 is the curve e−I1(q)t obtained from Eq. (73).
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μW (λ) and μ(λ) are due to neglecting the prefactor. We
thus compute the prefactor as gW (λ) ≈ ZW (λ,t)e−μ(λ)t , where
ZW (λ,t) is obtained from the numerical simulations, and insert
the result into Eq. (71) [57]. As shown by the solid black lines in
Figs. 9 and 10, this procedure leads to a much better description
of the numerical data. We take this as indirect but convincing
evidence that our theoretical analysis of the work fluctuations
is well sounded. The remaining discrepancies observed for
τ = 8.4 may be attributed to statistical uncertainty due to the
limited sampling.

3. Calculation of I(q) and I(σ )

The calculation of the LDFs I (q) and I (σ ) is more
challenging because we can no longer assume that the
prefactors gQ(λ) and g�(λ) have no singularities. In particular,
we already know from the preceding discussion that λ = 1
is a pole of gQ(λ) for τ = 8.4 [as μQ(1) = 1/Q0 �= μ(1)]
and a pole of g�(λ) for τ = 7.6 [as μ�(1) = ṠJ �= μ(1)].
In addition, the exact calculation of the generating functions
ZQ(λ,t) and Z�(λ,t) in the small-τ limit and in the associated
Markovian model shows that other pole singularities appear
when performing the stationary average over the initial state
xi [see Eqs. (B19b) and (B19c)]. These poles, due again to
rare but large fluctuations of the temporal boundary terms,
occur for λ < 0 and lead to an exponential tail in the r.h.s
of the pdfs [58]. (In contrast, the poles at λ = 1 occur when
performing the average over the final state xf and lead to an
exponential tail in the l.h.s. of the LDFs.) We then expect
that these rare events are responsible, together with finite-time
corrections, for the fact that the slopes of P (�t = σ t) in Fig. 9
and of P (Qt = qt) in Fig. 10 are not correctly described by
the Legendre transform of μ(λ).

Unfortunately, we have no way to determine analytically
all the poles of gQ(λ) and g�(λ) for an arbitrary value of τ .
The best we can do is to describe how the pole at λ = 1 (when
it exists) modifies the LDFs I (q) and I (σ ). To this aim, we
compute the special value of q or σ for which the saddle point
λ∗ reaches 1. According to Eq. (53), it is given by

a∗ = −μ′(1) = − g

πQ2
0

∫ ∞

−∞
dω ω sin(ωτ )|χ̃(ω)|2, (72)

where a∗ stands for either q∗ or σ ∗ and we have used χ̃ in
place of χ . When this corresponds to a pole in the prefactor
(depending on the observable and on the value of τ ), the LDF
becomes linear for a < a∗ and is given by

I1(a) = −[μ(1) − a]. (73)

This leads to the modified asymptotic behaviors P (�t =
σ t) ∼ e−I1(σ )t and P (Qt = qt) ∼ e−I1(q)t shown in Figs. 9
and 10, respectively. We see that the slopes on the l.h.s.
are now in much better agreement with the numerical
simulations.

4. Two stationary-state fluctuation theorems (SSFTs)

To end our study, we now examine the status of the
conventional fluctuation relation for the work Wt and state
two alternative relations that hold in the long-time limit.

As we have already mentioned, the SCGF μ(λ), whose
expression is given by Eqs. (53) or (54), does not possess

0 0.05 0.1w
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f(
w
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0 0.05 0.1w
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FIG. 11. Symmetry function for the work fluctuations f (w) =
I (−w) − I (w) for τ = 7.6 (a) and τ = 8.4 (b). The dashed red lines
represent the asymptotic regime of large fluctuations f (w) ∼ (λmin +
λmax)w (see text).

the symmetry μ(1 − λ) = μ(λ) that would lead to a con-
ventional SSFT expressing the symmetry around 0 of the
pdf of an observable At at large times. This is strikingly
illustrated by Fig. 11 where we plot the symmetry function
f (w) = I (−w) − I (w) = limt→∞ 1

t
ln P (Wt=wt)

P (Wt=−wt) for w � 0
[with f (−w) = −f (w)]. We see that the SSFT symmetry
f (w) = w is violated for all values of w. On the one hand, one
has f (w) < 0 for small positive values of w since the average
work rate is negative in the cooling regime (as can be seen in
Figs. 4 and 5, the probability of having a negative event βWt =
−wt is indeed larger than the probability of having a positive
event βWt = +wt). On the other hand, large fluctuations are
described at the level of the large deviation function by I (w) ∼
−λmaxw for w < 0 and I (w) ∼ −λminw for w > 0, where λmax

and λmin are the boundaries of the region of convergence of
μ(λ) [13] (see Fig. 6 with λmin ≈ −2.94,λmax ≈ 1.26 for τ =
7.6 and λmin ≈ −0.43,λmax ≈ 1.10 for τ = 8.4). This implies
that f (w) ∼ (λmin + λmax)w. As can be seen in Fig. 11, the
symmetry function f (w) smoothly interpolates between these
two regimes of small and large fluctuations. The remarkable
feature is that the second fluctuation regime is quite different
for τ = 7.6 and τ = 8.4 as λmin + λmax < 0 in the first case
and λmin + λmax > 0 in the second one. We emphasize that
this striking effect of the time delay cannot be attributed to
the influence of temporal boundary terms since we focus here
only on the fluctuations of the work.

Whereas the standard symmetry μ(1 − λ) = μ(λ) does not
hold, it is easily seen from the definition of the function Hλ(ω)
[Eq. (55)] that

Ĥλ−1(ω) = Hλ(ω), (74a)

H̃1−λ(ω) = Hλ(ω), (74b)

where Ĥλ(ω) ≡ Hλ(ω)|γ→−γ and H̃λ(ω) ≡ Hλ(ω)|τ→−τ [we
remind the reader that χ̂ (ω)−1 = −ω2 + iω/Q0 + 1 −
(g/Q0)eiωτ and χ̃ (ω)−1 = −ω2 − iω/Q0 + 1 − (g/Q0)e−iωτ

in dimensionless units]. We then deduce from Eq. (54) the two
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symmetry relations

μ̂(λ − 1) = μ(λ) − μ(1), (75a)

μ̃(1 − λ) = μ(λ) − μ(1), (75b)

where μ̂(λ) ≡ μ(λ)|γ→−γ and μ̃(λ) ≡ μ(λ)|τ→−τ .
Now, for a SSFT to hold, a stationary state must also exist

with the dynamics associated with the transformation γ →
−γ or τ → −τ . In this case, the corresponding pdfs P̂ (βWt =
wt) and P̃ (βW̃t = wt) are expected to acquire asymptotically
the large-deviation forms

P̂ (βWt = wt) ∼ e−Î (w)t , (76a)

P̃ (βW̃t = wt) ∼ e−Ĩ (w)t , (76b)

where βW̃t ≡ βWt |τ→−τ = (2g)/(Q2
0)

∫ t

0 dt ′ xt ′+τ ◦ vt ′ . As-
suming again that boundary terms are irrelevant for the
fluctuations of the work at large times, whatever the dynamics,
the two LDFs Î (w) and Ĩ (w) are then given by the Legendre
transform of the corresponding SCGFs μ̂(λ) and μ̃(λ). From
Eqs. (75) and the corresponding saddle-point equations, we
then obtain

I (w) − Î (w) = −w − μ(1), (77a)

I (w) − Ĩ (−w) = −w − μ(1), (77b)

which yields the two SSFTs

lim
t→∞

1

t
ln

P (βWt = wt)

et/Q0 P̂ (βWt = wt)
= w, (78a)

lim
t→∞

1

t
ln

P (βWt = wt)

etṠJ P̃ (βW̃t = −wt)
= w. (78b)

We stress that the fluctuation relation (78a) holds for τp,1 <

τ < τp,2 in the second stability lobe [hence μ(1) = 1/Q0],
whereas relation (78b) holds for τ < τp,1 and τ > τp,2

[hence μ(1) = ṠJ �= 1/Q0]. In fact, since P̃ (βW̃t = −wt) ∼
P̃ (βWt = wt) asymptotically, this latter relation can be also
reexpressed as

lim
t→∞

1

t
ln

P (βWt = wt)

etṠJ P̃ (βWt = wt)
= w. (79)

A numerical check of the two SSFTS is provided in
Figs. 12(a) and 12(b) (see below for an explanation of
the numerical procedure). The agreement is satisfactory
in both cases, taking into account that the exponential
factor e−βWt strongly weights work values in the far left
tail of P (βWt ) corresponding to very rare realizations of
the process that cannot be properly sampled [60]. As t

increases, we expect the curves in Fig. 12 to be peaked
more and more around the asymptotic work value w∗ =
limt→∞

∫
dw wP (βWt )e−wt/

∫
dwP (βWt )e−wt = −μ′(1)

[cf. Eq. (72)], with w∗ ≈ −0.048 in Fig. 12(a) and
w∗ ≈ −0.236 in Fig. 12(b). This latter figure illustrates the
curious feature that atypical fluctuations become typical
when generated by an acausal dynamics! This dynamics
(when it leads to a stationary state) then defines the
so-called “auxiliary” or “driven” process [61–63] that
generates asymptotically the ensemble of paths conditioned
on the constraint βWt /t = w∗ [64]. In fact, changing
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FIG. 12. Verification of the SSFTs (78a) and (79). Here P (βWt =
wt)e−wt (black circles) is compared with (a) P̂ (Wt = wt)et/Q0 (red
squares) for Q0 = 34.2, g/Q0 = 0.25, τ = 7.6, and (b) P̃ (βWt =
wt)eṠJ t (red squares) for Q0 = 2, g/Q0 = 0.55, τ = 2.5 (ṠJ ≈ 0.1).
The observation time is t = 100.

τ into −τ in the stationary cooling regime Tv < T has
essentially the same effect as changing γ into −γ , namely,
to enhance the fluctuations in the system and thus to
increase the effective temperatures: for instance, one has
T̂x ≈ 0.792 > Tx ≈ 0.420,T̂v ≈ 0.656 > Tv ≈ 0.359, and
T̃x ≈ 1.538 > Tx ≈ 0.956,T̃v ≈ 1.220 > Tv ≈ 0.960 for
the two cases represented in Fig. 12 (see also Fig. 15 in
Appendix A). But, at the same time, there is more work
extracted from the bath since in both cases w∗ is more
negative than the average work, or dissipated heat, rate
(1/Q0)(Tv/T − 1) [cf. Eq. (43)]. This kind of counterintuitive
behavior that occurs in the rare fluctuations regime is
discussed in Ref. [48] for another model of feedback cooling,
where the focus is on the information exchange between the
system and the feedback controller.

It is instructive to detail how the numerical data displayed
in Fig. 12(b) were obtained. For the γ → −γ dynamics, one
can directly solve the dimensionless Langevin equation v̇t =
(1/Q0)vt − xt + (g/Q0)xt−τ + ξt using the standard Euler or
Heun’s methods. However, these schemes cannot be applied
to the acausal Langevin equation v̇t = −(1/Q0)vt − xt +
(g/Q0)xt+τ + ξt . Fortunately, because of the linearity of the
equation, there is a strategy for tackling this problem. Indeed,
for a given history of the thermal noise ξ (t) over a long time
interval [−t1,t2], a stationary solution can be approximated as

x(t) ≈
∫ t2

−t1

dt ′χ̃ (t − t)ξ (t ′), (80)

where χ̃(t) is the inverse Fourier transform of the acausal
response function χ̃ (ω) (see the discussion in Appendix A).
If t1,t2 � t > 0 and if χ̃(t) decays sufficiently rapidly for
both positive and negative times, Eq. (80) provides a very
good approximation of x(t) in the time interval [0,t]. In this
way, one can generate a representative ensemble of stationary
trajectories and estimate the probabilities P̃ (βW̃t = −wt)
or P̃ (βWt = wt). [It turns out that the case Q0 = 34.2,
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FIG. 13. Acausal response function χ̃ (t) for Q0 = 2,g/Q0 =
0.55 and τ = 2.5. χ̃(s) has two poles on the l.h.s. of the complex
s plane and an infinite number of poles on the r.h.s. The poles
s ≈ −0.200 ± 1.12i and s ≈ 0.339 control the behavior of χ̃(t) for
t � 0 and for t → −∞, respectively.

g/Q0 = 0.25,τ = 8.4 cannot be studied with this method
because χ̃ (t) decays too slowly for t > 0 as the two poles
of χ̃(s) on the l.h.s. of the complex s plane have a very small
real part. Figure 12(b) thus corresponds to another choice of
the parameters for which a stationary state still exists with the
acausal dynamics and χ̃(t) decays to 0 rapidly, as shown in
Fig. 13.]

Finally, we mention another way to understand the origin
of the large fluctuations contributing to P(βWt )e−βWt , which
is to consider the atypical thermal noise that generates such
fluctuations. To this end, we select an atypical stationary
trajectory produced by one or the other conjugate process and
insert it into the original Langevin equation. The calculation
can be readily performed in the frequency domain, which
yields, for instance, in the case of the acausal dynamics,

ξatyp(ω) = χ̃ (ω)

χ (ω)
ξ (ω). (81)

0 10 20 30
t

-0.4

-0.2
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FIG. 14. Autocorrelation function of the atypical colored noise
ξatyp(t) for Q0 = 2,g/Q0 = 0.55 and τ = 2.5.

The atypical noise is thus colored, with autocorrelation
function 〈ξatyp(t)ξatyp(t ′)〉 = ν(t − t ′) given by

ν(t) = δ(t) + 1

2π

∫ +∞

−∞
dω

( |χ̃(ω)|2
|χ (ω)|2 − 1

)
e−iωt

= δ(t) + 2g

πQ2
0

∫ +∞

−∞
dω ω sin(ωτ )|χ̃(ω)|2e−iωt (82)

in dimensionless units. An illustration is provided in Fig. 14
for the same model parameters used in Fig. 12(b) and Fig. 13.

V. SUMMARY AND CLOSING REMARKS

In this paper we have investigated the nonequilibrium
steady-state fluctuations of thermodynamic observables in
a Brownian system subjected to a time-delayed feedback
control, focusing on the behavior at large times. Our study,
based on both analytical and numerical calculations, has
revealed that the delay significantly affects the large-deviation
statistics of time-integrated thermodynamic observables. In
particular, when the state space is unbounded, delay plays a
critical role in the occurrence of rare but large fluctuations of
temporal boundary terms so that observables with the same
typical value exhibit different large deviation rate functions.

Compared to the Markovian case, there is no doubt that the
study of time-delayed systems presents some new challenges.
From the perspective of stochastic thermodynamics, the most
delicate issue is that the behavior of the system under time
reversal is modified, which prevents standard fluctuation
theorems from being satisfied. Hidden symmetries do exist,
but their interpretation is more subtle, as shown in this
work, and a complicated analysis of the response function
of the conjugate dynamics is required even in the simplest
case of a linear dynamics. In fact, it is remarkable that the
large-deviation statistics, which in principle is accessible to
experiments, cannot be fully elucidated without investigating
the unusual properties of an acausal dynamics. Taking into
account the ubiquity of time-delayed feedback loops in natural
and artificial systems, there is obviously an avenue for future
investigations.

APPENDIX A: CONJUGATE DYNAMICS AND
ASYMPTOTIC BEHAVIOR OF 〈e−βWt 〉 and 〈e−�t 〉

In this Appendix, we show how Eqs. (33) and (36) can
be used to infer the long-time behavior of the generating
functions ZW (λ,t) and Z�(λ,t) for λ = 1. [On the other
hand, we know from Eq. (18) that ZQ(1,t) = e(γ /m)t at all
times.] For concreteness, we restrict the discussion to the
case of the linear Langevin equation (38) considered in
Sec. IV. The following equations are thus expressed in terms of
dimensionless parameters. For instance, the exponential factor
e(γ /m)t becomes et/Q0 . A similar analysis has been performed
in Ref. [28] in the context of heat flow in harmonic chains.

1. Stationary solutions of the conjugate dynamics

The first task is to determine under which conditions
a stationary solution of the conjugate Langevin equations
Eqs. (14) and (21) exists. (As usual, a solution is called
stationary if the n-point probability distributions are invariant
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under time translation.) In the first case of the so-called “hat”
dynamics, the existence of a stationary state means that an
arbitrary initial condition is eventually forgotten,

x(t) ≈
∫ t

−∞
dt ′ χ̂ (t − t ′)ξ (t ′), (A1)

with the response function χ̂ (t) decreasing sufficiently fast
(typically exponentially) for t → +∞. The function χ̂ (ω) ≡
χ (ω)|γ→−γ is then the genuine Fourier transform of χ̂(t), i.e.,
χ̂ (ω) = ∫ ∞

−∞ dt eiωt χ̂ (t). Since χ̂(t) is causal, this requires that
all the poles of χ̂(ω) lie in the lower half of the complex ω

plane [equivalently, all the poles of χ̂ (s) = ∫ ∞
−∞ dt e−st χ̂ (t)

lie in the l.h.s. of the complex Laplace plane s = σ − iω].
The case of Eq. (21) is more subtle because the so-called

“tilde” dynamics is acausal. The stationary state, if it exists,
must then be independent of both the initial condition in the
far past and the final condition in the far future. Although this
may seem an awkward requirement, this simply means that

x(t) ≈
∫ +∞

−∞
dt ′ χ̃(t − t ′)ξ (t ′) (A2)

with the acausal response function χ̃ (t) decreasing sufficiently
fast for both t → +∞ and t → −∞ (see Fig. 13). Then
χ̃ (ω) ≡ χ (ω)|τ→−τ is the Fourier transform of χ̃(t), and
conversely. However, as explained in paper I [see Eq. (161)
and Appendix E], χ̃ (t) is more generally defined as the inverse
bilateral Laplace transform of χ̃ (s), i.e., χ̃ (t) = 1/(2πi) =∫ c+i∞
c−i∞ dt est χ̃(s), with the same Bromwich contour Re(s) = c

as the one used for computing the quantity ṠJ . Therefore, for
χ̃ (t) to be the inverse Fourier transform of χ̃ (ω = is), which
corresponds to c = 0, the bilateral Laplace transform χ̃ (s)
must have two and only two poles on the l.h.s. of the complex
s plane. [In contrast, the functions χ̃ (t) plotted in Figs. 18 and
19 in paper I have no Fourier transform.]

Since χ̂(s) = χ̃ (−s), which is a consequence of the general
relation (25) between the OM actions Ŝ[X,Y] and S̃[X†,Y†],
we may rephrase the conditions for the existence of a stationary
state as follows: A stationary solution of Eq. (14) exists when
all the poles of χ̃(s) lie in the r.h.s of the complex s plane (case
1), and a stationary solution of Eq. (21) exists when two and
only two poles of χ̃ (s) lie in the l.h.s. (case 2).

The stationary distributions p̂(x,v) and p̃(x,v), when they
exist, are bivariate Gaussians characterized by the variances
of x and v or, equivalently, by the corresponding effective
temperatures which we denote by T̂x,T̂v and T̃x,T̃v , respec-
tively. By definition, the variances are obtained by integrating
the power spectral density over frequency. Therefore, since
|χ̂(ω)|2 = |χ̃ (ω)|2, the temperatures T̂x and T̃x (resp. T̂v

and T̃v) are given by the same formulas, i.e., in terms of
dimensionless parameters:

2

Q0

∫ ∞

−∞

dω

2π
|χ̂(ω)|2 =

{
T̂x/T , in case 1

T̃x/T , in case 2
, (A3a)

2

Q0

∫ ∞

∞

dω

2π
ω2|χ̂(ω)|2 =

{
T̂v/T , in case 1

T̃v/T , in case 2
. (A3b)

We stress, however, that it is only for T̂x and T̂v that one can
repeat the calculation performed in Appendix B of paper I
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FIG. 15. Kinetic temperatures computed from Eq. (A3b): the
black solid line is T̂v/T for 7.37 < τ < 8.32 and T̃v/T for τ < 7.37
and τ > 8.32. The dashed red line is the kinetic temperature Tv/T

of the original dynamics, which diverges at the boundaries of the
stability region.

and obtain closed-form expressions by solving the linear
differential equation obeyed by the stationary time-correlation
function φ̂(t2 − t1) = 〈x(t1)x(t2)〉 for 0 � |t2 − t1| � τ . The
expressions of T̂x and T̂v are then simply obtained by changing
γ into −γ in Eqs. (113)–(114) of paper I. One can check
that this is in agreement with the numerical integration of
Eqs. (A3) only when the stationary state exists, so that
〈x(t1)x(t2)〉 depends only on t2 − t1 and the calculation in
Appendix B of paper I is applicable. Otherwise, one finds
negative temperatures.

As an illustration, we plot in Fig. 15 the kinetic temperatures
T̂v and T̃v computed for Q0 = 34.2,g/Q0 = 0.25, and when
the system operates in the second stability lobe. As predicted
by the location of the poles of χ̃(s), a stationary state exists
with the hat dynamics for 7.37 < τ < 8.32 and with the tilde
dynamics for τ < 7.37 or τ > 8.32.

2. Asymptotic behavior of 〈e−βWt 〉 and 〈e−�t 〉
We now use the preceding results to predict the long-time

behavior of ZW (1,t) = 〈e−βWt 〉 and Z�(1,t) = 〈e−�t 〉 from
Eqs. (33) and (36).

a. “Hat” dynamics

We first consider the γ → −γ “hat” dynamics and set λ =
1 in Eqs. (32)–(34). Then

K̂1[xf ,t |Y] = et/Q0

∫ xf

xi

DX P̂[X|Y] ≡ et/Q0 p̂(xf ,t |Y),

(A4)

where p̂(xf ,t |Y) may be viewed as a generalized transition
probability [if the “hat” process were Markovian, p̂(xf ,t |Y)
would be the standard transition probability p̂(xf ,t |xi ,0)].
Since f̂Q,1(xi ,xf ) = 1, we thus have

∫
dxf K̂1[xf ,t |Y] =

et/Q0
∫

dxf p̂(xf ,t |Y) = et/Q0 in Eq. (33), and using∫
dP[Y] = p(xi) we recover the IFT (18), as it must be.
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We now assume that the conjugate Langevin equation (14)
admits a stationary solution, as discussed above. Initial
conditions are then irrelevant in the long-time limit, so that

lim
t→∞ p̂(xf ,t |Y) = p̂(xf ), (A5)

where p̂(x) is the corresponding stationary pdf. Equations (33)
and (34a) then lead to the asymptotic expression

ZW (1,t) ∼ et/Q0

∫
dxi p(xi)e

βU(xi )
∫

dxf p̂(xf )e−βU(xf ),

(A6)

which allows us to conclude that

μW (1) = 1

Q0
(A7)

and

gW (1) =
∫

dxi p(xi)e
βU(xi )

∫
dxf p̂(xf )e−βU(xf ). (A8)

The prefactor is indeed finite as can be checked explicitly by
inserting the expression (42) of p(x) and the corresponding
expression of p̂(x) (with Tx and Tv replaced by T̂x and
T̂v), and performing the integrations over xi and xf . This
yields Eq. (68), showing that 0 < gW (1) < ∞ as long as the
temperatures T̂x and T̂v are positive.

On the other hand, from Eqs. (33) and (34c), we obtain

Z�(1,t) ∼ et/Q0

∫
dxi

∫
dxf p(xf )p̂(xf ), (A9)

which shows that the prefactor diverges. From this, we
conclude that μ�(1) �= 1/Q0, but, unfortunately, we cannot
infer the exact value.

b. “Tilde” dynamics

We now turn our attention to the τ → −τ “tilde” dynam-
ics (21). Thanks to the linearity of the Langevin equation,
the Jacobian J̃ [X] is path independent, and setting λ = 1 in
Eq. (35) yields

K̃1(x†f ,t |x†i ; Y†) = Jt

J̃t

∫ x†f

x†i

DX† P̃[X†|x†i ,Y†]. (A10)

At first sight, this resembles Eq. (A4), with the ratio Jt /J̃t

replacing the exponential factor et/Q0 . There are two features,
however, that complicate the asymptotic analysis. The first
one is that while we know that Jt /J̃t grows exponentially
as eṠJ t , with ṠJ given by Eq. (59), we do not know the
prefactor. The second one is that Y† is a trajectory in the time
interval [t,t + τ ] (see Fig. 1). Therefore, even when the system
relaxes toward a stationary state with the tilde dynamics,
K̃1(x†f ,t |x†i ; Y†) still depends on Y† in the long-time limit and

only the dependence on x†i is lost. Then, asymptotically, the

quantity
∫

dP[Y]
∫ x†f

x†i
DX† P̃[X†|x†i ,Y†] involves steady-state

trajectories X† generated by the “tilde” dynamics ending at
x†f = (xi,−vi) and steady-state trajectories Y generated by the
direct dynamics ending at xi = (xi,vi). The only dependence

is on xi and vi , and one expects

lim
t→∞

∫
dP[Y]

∫ x†f

x†i

DX† P̃[X†|x†i ,Y†] ∝ p(xi)p̃(x†f ), (A11)

where p̃(x) is the stationary pdf of the “tilde” dynamics.
The proportionality factor could in principle depend on xi,vi .
However, in the small-τ limit and the associated Markovian
model (see below), this factor is simply equal to 1. In the
non-Markovian case, and in the overdamped limit which is
simpler to analyze (see e.g. Appendix A in paper I), we have
also performed an exact perturbative calculation at the second
order in the amplitude of the feedback force. The outcome is
again that the prefactor is constant [65]. We therefore consider
as most plausible that this is the generic behavior.

As a result, we predict the following asymptotic behavior:∫
dP[Y]K̃1(x†f ,t |x†i ; Y†) ∼ κ eṠJ tp(xi)p̃(x†f ), (A12)

where κ is some constant depending on the model parameters
for which we have no expression. Fortunately, this is sufficient
to infer the asymptotic behavior of ZW (1,t) and Z�(1,t).
Indeed, from Eq. (36) we obtain

ZA(1,t) ∼ κeṠJ t

∫
dxi p(xi)p̃(xi)

∫
dxf f̃A(xi ,xf ), (A13)

where we have used the fact that p(x) and p̃(x) are even
function of v to replace x†i and x†f by xf and xi , respectively.
We deduce that

μW (1) = μ�(1) = μ(1) = ṠJ (A14)

and

gW (1) = κ

∫
dxi p(xi)p̃(xi)e

βU(xi )
∫

dxf e−βU(xf ),

(A15a)

g�(1) = κ

∫
dxi p̃(xi)

∫
dxf p(xf ) = κ. (A15b)

Interestingly, the unknown factor κ cancels out in the ratio
gW (1)/g�(1), which yields Eq. (69). In line with the consid-
erations above, one can check that Eqs. (A14) and (A15) are
in agreement with the exact results in the Markovian small-τ
limit for γ > γ ′, with ṠJ = γ ′/m, gW (1) = 1 − (γ ′/γ )2, and
g�(1) = 1 (see Appendix B 2), as well as in the perturbative
calculation for the overdamped limit of the non-Markovian
case [65].

On the other hand, Eq. (A13) yields

ZQ(1,t) ∼ κeṠJ t

∫
dxi p(xi)p̃(xi)

∫
dxf , (A16)

so that the prefactor diverges. This is expected since μQ(1) =
1/Q0 �= ṠJ when two poles of χ̃ (s) lie on the left-hand side
of the complex s plane.

APPENDIX B: SMALL-τ LIMIT AND
MARKOVIAN MODEL

In order to better understand the stationary-state fluctua-
tions in the feedback-cooling model studied in Sec. IV, it is
very useful to investigate in detail the Markovian limit obtained
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by expanding the feedback force Ff b(t) = k′x(t − τ ) at first
order in τ . The Langevin equation (38) then reads

mv̇t = −(γ + γ ′)vt − k̄xt +
√

2γ T ξt , (B1)

where k̄ = k − k′ and γ ′ = k′τ . This is precisely the model
studied in Refs. [8–10] whose main characteristic is the
dependence of the feedback force Ff b(t) = −γ ′vt on the
particle’s velocity. Interestingly, this induces features that are
similar to those encountered in the original non-Markovian
model. The bonus is that the generating functions ZA(λ,t) in
the steady state can be computed exactly at all times, as shown
in this appendix that revisits and extends earlier work by two
of the present authors [10]. [Accordingly, to be in line with
Ref. [10], we choose to work with Eq. (B1) instead of the
dimensionless version.] In passing, we recall that Eq. (B1)
also describes a Brownian particle coupled to two thermostats
at temperatures T and T ′ in the limit T ′ → 0. The quantity
of interest in this model is the heat exchanged between the
two baths, and the full expression of ZQ(λ,t) for T ′ > 0 was
computed in Ref. [16] in the case of a free Brownian particle,
i.e., for k̄ = 0 (see also Ref. [15]). For k̄ > 0,ZQ(λ,t) is only
known in the long-time limit [45–47].

In Ref. [10], only the generating function Z�(λ,t)
of the entropy production functional �t [X] = βQt [X] +
ln p(xi)/p(xf ) was considered [more precisely, it was the
generating function of �t [X] + (γ ′/m)t , which is the quantity
called �Sp in Ref. [9]]. Here we generalize this calculation to
also include ZW (λ,t) and ZQ(λ,t). In particular, we wish to
bring to light some features that were not discussed in Ref. [10]
and that are also relevant to the non-Markovian case. Note that
in what follows we consider the Markovian model (B1) in its
full generality, i.e., with no constraints on k̄ and γ ′ (except
that they are both positive). The small-τ limit of Eq. (38) then
corresponds to a restricted range of these parameters.

1. General expression of the generating functions

The starting point is the path-integral representation of
ZA(λ,t) [Eq. (30)], where the dependence on Y is replaced
by a dependence on the initial state xi of the trajectory X. This
equation becomes

ZA(λ,t) =
∫

dxi p(xi)
∫

dxf fA,λ(xi ,xf )Kλ(xf ,t |xi ,0),

(B2)

where the functions fA,λ(xi ,xf ) are defined in Eqs. (31) and

Kλ(xf ,t |xi ,0) =
∫ xf

xi

DX e−λβWtP[X|xi] (B3)

with Wt [X] = −γ ′ ∫ t

0 dt ′ v2
t ′ . Since the effective damping

constant in Eq. (B1) is γ + γ ′, the path probability P[X|xi]
can be expressed as

P[X|xi] ∝ e
γ+γ ′

2m
t e−βS[X] (B4)

[see Eq. (16a)], where

S[X] = 1

4γ

∫ t

0
dt ′ [mv̇t ′ + (γ + γ ′)vt ′ + k̄xt ′ ]

2. (B5)

Hence

Kλ(xf ,t |xi ,0) ∝ e
γ+γ ′

2m
t

∫ xf

xi

DX e−βSλ[X], (B6)

where

Sλ[X] ≡ S[X] − λγ ′
∫ t

0
dt ′ v2

t ′ . (B7)

The crucial feature that distinguishes the small-τ limit and
the associated Markovian model from the full non-Markovian
model is that Sλ[X] can be written as an Onsager-Machlup
(OM) action functional for all values of λ. The function
Kλ(xf ,t |xi ,0) is then a genuine transition probability, which
greatly simplifies the calculation of ZA(λ,t) by avoiding the
lengthy computation of the path integral over X. Introducing
the λ-dependent friction coefficient

γ̃ (λ) = [(γ + γ ′)2 − 4λγ γ ′]1/2, (B8)

we indeed obtain

Sλ[X] ≡ 1

4γ

∫ t

0
dt ′ [mv̇t ′ + γ̃ (λ)vt ′ + k̄xt ′]

2

+ γ + γ ′ − γ̃ (λ)

4γ

[
k̄
(
x2

f − x2
i

) + m
(
v2

f − v2
i

)]
,

(B9)

and the time-extensive part of this action is the OM functional
corresponding to the effective Langevin equation

mv̇t = −γ̃ (λ)vt − k̄xt +
√

2γ T ξt . (B10)

Equation (B2) then becomes

ZA(λ,t) = e
γ+γ ′−γ̃ (λ)

2m
t

∫
dxi p(xi)

∫
dxf fA,λ(xi ,xf )

× e
−β

γ+γ ′−γ̃ (λ)
4γ

[k̄(x2
f −x2

i )+m(v2
f −v2

i )]
pγ̃ (xf ,t |xi ,0),

(B11)

where pγ̃ (xf ,t |xi ,0) is the transition probability associated

with the dynamics (B10). [The extra exponential factor e− γ̃ (λ)
2m

t

in Eq. (B11) comes from the contribution of the effective
friction coefficient γ̃ (λ) to the Jacobian.] Since γ̃ (0) = γ +
γ ′ and fA,λ=0(xi ,xf ) = 1, it is readily seen that ZA(0,t) is
properly normalized.

To proceed further, we replace p(x) by its expression in the
stationary state [10]

p(x) = β
√

k̄m

2π

γ + γ ′

γ
e
−β

γ+γ ′
2γ

[k̄x2+mv2]
, (B12)

and we compute pγ̃ (xf ,t |xi ,0) by using the relation
pγ̃ (xf ,t |xi ,0) = pγ̃ (xf ,t ; xi ,0)/pγ̃ (xi). The pdf pγ̃ (xi) is
given by Eq. (B12) with γ + γ ′ replaced by γ̃ (λ), and
pγ̃ (xf ,t ; xi ,0) is given by the standard formula for the joint
probability density of a two-dimensional Ornstein-Uhlenbeck
process [66],

pγ̃ (xf ,t ; xi ,0) = 1

4π2
√

det�
e− 1

2 BT �−1B, (B13)
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where

�(λ,t) =

⎛⎜⎜⎜⎝
φxx(0,λ) 0 φxx(t,λ) φxv(t,λ)

0 φvv(0,λ) φxv(−t,λ) φvv(t,λ)

φxx(t,λ) φxv(−t,λ) φxx(0,λ) 0

φxv(t,λ) φvv(t,λ) 0 φvv(0,λ)

⎞⎟⎟⎟⎠,

and

B ≡

⎛⎜⎝xi

vi

xf

vf

⎞⎟⎠
is the four-dimensional vector representing the initial and final
conditions. The functions φxx(t,λ), φxv(t,λ), and φvv(t,λ) are
the stationary time-dependent correlation functions associated
with Eq. (B10) (see Ref. [10] for the full expressions). In par-
ticular, φxx(0,λ) = γ T /(γ̃ (λ)k̄) and φvv(0,λ) = γ T /(γ̃ (λ)m).
Plugging all these expressions into Eq. (B11) and carrying out
the Gaussian integrals over xi, vi, and xf ,vf , we finally obtain
the compact result

ZA(λ,t) = 1√
det(1 + �LA)

γ + γ ′

γ̃ (λ)
eμ(λ)t , (B14)

where

μ(λ) = 1

2m
[γ + γ ′ − γ̃ (λ)] (B15)

and

LA(λ) = 1

γ T

⎛⎜⎜⎜⎝
k̄h+

A(λ) 0 0 0

0 mh+
A(λ) 0 0

0 0 k̄h−
A(λ) 0

0 0 0 mh−
A(λ)

⎞⎟⎟⎟⎠
with

h±
W (λ) = mμ(λ),

h±
Q(λ) = mμ(λ) ± λγ, (B16)

h±
�(λ) = mμ(λ) ∓ λγ ′.

It turns out that �t = βWt + (γ ′/γ )β�U in the stationary
state, which explains that h±

�(λ) is obtained from h±
Q(λ) by

interchanging γ and γ ′ and flipping the sign of the last term.
Note also that the present definition of μ(λ) differs from that
in Ref. [10].

ZA(λ,t) is a complicated function of λ and the inverse
Fourier transform can be computed only numerically. On
the other hand, the long-time limit is readily obtained by
noting that the matrix �(λ,t) becomes diagonal when t → ∞,
provided λ < λmax = (γ + γ ′)2/(4γ γ ′) so that γ̃ (λ) and thus
μ(λ) are real [10]. Then

lim
t→∞

√
det(1 + �LA) = [γ̃ (λ) + h+

A(λ)][γ̃ (λ) + h−
A(λ)]

γ̃ (λ)2
,

(B17)

which leads to

ZA(λ,t) ∼ (γ + γ ′)γ̃ (λ)

[γ̃ (λ) + h+
A(λ)][γ̃ (λ) + h−

A(λ)]
eμ(λ)t . (B18)

We can thus identify the three different prefactors as

gW (λ) = 4(γ + γ ′)γ̃ (λ)

[γ + γ ′ + γ̃ (λ)]2
, (B19a)

gQ(λ) = 4(γ + γ ′)γ̃ (λ)

[γ + γ ′ + γ̃ (λ)]2 − 4λ2γ 2
, (B19b)

g�(λ) = 4(γ + γ ′)γ̃ (λ)

[γ + γ ′ + γ̃ (λ)]2 − 4λ2γ ′2 . (B19c)

One can check that Eq. (B15) is also given by the general
expression (54) of μ(λ) in the small-τ limit. Indeed, the
response function χ (ω) associated with Eq. (B1) reads

χ (ω) = [−mω2 − i(γ + γ ′)ω + k̄]−1, (B20)

and the function Hλ(ω) in Eq. (54) (in the original dimensionful
units) is now given by

Hλ(ω)−1 = |χ (ω)|−2 − 4λγ γ ′ω2

= [k̄ − mω2]2 + ω2[(γ + γ ′)2 − 4λγ γ ′]. (B21)

This can be identified for all values of λ < λmax with the square
modulus of the response function associated with the effective
Langevin equation (B10),

χλ(ω) ≡ (−mω2 − iγ̃ (λ)ω + k̄)−1. (B22)

Equation (54) then reads

μ(λ) = 1

2π

∫ +∞

−∞
dω ln

χλ(ω)

χ0(ω)
, (B23)

where we have eliminated the modulus since the imaginary
part of χ (ω,λ) is an odd function of ω. The two poles of
χλ(ω) lie on the lower-half of the complex ω plane for all
values of the parameters, and by using a contour similar to the
one considered in Fig. 4 in paper I (replacing ω by is), one
recovers Eq. (B15) from Cauchy’s residue theorem. As it must
be, Eq. (B15) also agrees with the expression of the SCGF
obtained in Ref. [21] when the temperature T ′ of the second
thermostat is set to zero [this is also true for gQ(λ) given by
Eq. (B19b)]. Interestingly, μ(λ) and the three prefactors gA(λ)
are independent of the spring constant k̄.

As discussed in Sec. IV B 1, the value λ = 1 deserves
special attention. From Eq. (B8), one obtains γ̃ (1) = |γ − γ ′|,
so that Eqs. (B15) and (B22) yield

μ(1) =
{

γ ′
m

, for γ � γ ′
γ

m
, for γ ′ � γ

(B24)

and

χ1(ω) =
{

[−mω2 − i(γ−γ ′)ω + k̄]−1 ≡ χ̃(ω), for γ � γ ′

[−mω2 − i(γ ′−γ )ω + k̄]−1 ≡ χ̂(ω), for γ ′ � γ
,

(B25)

where χ̃(ω) and χ̂(ω) = χ̃ (−ω) are the response functions
obtained from the transformations γ → −γ and γ ′ → −γ ′,
respectively, which correspond to the so-called “hat” and
“tilde” conjugate dynamics defined in the main text (changing
τ into −τ in the small-τ limit is indeed equivalent to flipping
the sign of γ ′).
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2. Fluctuations of the work

We now use Eq. (B18) to investigate how the work
Wt [X] = −γ ′ ∫ t

0 dt ′ v2
t ′ fluctuates in the long-time limit. The

key point is that the prefactor gW (λ) defined by Eq. (B19a)
has no singularity, so that the LDF I (w) is always given by
the Legendre transform of μ(λ), with the saddle point λ∗(w)
solution of the equation

1

m

γγ ′

γ̃ (λ∗)
+ w = 0. (B26)

This yields

λ∗(w) = γ ′

4γ

[
(γ + γ ′)2

γ ′2 − γ 2

m2w2

]
(B27)

for w < 0, whereas there is no solution for w > 0. The
function λ∗(w) decreases monotonically from λmax to −∞
as w increases from −∞ to 0, and the LDF is then given by

I (w) = − (γ + γ ′)2

γ γ ′
(w − w̄)2

4w
for w < 0, (B28)

where w̄ = −γ γ ′/[m(γ + γ ′)] is the average work rate. (Note
that the LDF is defined here with the same sign as in Ref. [13],
whereas the opposite convention was adopted in Ref. [10].)

We next consider the long-time behavior of ZW (1,t) =
〈e−βWt [X]〉 to point out a mistake in Ref. [9]. According to
Eq. (18) in that paper, one should have the asymptotic fluctu-
ation relation limt→∞〈e−βWt [X]+�Spu(t)〉 = 1, where �Spu(t)
is the so-called “entropy pumping” contribution, which is
equal to −(γ ′/m)t in the present model (as the feedback force
depends linearly on the velocity). On the other hand, the exact
asymptotic expression (B18) yields limt→∞〈e−βWt [X]−μ(1)t 〉 =
gW (1), which is a different result. First, μ(1) is equal to γ ′/m

for γ � γ ′ only [cf. Eq. (B24)]. Second, Eq. (B19a) states that
gW (1) = 1 − (γ ′/γ )2 for γ � γ ′ and gW (1) = 1 − (γ /γ ′)2

for γ ′ � γ . In both cases, this is different from 1. The error in
Ref. [9] consists in assuming that βWt [X] always fluctuates
like �t [X] asymptotically because the two observables differ
only by a temporal boundary term. However, this term may
have large fluctuations of order t , as discussed below.

3. Fluctuations of the dissipated heat and
the entropy production

We now turn our attention to ZQ(λ,t) and Z�(λ,t). We
first notice from Eqs. (B14)–(B16) that the two generating
functions are related to one another by interchanging γ and γ ′,
a symmetry that is not obvious from the mere definition of the
observables. Although the long-time behavior of Z�(λ,t) has
already been investigated in Ref. [10], it is worth revisiting this
analysis to stress some important points that were left aside.

We know from Eq. (18) that the heat Qt [X] satisfies at all
times the IFT

〈e−βQt 〉 = e
γ

m
t . (B29)

The symmetry γ ↔ γ ′ thus implies that

〈e−�t 〉 = e
γ ′
m

t , (B30)

which is the IFT obtained in Ref. [9] and rederived in
Ref. [10]. In the long-time limit, these two relations imply that

0.8 0.9 1 1.1

λ

1

2

3

(1
/t)

 ln
 Z

Q
(λ

,t)

FIG. 16. Behavior of (1/t) ln ZQ(λ,t) as a function of λ in
the vicinity of λ = 1 for γ = 2 and γ ′ = 1 (m = 1,k̄ = 1,T = 1).
From top to bottom: t = 3,5,10,25. Observe that (1/t) ln ZQ(1,t) =
γ /m = 2 for all values of t . The solid black line shows the theoretical
SCGF μ(λ) given by Eq. (B15).

μQ(1) = γ /m and μ�(1) = γ ′/m. Comparing with Eq. (B24)
we thus see that μ(1) differs from μQ(1) for γ > γ ′ and from
μ�(1) for γ ′ > γ . There is no contradiction, however, and
the mismatch can be ascribed to rare but large fluctuations
of the temporal boundary terms that are not included in
the definition (B14) of μ(λ) [and more generally in the
calculation that leads to Eq. (54)]. As is clear from Eqs. (B19b)
and (B19c), the mathematical consequence is the divergence
of the prefactors gQ(1) for γ � γ ′ and g�(1) for γ ′ � γ .

To understand more precisely what is going on, let us
investigate the behavior of ZQ(λ,t) for finite t . [Of course,
the same analysis holds for Z�(λ,t) by changing γ into γ ′.]
The key observation is that the determinant of the matrix
1 + � LQ in Eq. (B14) vanishes at λ = λ+(t) > 1 and that
this zero moves towards 1 as t → ∞. The determinant is
negative beyond this value but becomes positive again for
larger values of λ. The resulting behavior of (1/t) ln ZQ(λ,t)
is illustrated in Fig. 16. Note that the intermediate region where
the determinant is negative and ZQ(λ,t) imaginary shrinks as
t increases. As it must be, one has (1/t) ln ZQ(1,t) = γ /m at
all times.

A careful analysis of Eq. (B14) shows that the behavior of
ZQ(λ,t) for t large but finite and λ close to 1 is described by
the boundary-layer expression

ZQ(λ,t) ∼ (γ + γ ′)(γ − γ ′)2etγ ′/m

2γ 3|1 − λ|√1 + B(u,t)
, (B31)

where

B(u,t) = (γ + γ ′)(γ − γ ′)2

γ 3

4km − (γ − γ ′)2 cos(αt/m)

α2
u

+ (γ + γ ′)2(γ − γ ′)4

4γ 6
u2, (B32)

with the scaling variable u = (1 − λ)−1e−t(γ−γ ′)/m and α =√
4k̄m − (γ − γ ′)2 (which is here assumed to be real).
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FIG. 17. Behavior of (1/t) ln ZQ(λ,t) as a function of t/τ0

for γ = 2,γ ′ = 1, and 1 − λ = 10−6 (m = 1,k̄ = 1,T = 1). Note
the crossover from γ to γ ′ around t/τ0 = γ

γ−γ ′ ln 1
1−λ

≈ 28. The
crossover time decreases as λ moves away from 1.

Accordingly, one has

ZQ(λ,t) ∼ (γ + γ ′)(γ − γ ′)2

2γ 3|1 − λ| e
γ ′
m

t (B33)

for u � 1, i.e., t/τ0 � γ

γ−γ ′ ln 1
|1−λ| (where τ0 = m/γ is the

viscous relaxation time for γ ′ = 0), and

ZQ(λ,t) ∼ e
γ

m
t (B34)

for u � 1, i.e., t/τ0 � γ

γ−γ ′ ln 1
|1−λ| . This crossover behavior,

which is reminiscent of a smoothed dynamical first-order
transition, is illustrated in Fig. 17.

As it turns out, gQ(λ) has also another pole at λ− = −(1 +
2γ ′/γ ), which in contrast with the pole at λ = 1 exists for
both γ � γ ′ and γ ′ � γ . More generally, for t finite, ZQ(λ,t)
diverges at λ = λ−(t) < λ−. This singularity moves towards
λ− as t increases and is equal to λ− at a finite critical time
tc. [Alternatively, when regarded as a function of t,ZQ(λ,t)
diverges at a certain time t(λ) � tc for λ � λ−.] The behavior
of ZQ(λ,t) in the vicinity of λ− is thus different from the

behavior in the vicinity of λ = 1. On the other hand, this kind
of behavior is observed in other nonequilibrium models; see,
e.g., Ref. [59].

Two comments are in order:
(1) The two poles of gQ(λ) have a different origin, as can

be seen by performing the averages over the initial and final
conditions in Eq. (B11) separately. The pole at λ = 1 for γ �
γ ′ comes from the average over xf , whereas the pole at λ = λ−
comes from the average over xi . This can also be seen by
taking the long-time limit directly in Eq. (B11) using the fact
that pγ̃ (xf ,t |xf ,0) → pst,γ̃ (xf ) as t → ∞.

(2) These poles are not the poles of g�U (λ). Indeed, a simple
calculation shows that the generating function of �U behaves
asymptotically as

Z�U (λ,t) ∼ (γ + γ ′)2

(γ + γ ′)2 − γ 2λ2
. (B35)

Its domain of definition is thus [− γ+γ ′
γ

,
γ+γ ′

γ
], which is not

the domain of definition of ZQ(λ,t). This results from the
fact that the boundary term in Eq. (B11) (for At = βQt ) does
not only come from the function fQ,λ = eλβ�U(xi ,xf ). In other
words, Wt and �U cannot be treated as uncorrelated random
variables asymptotically, as is often assumed [17,20,67,68]. As
a consequence, the slope of the LDF I (q), which is determined
by the poles of gQ(λ) in a certain range of q, is not related to
the tails of the pdf of �U . Explicitly, we find

(a) For γ ′ > γ ,

I (q) =
{

− (γ+γ ′)2

γ γ ′
(q−q̄)2

4q
for q � q1

γ ′
m

+ (
1 + 2 γ ′

γ

)
q for q � q1

, (B36)

where q̄ = −γ γ ′/[m(γ + γ ′)] and q1 = −γ γ ′/[m(γ + 3γ ′)]
(such that λ∗(q1) = λ−).

(b) For γ > γ ′,

I (q) =

⎧⎪⎪⎨⎪⎪⎩
− γ ′

m
− q for q � q2

− (γ+γ ′)2

γ γ ′
(q−q̄)2

4q
for q2 � q � q1

γ ′
m

+ (
1 + 2 γ ′

γ

)
q for q � q1

, (B37)

where q2 = −γ γ ′/[m(γ − γ ′)] [such that λ∗(q2) = 1].
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