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Decomposition of radiation energy into work and heat
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We investigate energy transfer by the radiation from a cavity quantum electrodynamics system in the context
of quantum thermodynamics. We propose a method of decomposing it into work and heat within the framework
of quantum master equations. We find that the work and heat correspond, respectively, to the coherent and
incoherent parts of the radiation. In the derivation of the method, it is crucial to investigate the dynamics of the
system that receives the radiation from the cavity.
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I. INTRODUCTION

Thermodynamics is an established and powerful phe-
nomenological theory in the macroscopic scale [1–3]. It pro-
vides various universal results on thermodynamic processes,
e.g., the Carnot efficiency limit of heat engines.

In the 19th Century, one of the key steps in constructing
thermodynamics was to realize the equivalence and difference
between work and heat [4,5]. The equivalence—both are forms
of energy transfer—led to the first law, and the difference—
100% conversion from heat to work is impossible—led to the
second law and furthermore to the concept of entropy.

After its establishment as a reliable theory on macroscopic
physics, thermodynamics played many important roles in the
relationship to quantum physics. They range from its role in the
genesis of quantum physics [6] to that in the currently emerging
field of quantum thermodynamics [7–10]. A perspective on
the relationship is how to define and incorporate work, heat,
and entropy in quantum physics. In an early stage, entropy
in quantum systems was introduced by von Neumann [11]
through a thermodynamic consideration. An example of the
utilizations of entropy in quantum systems was seen in the
1970s in discussing the stability of equilibrium states [12,13].
Stability was also studied in terms of work done by quantum
systems, which led to the concept of passivity [14,15]. Around
the same time, related studies in open quantum systems
appeared. In those studies, entropy balance [16,17] and its
relation to energy balance (work-heat decomposition) [18–20]
were investigated. In particular, Refs. [19] and [20] studied
heat engines in the setup of open quantum systems. Before
these studies, a quantum heat engine was studied [21,22] in the
context of population inversion or negative temperature [23].

Now in the 21th Century, renewed attention has been
paid to quantum thermodynamics [7–10,24–44]. One of the
main goals of quantum thermodynamics is the extension of
thermodynamics under quantum effects, such as quantum
coherence and entanglement. For example, there are reports
that quantum coherence enhances the performance of quan-
tum thermal machines (such as quantum heat engines and
refrigerators) [27,30,31,33,34,37–41,43,44].

Lasers and masers are regarded as examples of quantum
heat engines, and they have been studied in the context of
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quantum thermodynamics [21,31,34,36,44]. A typical setup
of a laser system as a heat engine is shown in Fig. 1. The main
system is a cavity quantum electrodynamics system, which
consists of cavity photons and matter. The matter is thermally
pumped by heat baths. The output of the engine is obtained
in the form of radiation from the cavity. Below a certain laser
threshold, incoherent light is mainly observed in the radiation.
Above the threshold, in contrast, coherent light is mainly ob-
served. In this way, the system emits both coherent light (such
as a laser) and incoherent light (such as thermal radiation).

It is noted that the energy transfer by coherent radiation
is “systematic”, whereas that by incoherent radiation is
“random”. This leads to an intuitive conjecture that the
coherent and incoherent parts of the radiation correspond,
respectively, to work and heat. However, so far in many studies
on lasers as quantum heat engines, all the energy transfer
by the radiation has been calculated as work [21,31,34] (an
exception is Ref. [36]). One should carefully define the work
and heat in the radiation (the output of the engine) when
discussing quantum thermodynamics. Otherwise, for example,
one sometimes overestimates the efficiency of a heat engine.
Decomposing the radiation energy into work and heat should
be particularly crucial at around the threshold because coherent
and incoherent parts contribute equally to the radiation.

In the present paper, we propose an appropriate method
of decomposing the radiation energy into work and heat in
the framework of a quantum master equation (QME). We
formulate the method by investigating the time evolution of
the system (called the photon drain) that receives radiation
from the cavity. We definitely identify the systematic (work)
and random (heat) energy transfers based on time evolution.
(For a similar but different approach, see Ref. [35].) Our main
result shows that the above intuitive conjecture is correct:
the coherent radiation is attributed to the work, whereas the
incoherent radiation is attributed to the heat.

II. SETUP

We consider a total system that is composed of a cavity
quantum electrodynamics (QED) system, heat baths, and a
photon drain. In the present paper, we refer to these simply as
cQED, bath(s), and drain, respectively. We show a schematic
example of the setup in Fig. 1. For simplicity, we assume that
the cavity is single-mode. The baths interact with the matter
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FIG. 1. A typical example of the total system setup. The cavity
QED system consists of the cavity photons and matter. Both coherent
and incoherent light is included in the radiation from the cavity to
the photon drain. The symmetry-breaking (SB) field is introduced to
keep photonic amplitude finite (see the text).

part of the cQED and induce excitation and decay of the
cQED. The drain, on the other hand, interacts with the photon
part of the cQED and receives the photons out of the cQED
through cavity loss. We also irradiate a weak coherent field,
which we call a symmetry-breaking (SB) field, to the cavity
photon mode to have a nonvanishing expectation value of
photonic amplitude in lasing situations. In the present paper,
we assume that the baths and drain are so large that their
states are almost unchanged. In particular, the drain is always
in the (almost) vacuum state. We consider the steady state of
the cQED in this setup. That is, we investigate the cQED as
a continuous heat engine [42].

The total Hamiltonian is given by

Ĥtot(t) = Ĥc + ĤSB(t) + Ĥb + Ĥd + Ĥc-b + Ĥc-d. (1)

Here, Ĥc is the Hamiltonian of the cQED. Its concrete
form is irrelevant to our formulation. ĤSB is the interaction
Hamiltonian between the cavity mode and the SB field:

ĤSB(t) = fSBe−iω�t ĉ† + f ∗
SBeiω�t ĉ, (2)

where ĉ and ĉ† are, respectively, the annihilation and creation
operators of the cavity mode, fSB is the amplitude of the SB
field, and ω� is the frequency of the SB field. We set ω� equal
to the frequency of the cQED photonic amplitude in the rest
frame. Ĥb is the free Hamiltonian of the baths and Ĥc-b is the
interaction Hamiltonian between the (matter part of) cQED
and the baths. Ĥd is the free Hamiltonian of the drain:

Ĥd =
∑

k

h̄ωkd̂
†
k d̂k, (3)

where d̂k and d̂
†
k are, respectively, the annihilation and creation

operators of the kth mode in the drain. Ĥc-d is the interaction
Hamiltonian between the cQED and the drain:

Ĥc-d =
∑

k

(h̄gkĉ
†d̂k + h̄g∗

k ĉd̂
†
k ), (4)

where gk represents the coupling strength. We also define the
spectral function of the drain:

�d(ω) ≡ 2π
∑

k

|gk|2δ(ω − ωk). (5)

As seen in the above, the explicit forms of the Hamiltonians
are specified only for ĤSB, Ĥd, and Ĥc-d. The forms of the other
Hamiltonians are irrelevant to the present study, although there
are some (weak) restrictions on them. One of the restrictions
is that the Hamiltonians other than ĤSB commute with the
excitation number of the total system N̂tot:

[Ĥj ,N̂tot] = 0, (6)

where j = c, b, d, c-b, and c-d. Note that N̂tot is defined by
the sum of the excitation numbers in the individual systems:
N̂tot = N̂c + N̂b + N̂d, where N̂d ≡ ∑

k d̂
†
k d̂k and N̂c ≡ ĉ†ĉ +

N̂ ex
matter (N̂ ex

matter is the excitation number of the matter part in
the cQED).

We mention here the reason to introduce the SB field.
If we analyze the setup without the SB field, the photonic
amplitude (the expectation value of ĉ) vanishes in the steady
state even in lasing situations because the system has U(1)
symmetry (excitation number conservation), as assumed in
Eq. (6). However, as we will see later, the photonic amplitude
plays a crucial role in our results in the present paper. For
this reason, a finite value of the amplitude is necessary in our
formulation, and this is why we introduce the SB field.

For the convenience of the theoretical analysis, we trans-
form the frame from the rest one to the rotating one with the
frequency ω�. We define an operator Ã in the rotating frame
by Ã(t) = eiω�tN̂totÂ(t)e−iω�tN̂tot for any operator Â in the rest
frame. In this transformation, we have a time-independent to-
tal Hamiltonian: H̃tot = H̃c + H̃SB + H̃b + H̃d + H̃c-b + H̃c-d.
Here,

H̃SB = fSBĉ† + f ∗
SBĉ. (7)

The other Hamiltonians are unchanged in this transformation
because they commute with N̂tot as assumed in Eq. (6). In
the following, we describe the system in the rotating frame
unless otherwise specified, and we omit the tildes for notational
simplicity. We also employ the Schrödinger picture.

III. QUANTUM MASTER EQUATION FOR cQED

The time-evolution equation for the total system is given
by the von Neumann equation:

d

dt
ρtot(t) = 1

ih̄
[Htot − h̄ω�N̂tot,ρtot(t)], (8)

where ρtot is the density operator of the total system in
the rotating frame. By applying the standard Born-Markov
approximation [45] to this equation, we obtain a QME for the
cQED:

d

dt
ρc(t) = Lρc(t), (9)

where ρc = TrbTrdρtot is the density operator of the cQED, and
Trb and Trd are the traces over the Hilbert spaces of the baths
and the drain, respectively. The Liouvillian L is composed of
three parts:

L = L0 + Lb + Ld, (10)
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where the superoperators L0 and Ld act on any operator Ôc of
the cQED as follows:

L0Ôc = 1

ih̄
[Hc + HSB − h̄ω�Nc,Ôc], (11)

LdÔc = −κ

2
(ĉ†ĉÔc + Ôcĉ

†ĉ − 2ĉÔcĉ
†), (12)

and Lb is the Liouvillian due to the baths (the explicit form is
irrelevant). Here, κ is the cavity loss rate.

In deriving the QME (9), we have made several assump-
tions. The first one is weak couplings between the cQED and
the baths and between the cQED and the drain, so that we have
used a second-order perturbation theory (Born approximation)
in the couplings. The second is that the time scale of the cQED
is sufficiently slower than those of the baths and the drain, so
that we have used the Markov approximation. The third is that
the drain is in an almost vacuum state. The fourth assumption is
the wide-band limit of the drain spectral function: �d(ω) = κ

(const).
In the present paper, we consider the steady state of the

cQED ρss
c in the rotating frame. We assume that ρss

c is unique
and stable, i.e., the steady state is realized after a sufficiently
long time for any initial state. Mathematically this means that
zero is a nondegenerate eigenvalue of L, its corresponding
eigenvector is ρss

c , and the real parts of the other eigenvalues
are negative. See Refs. [18,46,47] for conditions for L to have
these properties. If the QME (9) does not have these properties,
the cQED state after a long time might depend on the initial
state or it might oscillate among several states, which is beyond
the scope of the present paper.

Radiation energy flow

In the present setup, the cavity photons are leaked through
the cavity loss due to the drain. Thus we can define the radiation
energy flow as the unit-time energy loss due to the drain:

JE
c→d ≡ −Trc

{
(Hc + HSB)Ldρ

ss
c

}
, (13)

where Trc is the trace over the Hilbert space of the cQED.
In the present paper, we use the sign convention such that
energy flows (including work and heat flows) are positive when
delivered from the cQED to the drain.

As shown in Appendix A, we can rewrite the above
equation as

JE
c→d = h̄ω�κ〈ĉ†ĉ〉ss

c + h̄κ
d

dτ
Im〈č†(τ )ĉ〉ss

c

∣∣
τ=0, (14)

where Ǒc(τ ) ≡ eL
†τ Ôc represents the “Heisenberg picture”

of any cQED operator Ôc, and 〈Ôc〉ss
c ≡ Trc(ρss

c Ôc) is the
steady-state average. Note that we define the adjoint S† of
a superoperator S such that Tr[Ô†

1SÔ2] = Tr[(S†Ô1)†Ô2]
holds for any pair of operators Ô1,Ô2.

IV. QUANTUM MASTER EQUATION FOR THE DRAIN

The purpose of the present paper is to decompose the
radiation energy flow JE

c→d into work and heat flows. It is
difficult, however, to find a criterion for the decomposition
from Eqs. (13) and (14). Intuitively, the work and heat are,
respectively, the “systematic” and “random” parts of energy

transfer. Therefore, we expect that, for the decomposition, it is
necessary to investigate how the drain receives the energy flow.

To investigate this, we need to know the time evolution of
the drain interacting with the cQED plus the baths. Here we
can use a QME for the drain to describe the time evolution
by regarding the cQED plus baths as an environment and by
eliminating their degrees of freedom. This is possible because
we have assumed that the interaction between the cQED and
the drain is so weak that we can use a Born-type approximation.

The starting point in deriving a QME for the drain is the
following QME for the composite system composed of the
cQED and the drain:

d

dt
ρc+d(t) = (L − Ld + K0 + Mint)ρc+d(t), (15)

where ρc+d is the density operator of the composite sys-
tem, K0Ôc+d = (1/ih̄)[Hd − h̄ω�N̂d,Ôc+d], and MintÔc+d =
(1/ih̄)[Hc-d,Ôc+d] for any operator Ôc+d of the composite
system. We can derive the QME (15) for the composite
system as follows. We first consider the cQED plus baths,
and we eliminate the baths’ degrees of freedom in the standard
Born-Markov approximation to obtain a QME for the cQED.
After that, we connect it to the drain to obtain Eq. (15). We
may justify the QME (15) in the condition of weak coupling
for Hc-d (otherwise this is not justified [48]). Indeed, if we
eliminate the drain’s degrees of freedom from Eq. (15) in the
Born-Markov approximation, we recover the QME (9) for the
cQED.

To derive a QME for the drain from Eq. (15), we
eliminate the degrees of freedom of the cQED. However,
in contrast to the derivation of Eq. (9), we cannot justify
using the Markov approximation in the derivation of a QME
for the drain. This is because we have assumed that the time
scale of the drain is much faster than that of the cQED in
the derivation of Eq. (9). Therefore, we have to describe the
drain using a non-Markovian time-evolution equation. One of
the methods of describing the non-Markovian dynamics is a
time-convolutionless (TCL) QME. In particular, we employ a
TCL-QME valid up to second order in the coupling between
the cQED and the drain. The second order is necessary and
sufficient to be consistent with the coupling order in the
QME (9) for the cQED. The second-order TCL-QME for the
drain reads

d

dt
ρd(t) = [Kw + Kh(t)]ρd(t), (16)

where ρd(t) = Trcρc+d(t) is the density operator of the drain
at time t . Here the superoperators are defined by the following
equations:

KwÔd = 1

ih̄
[Hd + H̄c-d − h̄ω�N̂d,Ôd], (17)

Kh(t)Ôd = Trc

∫ t

t0

dt ′M′
inte

(L+K0)(t−t ′)M′
int

× [
ρss

c ⊗ e−K0(t−t ′)Ôd
]
, (18)

M′
intÔc+d = 1

ih̄
[Hc-d − H̄c-d,Ôc+d], (19)
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with any operators Ôd of the drain and Ôc+d of the composite
system. H̄c-d ≡ Trc(ρss

c Hc-d) = ∑
k(h̄gk〈ĉ†〉ss

c d̂k + h̄g∗
k 〈ĉ〉ss

c d̂
†
k )

is the steady-state-averaged interaction, and t0 is the initial
time. In deriving the TCL-QME (16), we have assumed that
the initial state of the composite system is given by ρc+d(t0) =
ρss

c ⊗ ρd(t0). We shall show the detail of the derivation of the
TCL-QME (16) in Appendix D.

The TCL-QME (16) is an effective equation of motion
for only the drain under the influence of the interaction with
the cQED. We note that Kw and Kh, respectively, describe
the Hamiltonian and non-Hamiltonian dynamics of the drain.
As a result, we can split the influence of the interaction into
systematic and random parts (due to Kw and Kh, respectively).
Furthermore, Eq. (17) implies that the operator of the drain
energy is Hd + H̄c-d.

V. DECOMPOSITION OF RADIATION ENERGY FLOW

We now construct a method of decomposing the radiation
energy flow into work and heat flows. In Sec. V A, we define
the work and heat flows from the viewpoint of systematic and
random interactions. In the subsequent subsections, to justify
the definition, we analyze the energy flow in the rest frame
(Sec. V B) and in terms of the entropy change (Sec. V C).
In Sec. V D, we show explicit forms of the work and heat
flows, which are the main result of the present paper, and we
also show a relation to the photoluminescence spectrum in
Sec. V E.

A. Definition of work and heat flows

We have assumed that the drain is almost in the vacuum state
in the derivation of the QME (9) for the cQED. Therefore, it
is reasonable to set the initial state of the drain to the vacuum
state |vac〉 in calculating the unit-time energy gain JE

d←c of
the drain with the QME (16) for the drain. We thus define the
energy flow JE

d←c by

JE
d←c ≡ Trd{(Hd + H̄c-d)[Kw + Kh(t)]ρd(t)}, (20)

where ρd(t) is the solution of the QME (16) with the
initial condition ρd(t0) = |vac〉〈vac|. Note that we define JE

d←c
independently of JE

c→d in Eq. (13) (although we will show later
that these are equal to each other).

We decompose this energy flow into two parts: JE
d←c =

J work
d←c + J heat

d←c, where

J work
d←c ≡ Trd{(Hd + H̄c-d)Kwρd(t)}, (21)

J heat
d←c ≡ Trd{(Hd + H̄c-d)Kh(t)ρd(t)}. (22)

We may regard J work
d←c as the work flow because it is the energy

gain due to the Hamiltonian (systematic) part of the equation
of motion for the drain. On the other hand, J heat

d←c is the heat
flow because it is the energy gain due to the non-Hamiltonian
(random) part.

Although this interpretation to identify the non-
Hamiltonian part as heat is consistent with that in the
thermodynamics of open quantum systems weakly coupled to
thermal baths [18], it might seem rather intuitive. We therefore

justify this definition from different perspectives in the next
two subsections.

B. Justification 1: Rest frame

We may justify this decomposition also from the viewpoint
of the rest frame as follows. In the rest frame, the Hamilto-
nian (energy operator) of the drain, Ĥ rest

d (t) = e−iω�tN̂d (Hd +
H̄c-d)eiω�tN̂d , is modulated in time through the photonic
amplitude 〈ĉ〉ss

c e−iω�t of the cQED. Hence we may interpret the
cQED as an external agent that varies the control parameter
in the drain. Then the unit-time change of the drain energy
(which is equal to JE

d←c) has two contributions:

JE
d←c = Trd

{
ρ̂rest

d (t)
d

dt
Ĥ rest

d (t)

}
+ Trd

{
Ĥ rest

d (t)
d

dt
ρ̂rest

d (t)

}
,

(23)

where ρ̂rest
d (t) = e−iω�tN̂dρd(t)eiω�tN̂d is the drain’s state in the

rest frame. The first term is attributed to the controllable change
of the Hamiltonian itself, whereas the second term is attributed
to the uncontrollable change of the drain’s state. Therefore, we
may interpret the first and second terms as the changes in work
and heat, respectively. In fact, as shown in Appendix B, the
following relations hold:

J work
d←c = Trd

{
ρ̂rest

d (t)
d

dt
Ĥ rest

d (t)

}
, (24)

J heat
d←c = Trd

{
Ĥ rest

d (t)
d

dt
ρ̂rest

d (t)

}
. (25)

We also note that this interpretation is consistent with those
in statistical mechanics [49], open quantum systems [18–20],
and the thermodynamics of small systems [50,51].

C. Justification 2: Entropy

We further justify the decomposition in terms of entropy.
For this purpose, we investigate the time derivative of the
von Neumann entropy, SvN(ρd) ≡ −Trdρd ln ρd, of the drain
(kB = 1):

d

dt
SvN(ρd(t)) = −Trd{(dρd(t)/dt) ln ρd(t)}

= −Trd{(ln ρd(t))[Kw + Kh(t)]ρd(t)}
= −Trd{(ln ρd(t))Kh(t)ρd(t)}. (26)

We have used the trace-preserving property of the QME
in the first line, and the form of the QME (16) in the
second line. In the third line, we have used the fact that the
Hamiltonian dynamics does not change the von Neumann
entropy, −Trd{(ln ρd(t))Kwρd(t)} = 0. This fact used in the
third line means that the work flow J work

d←c does not induce the
entropy change in the drain.

We note here that it is reasonable to evaluate Eq. (26)
on second order in the coupling between the cQED and
the drain because the QME (16) is valid up to second
order. Furthermore, since Kh in Eq. (26) is on second
order, we can evaluate ρd(t) on zeroth order as ρd(t) 

e(Hd−h̄ω�N̂d)(t−t0)/ih̄|vac〉〈vac|e−(Hd−h̄ω�N̂d)(t−t0)/ih̄ = |vac〉〈vac|.
However, if we apply this evaluation of ρd, Eq. (26) will
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diverge due to the term of ln ρd. This is because the vacuum
state is the zero-temperature equilibrium state of the drain.
Then, to investigate its diverging behavior, we employ
ρd 
 limTd→0 e−Hd/Td/Zd when evaluating ln ρd (where
Zd = Trde

−Hd/Td ). By using the above evaluation, we rewrite
Eq. (26) as

d

dt
SvN(ρd(t)) 
 lim

Td→0

1

Td
Trd{HdKh(t)|vac〉〈vac|}, (27)

where we have again used the trace-preserving property of Kh.
We can also evaluate the heat flow J heat

d←c on second order in
the coupling as J heat

d←c 
 Trd{HdKh(t)|vac〉〈vac|} [see Eq. (C6)
in Appendix C]. By comparing this equation with Eq. (27),
we conclude that the heat flow J heat

d←c is proportional to the
unit-time entropy change in the drain:

lim
Td→0

J heat
d←c

Td
= d

dt
SvN(ρd(t)). (28)

This result justifies the definition of J heat
d←c and J work

d←c . That is,
our definition is consistent with the following statement of
thermodynamics: the heat is the energy transfer accompanied
by the entropy transfer, and the work is not accompanied by it.

Conversely, the relation (28) implies the following two
notions. One is that the von Neumann entropy SvN(ρd(t)) is
regarded as the thermodynamic entropy of the drain. This
is consistent with the assumption that the drain is almost in
its (zero-temperature) equilibrium state. The other is that the
energy (work and heat) transfer is quasistatic for the drain
because the equality (not the inequality) holds in Eq. (28).
This is consistent with the assumption that the drain is “almost
always” the same state (vacuum state).

D. Explicit forms of work and heat flows

As shown in Appendix C, we can write the flows in more
explicit forms:

J work
d←c = h̄ω�κ

∣∣〈ĉ〉ss
c

∣∣2
, (29)

J heat
d←c = h̄ω�κ〈δĉ†δĉ〉ss

c + h̄κ
d

dτ
Im〈č†(τ )ĉ〉ss

c

∣∣
τ=0, (30)

where δĉ ≡ ĉ − 〈ĉ〉ss
c . These forms, which give a practical

method of the decomposition, are the main result of the present
paper. Here we make four remarks on this result.

The first remark is that the energy conservation law does
hold. We can easily show this law in the form of the energy
balance equation, JE

c→d = JE
d←c, by comparing JE

c→d given by
Eq. (14) and JE

d←c = J work
d←c + J heat

d←c with Eqs. (29) and (30).
This result supports the utilization of the QME (16) in defining
the work and heat flows. We also note that this law is a local
version of the first law of thermodynamics in the sense that this
law is associated with the local interface between the cQED
and the drain. (Of course, the global energy conservation law
also holds in the present setup.)

The second remark is that the work and heat correspond,
respectively, to coherent (finite photon amplitude) and inco-
herent parts of the energy transfer from the cQED to the drain.
This gives an intuitive understanding of the decomposition.

The third remark is that the explicit forms [Eqs. (29)
and (30)] are independent of time t although they seem to be

dependent on t in the definitions [Eqs. (21) and (22)]. This
result is consistent with the fact that we are investigating
a continuous heat engine in the steady-state situation of
the cQED.

The final remark is that we need not use the QME (16)
in the practical calculation of work and heat flows. From the
QME (9) for the cQED, we can obtain all the information
necessary to calculate them by using Eqs. (29) and (30).

E. Relation to the photoluminescence spectrum

We furthermore find relations between the (total, work, and
heat) energy flows and the photoluminescence spectrum. We
define the photoluminescence spectrum I (ω) of the steady-
state cQED as

I (ω) ≡ κ

π
Re

∫ ∞

0
dτ 〈č†(τ )ĉ〉ss

c e−i(ω−ω�)τ . (31)

Here, the factor eiω�τ appears because the steady state and č†(τ )
are in the rotating frame. The spectrum I (ω) corresponds to
the steady-state average of the unit-time and unit-frequency
photon number observed in the drain. The Fourier transform
of the above equation gives the correlation function:

〈č†(τ )ĉ〉ss
c = 1

κ

∫ ∞

−∞
dω I (ω)ei(ω−ω�)τ . (32)

By using this equation, we rewrite the individual terms on the
right-hand side of Eq. (14) as

h̄ω�κ〈ĉ†ĉ〉ss
c = h̄ω�

∫ ∞

−∞
dω I (ω), (33)

h̄κ
d

dτ
〈č†(τ )ĉ〉ss

c

∣∣
τ=0 =

∫ ∞

−∞
dω(h̄ω − h̄ω�)I (ω). (34)

We thus obtain the relation between the total energy flow JE
c→d

and the spectrum I (ω):

JE
c→d =

∫ ∞

−∞
dωh̄ωI (ω). (35)

We may intuitively understand this relation: the sum of the
energy h̄ω multiplied by its radiation strength I (ω) gives the
energy flow JE

c→d.
Moreover, we may decompose the spectrum into the

coherent peak and the rest (incoherent part) as I (ω) =
Icoh(ω) + Iinc(ω), where

Icoh(ω) = κ
∣∣〈ĉ〉ss

c

∣∣2
δ(ω − ω�), (36)

Iinc(ω) = κ

π
Re

∫ ∞

0
dτ 〈δč†(τ )δĉ〉ss

c e−i(ω−ω�)τ . (37)

From these equations with Eqs. (29) and (30), we obtain the
relations between work and heat flows and the spectra:

J work
d←c =

∫ ∞

−∞
dωh̄ωIcoh(ω), (38)

J heat
d←c =

∫ ∞

−∞
dωh̄ωIinc(ω). (39)

Again, we may intuitively understand these relations: the
sum of the energy h̄ω multiplied by its coherent (incoherent)
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radiation strength Icoh(ω) [Iinc(ω)] gives the work (heat) flow
J work

d←c (J heat
d←c).

VI. CONCLUDING REMARKS

In the present paper, we have proposed a method, Eqs. (29)
and (30), of decomposing radiation energy into work and heat.
This method provides a reliable foundation for the idea that the
coherent part is the work while the incoherent part is the heat.
The key point in deriving this method is to consider explicitly
the time evolution of the drain in the QME (16) to investigate
in what forms the drain receives radiation energy from
the cQED.

We note that the relevant assumptions in the setup for
our formulation are as follows: (i) the cavity is single-mode,
(ii) the drain is a system of the free electromagnetic field
(Ĥd = ∑

k h̄ωkd̂
†
k d̂k) and is in an almost vacuum state, (iii) the

interaction between the cQED and the drain is weak and given
by Ĥc-d = ∑

k(h̄gkĉ
†d̂k + h̄g∗

k ĉd̂
†
k ), (iv) the baths interact only

with the matter part of the cQED, (v) the photonic amplitude
rotates with a single frequency (like a single-mode laser), and
(vi) the excitation number conserves without the SB field. In
this sense, the decomposition method in the present paper is
rather general and widely applicable to cavity QED and circuit
QED systems. For example, the method will shed new light
on the laser as a quantum heat engine; we should revisit the
thermodynamic efficiency and power of the laser by counting
not all the output energy but the pure work.

Extending the method beyond the above assumptions is
a future issue. Extension to multimode cases [concerning (i)
and (v)] is of particular importance. Also, extension to cases of
strong interaction between the cQED and the drain would be of
interest. We expect that one could formulate a method similar
to the present one by using the singular coupling limit [52,53]
or the hierarchal equations of motion approach [54,55].

Another future issue concerns the SB field. In theoretical
situations without the SB field, we cannot calculate J work

d←c with
Eq. (29) since 〈ĉ〉ss

c vanishes. One promising way to extend the
decomposition method to such cases is to use the relations to
the photoluminescence spectrum I (ω). The spectrum usually
has a very sharp peak above the laser threshold even without the
SB field, although it is not a strict δ function but has a narrow
width due to dephasing. This fact would allow us to decompose
the spectrum into coherent and incoherent parts, Icoh(ω) and
Iinc(ω). We may then calculate the work and heat flows with
Eqs. (38) and (39). This also suggests that one may estimate
work and heat flows in experiments by measuring I (ω). At
present, however, it is not clear how to unambiguously define
the coherent and incoherent parts of the spectrum.

Related to the above, in Ref. [35] the authors introduced
additional degrees of freedom (called the “Piston”) instead of
the SB field. The Piston is placed at the interface of the system
and the external oscillator (the cQED and the drain in our
case). They showed that the initial state of the Piston must be
nonpassive to obtain the work. Further investigation without
the SB field in our setup would clarify whether the Piston (and
its nonpassive initial state) is essential for the work extraction.

As another related study, we refer to Ref. [29], where the
authors provided a similar decomposition of work and heat.
There, to define work and heat, they employed a local effective

equation of motion for a subsystem interacting with another
subsystem. They introduced an effective local Hamiltonian by
averaging the interaction with the other subsystem (like H̄c-d

in the present paper), and they incorporated a part of it in
defining the work. Investigation of the consistency between
the decompositions in Ref. [29] and the present paper is also
a future issue. Since the interaction is not necessarily weak in
the method in Ref. [29], it may also be useful to extend our
result to the strong-coupling regime.

One might suppose that the ultimate origin of the work
to the drain is only the work done by the SB field because
it seems to be the only work source of the total system.
However, this is not the case. This is because the cQED plays
the role of a thermal machine. Therefore, a part of the heat
from the (hot) heat baths is converted to a part of the work
to the drain if it operates as a heat engine, and a part of the
work from the SB field is converted to a part of the heat
to the baths if it operates as a heat pump or a refrigerator.
The QME (9) for the cQED guarantees only the total
energy conservation: JE

c→d = J work
SB→c + J heat

b→c, where JE
c→d is

the energy flow from the cQED to the drain [Eq. (13)], J work
SB→c ≡

Trc{(Hc + HSB)L0ρ
ss
c } is the work flow from the SB field to the

cQED, and J heat
b→c ≡ Trc{(Hc + HSB)Lbρ

ss
c } is the sum of the

heat flows from the heat baths. Combining this energy balance
equation with the decomposition JE

c→d = J work
d←c + J heat

d←c, we
obtain J work

d←c + J heat
d←c = J work

SB→c + J heat
b→c. However, this does

not mean the equivalence of the individual terms. Indeed,
we can clearly show J work

d←c �= J work
SB→c by comparing Eq. (29)

with an explicit form of the work flow from the SB field,
J work

SB→c = −h̄ω�Im{2f ∗
SB〈ĉ〉ss

c /h̄}.
We also mention the difference between the results in

Ref. [56] and the present paper. In Ref. [56], a system interacts
with a reservoir driven by an external force and exchanges
both work and heat with the reservoir. The situation of this
system seems similar to that of the drain in the present setup.
However, there is a crucial difference: In Ref. [56], the state
of the reservoir is assumed to be described by the generalized
Gibbs ensemble, whereas the state of the environment for the
drain (the driven cQED plus heat baths) is given by ρss

c . As a
result, the conclusions are also different from each other. In
Ref. [56], the work from the reservoir to the system originates
only from that by the external force, whereas the work from
the cQED to the drain originates both the work from the SB
field and the heat from the baths, as mentioned in the previous
paragraph.

Finally, we comment on a relationship between our defini-
tion of heat and the nonwork in the sense of Ref. [13]. Only
from the arguments in Secs. V A and V B can J work

d←c be regarded
as nonwork (but not necessarily as heat) in the sense of
Ref. [13]. However, because the argument in Sec. V C connects
J work

d←c to the entropy flow, J work
d←c may be regarded as heat flow

even in the sense of Ref. [13]. Related to this comment, we
refer to a statement in Ref. [57] that the interaction through
radiation between two black bodies at different temperatures
is not heat but nonwork. In our definition, on the other hand,
the blackbody radiation is heat. We think that this discrepancy
between Ref. [57] and ours originates from the difference in the
situations. In the present paper, we concentrate on the emission
of photons (and the accompanying energy and entropy flows) at
the local interface between the cQED and the drain (free space
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of the electromagnetic field). In Ref. [57], by contrast, the au-
thors are interested not only in the emission but also the absorp-
tion of the emitted photons after they travel across the drain.
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APPENDIX A: DERIVATION OF EQ. (14)

From the definition of JE
c→d [Eq. (13)], we have

JE
c→d = −Trc

{
ρss

c L
†
d(Hc + HSB)

}
= κ

2
Trc

{
ρss

c (ĉ†[ĉ,Hc + HSB] − [ĉ†,Hc + HSB]ĉ)
}
.

(A1)

We rewrite [ĉ,Hc + HSB] in the above equation as

[ĉ,Hc + HSB] = ih̄L†
0ĉ + [ĉ,h̄ω�Nc]

= ih̄(L† − L†
d)ĉ + h̄ω�ĉ

= ih̄L†ĉ + ih̄κ

2
ĉ + h̄ω�ĉ, (A2)

where we have used L†
bĉ = 0 (because the baths interact only

with the matter part of the cQED) in the second line and L†
dĉ =

−κĉ/2 in the third line. Similarly, we rewrite [ĉ†,Hc + HSB]
as

[ĉ†,Hc + HSB] = ih̄L†ĉ† + ih̄κ

2
ĉ† − h̄ω�ĉ

†. (A3)

By substituting these equations into Eq. (A1), we obtain

JE
c→d = h̄ω�κ〈ĉ†ĉ〉ss

c + ih̄κ

2
Trc

{
ρss

c (ĉ†L†ĉ − (L†ĉ†)ĉ)
}

= h̄ω�κ〈ĉ†ĉ〉ss
c + ih̄κ

2

d

dτ
Trc

{
ρss

c (ĉ†č(τ ) − č†(τ )ĉ)
}∣∣

τ=0

= h̄ω�κ〈ĉ†ĉ〉ss
c + ih̄κ

2

d

dτ

(〈č†(τ )ĉ〉ss∗
c − 〈č†(τ )ĉ〉ss

c

)∣∣
τ=0.

(A4)

We thus derive Eq. (14).

APPENDIX B: DERIVATION OF EQS. (24) AND (25)

We can derive Eq. (24) as follows:

Trd
{
ρ̂rest

d (t)
d

dt
Ĥ rest

d (t)
}

= Trd

{
ρ̂rest

d (t)
1

ih̄

[
h̄ω�N̂d,Ĥ

rest
d (t)

]}

= Trd

{
ρd(t)

1

ih̄
[h̄ω�N̂d,Hd + H̄c-d]

}

= −Trd

{
ρd(t)

1

ih̄
[Hd + H̄c-d − h̄ω�N̂d,Hd + H̄c-d]

}

= Trd{ρd(t)K†
w(Hd + H̄c-d)} = J work

d←c . (B1)

We can derive Eq. (25) as follows:

Trd

{
Ĥ rest

d (t)
d

dt
ρ̂rest

d (t)

}

= Trd

{
Ĥ rest

d (t)
d

dt
(e−iω�tN̂dρd(t)eiω�tN̂d )

}

= Trd

{
Ĥ rest

d (t)e−iω�tN̂d

(
d

dt
ρd(t)

)
eiω�tN̂d

}

+ Trd

{
Ĥ rest

d (t)
1

ih̄

[
h̄ω�N̂d,ρ̂

rest
d (t)

]}

= Trd{(Hd + H̄c-d)[Kw + Kh(t)]ρd(t)}
− Trd{(Hd + H̄c-d)Kwρd(t)}

= Trd{(Hd + H̄c-d)Kh(t)ρd(t)} = J heat
d←c. (B2)

We have used the fact that the term in the fourth
line is equal to Trd{Ĥ rest

d (t)(1/ih̄)[h̄ω�N̂d,ρ̂
rest
d (t)]} =

−Trd{(1/ih̄)[h̄ω�N̂d,Ĥ
rest
d (t)]ρ̂rest

d (t)} = −J work
d←c .

APPENDIX C: DERIVATION OF EXPLICIT FORMS
OF WORK AND HEAT FLOWS

We derive here the explicit forms of work and heat flows,
Eqs. (29) and (30). At several points in the derivation, we
use the order estimation with respect to the coupling strength
between the cQED and the drain. Note that we should estimate
on second order in the coupling because the QME (16) is valid
up to second order. We also use the wide-band limit of the
drain spectral function, �d(ω) = κ (const), which is consistent
with the fact that we have derived the QME (9) in this limit.

1. Derivation of Eq. (29)

First we derive the explicit form of the work flow, J work
d←c .

From the definition of J work
d←c [Eq. (21)], we have

J work
d←c = Trd{ρd(t)K†

w(Hd + H̄c-d)}. (C1)

Here, K†
w(Hd + H̄c-d) in the above equation becomes

K†
w(Hd + H̄c-d) = − 1

ih̄
[Hd + H̄c-d − h̄ω�N̂d,Hd + H̄c-d]

= 1

ih̄
[h̄ω�N̂d,H̄c-d]

= ih̄ω�

∑
k

(
gk〈ĉ†〉ss

c d̂k − g∗
k 〈ĉ〉ss

c d̂
†
k

)
. (C2)

This equation is on first order in the coupling.
Therefore, it is sufficient to evaluate ρd(t) in
Eq. (C1) on first order in the coupling: ρd(t) 

eKw(t−t0)|vac〉〈vac| = eH eff

d (t−t0)/ih̄|vac〉〈vac|e−H eff
d (t−t0)/ih̄,

where H eff
d ≡ Hd + H̄c-d − h̄ω�N̂d. We can rigorously

calculate eH eff
d (t−t0)/ih̄|vac〉 as

eH eff
d (t−t0)/ih̄|vac〉 =

⊗
k

Ck(t)|γk(t)〉. (C3)

Here Ck(t) is an unimportant phase factor and |γk(t)〉 is
the coherent state having the complex amplitude γk(t) =
g∗

k 〈ĉ〉ss
c (e−i�k (t−t0) − 1)/�k , where �k ≡ ωk − ω�. Thus, by
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using Eqs. (C2) and (C3), we rewrite Eq. (C1) as

J work
d←c = −2h̄ω�

∑
k

Im
[
gk〈ĉ†〉ss

c Trd{ρd(t)d̂k}
]


 −2h̄ω�

∑
k

Im
[
gk〈ĉ†〉ss

c 〈γk(t)|d̂k|γk(t)〉]

= 2h̄ω�

∣∣〈ĉ〉ss
c

∣∣2 ∑
k

|gk|2 sin �k(t − t0)

�k

= h̄ω�

∣∣〈ĉ〉ss
c

∣∣2

π

∫ ∞

−∞
dω �d(ω)

sin �(t − t0)

�
. (C4)

In the last line, we have defined � ≡ ω − ω� and used the
definition of �d(ω) [Eq. (5)].

Now we take the wide-band limit: �d(ω) = κ . Then we
finally obtain the desired result:

J work
d←c = κh̄ω�

∣∣〈ĉ〉ss
c

∣∣2

π

∫ ∞

−∞
d�

sin �(t − t0)

�

= κh̄ω�

∣∣〈ĉ〉ss
c

∣∣2
, (C5)

where we have used
∫ ∞
−∞ d�(1/�) sin �(t − t0) = π for t >

t0.

2. Derivation of Eq. (30)

Next we derive the explicit form of the heat flow, J heat
d←c. In

the definition of J heat
d←c, Eq. (22), since Kh is on second order

in the coupling, it is sufficient to take only Hd (neglect H̄c-d)
and evaluate ρd(t) on zeroth order. On zeroth order, we have
ρd(t) 
 e(Hd −h̄ω�N̂d)(t−t0)/ih̄|vac〉〈vac|e−(Hd −h̄ω�N̂d)(t−t0)/ih̄ =
|vac〉〈vac|. We thus rewrite J heat

d←c on second order as

J heat
d←c 
 Trd{HdKh(t)|vac〉〈vac|}. (C6)

To proceed further, we note that Kh(t) acts on any drain
operator Ôd as

Kh(t)Ôd = −
∑
k,k′

∫ t−t0

0
dτ Trc

[
gkδč

†(τ )d̂k + g∗
k δč(τ )d̂†

k ,

× [
gk′δĉ†d̂k′ei�k′ τ + g∗

k′δĉd̂
†
k′e

−i�k′ τ ,ρss
c ⊗ Ôd

]]
,

(C7)

where �k ≡ ωk − ω�. Substituting Hd = ∑
k h̄ωkd̂

†
k d̂k and this

equation into Eq. (C6), we obtain

J heat
d←c =

∫ t−t0

0
dτ

∑
k

|gk|2h̄ωk

(〈δĉ†δč(τ )〉ss
c ei�kτ + 〈δč†(τ )δĉ〉ss

c e−i�kτ
)

= 1

2π

∫ t−t0

0
dτ

∫ ∞

−∞
dω �d(ω)h̄ω

(〈δĉ†δč(τ )〉ss
c ei�τ + 〈δč†(τ )δĉ〉ss

c e−i�τ
)

= 1

2π

∫ t−t0

0
dτ

∫ ∞

−∞
dω �d(ω)h̄(ω� + �)

(〈δĉ†δč(τ )〉ss
c ei�τ + 〈δč†(τ )δĉ〉ss

c e−i�τ
)

= h̄ω�

2π

∫ t−t0

0
dτ

∫ ∞

−∞
dω �d(ω)

(〈δĉ†δč(τ )〉ss
c ei�τ + 〈δč†(τ )δĉ〉ss

c e−i�τ
)

+ 1

2π

∫ ∞

−∞
dω�d(ω)ih̄

[ − 〈δĉ†δč(τ )〉ss
c ei�τ + 〈δč†(τ )δĉ〉ss

c e−i�τ
]t−t0

τ=0

+ 1

2π

∫ t−t0

0
dτ

∫ ∞

−∞
dω �d(ω)ih̄

(
ei�τ d

dτ
〈δĉ†δč(τ )〉ss

c − e−i�τ d

dτ
〈δč†(τ )δĉ〉ss

c

)
, (C8)

where we have used the definition of �d(ω) [Eq. (5)] and defined � ≡ ω − ω�.
Now we take the wide-band limit: �d(ω) = κ . Then we obtain

J heat
d←c = h̄ω�κ

2π

∫ t−t0

0
dτ

∫ ∞

−∞
d�

(〈δĉ†δč(τ )〉ss
c ei�τ + 〈δč†(τ )δĉ〉ss

c e−i�τ
)

+ ih̄κ

2π

∫ ∞

−∞
d�

( − 〈δĉ†δč(τ )〉ss
c ei�(t−t0) + 〈δč†(τ )δĉ〉ss

c e−i�(t−t0)
)

+ ih̄κ

2π

∫ t−t0

0
dτ

∫ ∞

−∞
d�

(
ei�τ d

dτ
〈δĉ†δč(τ )〉ss

c − e−i�τ d

dτ
〈δč†(τ )δĉ〉ss

c

)

= h̄ω�κ

2π

∫ t−t0

0
dτ

(〈δĉ†δč(τ )〉ss
c δ(τ ) + 〈δč†(τ )δĉ〉ss

c δ(τ )
)

+ ih̄κ

2π

∫ t−t0

0
dτ

(
δ(τ )

d

dτ
〈δĉ†δč(τ )〉ss

c − δ(τ )
d

dτ
〈δč†(τ )δĉ〉ss

c

)

= h̄ω�κ〈δĉ†δĉ〉ss
c + h̄κ

d

dτ
Im〈δč†(τ )δĉ〉ss

c

∣∣
τ=0, (C9)
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where we have used
∫ ∞
−∞ d� e±i�(t−t0) = 0 for t > t0 in

the second equality and
∫ t−t0

0 dτ δ(τ )f (τ ) = (1/2)f (0) in
the third equality. Finally, by noting Im〈δč†(τ )δĉ〉ss

c =
Im(〈č†(τ )ĉ〉ss

c − |〈ĉ〉ss
c |2) = Im〈č†(τ )ĉ〉ss

c (because |〈ĉ〉ss
c |2 is a

real number), we obtain the desired result, Eq. (30).

APPENDIX D: DERIVATION OF THE TCL QUANTUM
MASTER EQUATION (16) FOR THE DRAIN

For completeness, we show here a detailed derivation of
the TCL-QME (16) for the drain. It is almost the same as the
standard derivation [45]. The main differences are as follows:
(i) the starting-point equation is not a von Neumann equation
but the QME (15) for the composite system, and (ii) the
coupling between the cQED and the drain does not vanish
when taking its average in the environment (cQED) steady
state.

To perform a perturbation expansion later, we express the
coupling strength between the cQED and the drain by ε, i.e.,
we rewrite the interaction Hamiltonian as Hc-d → εHc-d. Then
we may split the Liouvillian M into terms on the order of ε

as M = M0 + εM1 + ε2M2, where M0 = L + K0, M1 =
Mint, and M2 = −Ld.

1. TCL equation

We first drive a TCL equation that is valid up to all orders
in ε. We transform to an “interaction picture” by

ρ̆c+d(t) = e−M0t ρc+d(t). (D1)

In this picture, the starting-point QME (15) becomes

d

dt
ρ̆c+d(t) = M̆p(t)ρ̆c+d(t), (D2)

where M̆p(t) = εM̆1(t) + ε2M̆2(t) and M̆j (t) =
e−M0tMj e

M0t (j = 1,2). The formal backward solution of
this equation is

ρ̆c+d(t ′) = B(t ′,t)ρ̆c+d(t), (D3)

where B(t ′,t) = T→ exp
∫ t

t ′ dt ′′M̆p(t ′′) for t > t ′, and T→ is
the antichronological time ordering.

We introduce here projection superoperators P and Q =
1 − P . (We will specify the explicit form of these superoper-
ators later.) Then we may split Eq. (D2) into two parts:

d

dt
P ρ̆c+d(t) = PM̆p(t)P ρ̆c+d(t) + PM̆p(t)Qρ̆c+d(t),

(D4)

d

dt
Qρ̆c+d(t) = QM̆p(t)P ρ̆c+d(t) + QM̆p(t)Qρ̆c+d(t).

(D5)

The formal solution of the latter equation is

Qρ̆c+d(t) = G(t,t0)Qρ̆c+d(t0)

+
∫ t

t0

dt ′G(t,t ′)QM̆p(t ′)P ρ̆c+d(t ′),

where G(t,t ′) = T← exp
∫ t

t ′ dt ′′QM̆p(t ′′) for t > t ′, and T← is
the chronological time ordering. By substituting Eq. (D3) into
this solution and by doing a simple algebraic calculation, we
obtain

[1 − (t)]Qρ̆c+d(t) = (t)P ρ̆c+d(t) + G(t,t0)Qρ̆c+d(t0),

where (t) ≡ ∫ t

t0
dt ′G(t,t ′)QM̆p(t ′)PB(t ′,t).

In the conditions of the weak coupling (ε  1) and/or short
time (t 
 t0), (t) is very small, so that it is reasonable to
assume the existence of the inverse of 1 − (t). Then the
above equation becomes

Qρ̆c+d(t) = [1 − (t)]−1(t)P ρ̆c+d(t)

+ [1 − (t)]−1G(t,t0)Qρ̆c+d(t0).

Substituting this equation into Eq. (D4), we obtain the TCL
equation:

d

dt
P ρ̆c+d(t) = PM̆p(t)[1 − (t)]−1P ρ̆c+d(t)

+PM̆p(t)[1 − (t)]−1G(t,t0)Qρ̆c+d(t0).

(D6)

2. Second-order perturbation expansion

We next evaluate [1 − (t)]−1 in Eq. (D6) by the pertur-
bation theory in terms of ε. Since the lowest-order term in
the ε expansion of (t) is ε1(t) ≡ ε

∫ t

t0
dt ′QM̆1(t ′)P , we

have [1 − (t)]−1 = 1 + ε1(t) + O(ε2). Then, substituting
this into the first term of the right-hand side of Eq. (D6), we
obtain in O(ε2)

d

dt
P ρ̆c+d(t) = εPM̆1(t)P ρ̆c+d(t) + ε2PM̆2(t)P ρ̆c+d(t)

+ ε2
∫ t

t0

dt ′PM̆1(t)QM̆1(t ′)P ρ̆c+d(t)

+PM̆p(t)
[
1 − (t)

]−1G(t,t0)Qρ̆c+d(t0).

(D7)

3. Projection onto the steady state of the cQED

We now define the explicit form of the projection super-
operator P , such that the following equation holds for any
operator Ôc+d:

PÔc+d = ρss
c ⊗ TrcÔc+d. (D8)

Furthermore, we assume that the initial state of the
composite system is given by ρ̆c+d(t0) = ρss

sys ⊗ ρ̆d(t0). In this
case, Qρ̆c+d(t0) = 0 holds, so that the last term of Eq. (D7)
vanishes.

Next we investigate the following three terms, which appear
in Eq. (D7): PM̆1(t)P , PM̆2(t)P , and PM̆1(t)QM̆1(t ′)P .

First we calculate PM̆2(t):

PM̆2(t)Ôc+d

= −ρss
c ⊗ e−K0(t−t0)Trc

{
e−L(t−t0)Lde

M0(t−t0)Ôc+d
}

= 0, (D9)
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where we have used e−M0(t−t0) = e−L(t−t0)e−K0(t−t0), the
trace-preserving property of e−L(t−t0), and Trc{LdÔc} = 0.
Equation (D9) implies PM̆2(t)P = 0.

Next we calculate PM̆1(t)P:

PM̆1(t)PÔc+d

= ρss
c ⊗ e−K0(t−t0)Trc

{
1

ih̄
[Hc-d,e

M0(t−t0)PÔc+d]

}

= ρss
c ⊗ e−K0(t−t0)Trc

{
1

ih̄
[Hc-d,ρ

ss
c ⊗ eK0(t−t0)TrcÔc+d]

}

= ρss
c ⊗ e−K0(t−t0) 1

ih̄
[H̄c-d,e

K0(t−t0)TrcÔc+d]

= ρss
c ⊗ e−K0(t−t0)M̄1e

K0(t−t0)TrcÔc+d, (D10)

where we have used eL(t−t0)ρss
c = ρss

c and defined M̄1 by
M̄1Ôd = (1/ih̄)[H̄c-d,Ôd].

Finally, we calculate PM̆1(t)QM̆1(t ′)P . By
noting that Eq. (D10) implies PM̆1(t)P = PM̄1(t) =
M̄1(t)P , we obtain PM̆1(t)Q = PM̆′

1(t) and QM̆1(t)P =
M̆′

1(t)P , where M̄1(t) ≡ e−M0(t−t0)M̄1e
M0(t−t0),

M̆′
1(t) ≡ e−M0(t−t0)M̆′

1e
M0(t−t0), and M̆′

1 ≡ M̆1 − M̄1.

These equations lead to

PM̆1(t)QM̆1(t ′)P = PM̆′
1(t)M̆′

1(t ′)P. (D11)

4. TCL quantum master equation

By applying the results in the previous subsection to
Eq. (D7), we obtain

d

dt
P ρ̆(t) = ερss

c ⊗ e−K0(t−t0)M̄1e
K0(t−t0)ρ̆d(t) + ε2ρss

c ⊗ Trc

×
∫ t

t0

dt ′e−M0(t−t0)M′
1e

M0(t−t ′)M′
1e

M0(t ′−t0)

× [
ρss

c ⊗ ρ̆d(t)
]
, (D12)

where ρ̆d(t) ≡ Trcρ̆c+d(t). We take Trc of the above equation to
obtain the second-order TCL-QME in the interaction picture:

d

dt
ρ̆d(t) = εe−K0(t−t0)M̄1e

K0(t−t0)ρ̆d(t)

+ ε2Trc

∫ t

t0

dt ′e−K0(t−t0)M′
1e

M0(t−t ′)M′
1

× [
ρss

c ⊗ eK0(t ′−t0)ρ̆d(t)
]
. (D13)

Finally, by going back to the Schrödinger picture, we eventu-
ally obtain the desired result, Eq. (16).
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