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Thermodynamics of a one-dimensional self-gravitating gas with periodic boundary conditions
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We study the thermodynamic properties of a one-dimensional gas with one-dimensional gravitational
interactions. Periodic boundary conditions are implemented as a modification of the potential consisting of
a sum over mirror images (Ewald sum), regularized with an exponential cutoff. As a consequence, each particle
carries with it its own background density. Using mean-field theory, we show that the system has a phase transition
at a critical temperature. Above the critical temperature the gas density is uniform, while below the critical point
the system becomes inhomogeneous. Numerical simulations of the model, which include the caloric curve, the
equation of state, the radial distribution function, and the largest Lyapunov exponent, confirm the existence of
the phase transition, and they are in good agreement with the theoretical predictions.
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I. INTRODUCTION

The thermodynamics of self-gravitating systems has been
studied for a long time, starting with the classical analysis of
Chandrasekhar [1]. An overview of the stability problem for
such systems in three dimensions is given by Chavanis in [2].
The stability properties are found to be different in the canoni-
cal and microcanonical ensembles. In the canonical ensemble,
a self-gravitating system of mass M enclosed in a volume of
radius R is unstable under collapse at energies below a critical
value Ec = −0.335GM2/R, the so-called Antonov instability.

The problem is simplified by working in a one-
dimensional setting. The equilibrium thermodynamics of the
one-dimensional gravitational gas has been studied for a wide
variety of scalings and assumptions. We start by giving a
brief summary of the results in the literature. For simplicity,
we restrict this summary to studies of the one-dimensional
gravitational gas in thermal equilibrium. We also mention only
studies in which the equation of state of the gas is derived from
first principles, as opposed to being one of the inputs of the
analysis.

Salzberg [3] considered a one-dimensional gravitational gas
of N particles of mass m enclosed in a finite volume L, and
interacting by potentials gm2|xi − xj | with a hard core d. In
the above expression for the potential, g ≡ 4πG and |xi − xj |
represents the relative separation of the particle located at xi

with respect to that located at xj . (Note that one-dimensional
particles correspond to two-dimensional mass sheets in three-
dimensional space that can move freely and cross each other.)
This leads to nonextensive thermodynamics in the limit N →
∞ at fixed m. For example, the total interaction energy scales
like U � N3 as N → ∞. If we denote the pressure by p,
the equation of state takes the form L = Nd + 2kT /p, which
is essentially the free gas equation of state corrected by the
hard-core volume p = 2kT /(L − Nd). This is clearly not very
realistic, so alternative scalings for the interaction gm2 with N

have been explored in the literature.

*b.miller@tcu.edu

A different setting was adopted by Rybicki [4], who
considered N particles of mass m moving along the infinite
line and interacting by potentials V (x,y) = gm2|x − y| (no
hard core). The N → ∞ limit was taken at fixed total mass
M = Nm and total energy E (Vlasov limit). This corresponds
to scaling the particle masses as m = M/N . The one-particle
distribution function was computed, from which the density
of the gas in thermodynamic equilibrium was obtained. Under
the infinite volume setup assumed in [4], the equation of state
of the gravitational gas was not considered in this paper.

Considering a gas enclosed into a finite volume [0,L], the
usual thermodynamic limit is N,L → ∞ at fixed particle
number density ρ = N/L. This limit was considered by
Isihara [5], who studied the equilibrium thermodynamics of
a one-dimensional gas enclosed in the box [0,L] interacting
with two-body potentials

V (x,y) =
{−μ

L

(
1 − 1

L
|x − y|), |x − y| > δ,

+∞, |x − y| < δ,
(1)

where μ is a constant.
Apart from the constant term, this interaction is identical

to the one-dimensional gravitational interaction with strength
2πGm2, under the scaling m ∼ 1/L for the particle masses,
which corresponds to fixed total particle mass M = mN =
mρL. The advantage of this scaling is that it gives the usual
extensive properties for the gas energy and entropy.

Reference [5] derived the thermodynamic quantities of the
gas with interaction (1) under certain special periodic boundary
conditions, and the authors concluded that the equation of state
is of the van der Waals form. The system has a liquid-gas
phase transition. This is somewhat surprising, considering that
no such phase transition is obtained for the one-dimensional
gravitational gas in [4]. However, these systems differ in one
important respect, as the interaction (1) has a hard core.
In a wide class of interacting systems (systems of particles
interacting by Kac potentials), a hard core is required in order
to have a phase transition [6].

To study this issue further, a lattice-gas version of the system
considered in [5] was studied in [7]. This can be shown to be
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equivalent to a continuous one-dimensional gas enclosed in
the box [0,1] with the interaction

V (x,y) = |x − y| − ξ (2)

and with a special form of the entropy function, specific to the
lattice gas. The constant ξ is a universal attractive interaction,
which is felt by all particle pairs. Taking ξ = 1 reproduces
the Isihara interaction (1), and taking ξ = 0 reproduces the
interaction potential of the one-dimensional gravitational gas.
The main result of [7] is that the system has a phase transition
only for ξ > 0, while for ξ = 0 no such phenomenon is
observed. The exact equation of state is obtained in the
thermodynamic limit, which turns out to be different from the
van der Waals equation, although it is qualitatively similar, and
it approaches the van der Waals form in the high-temperature
limit.

A scaling similar to that described above was proposed by
de Vega and Sanchéz [8] in the context of three-dimensional
systems by taking the thermodynamic limit N,R → ∞ at fixed
N/R, with R the size of the system. This is similar to the
one-dimensional scaling considered above.

The equilibrium thermodynamics of the one-dimensional
gravitational gas was also studied by Monahan [9] and
by Fukui and Morita [10]. Reference [9] derived an exact
lower bound on the partition function of the one-dimensional
gravitational gas following from the Jensen inequality. As
shown in [7], such a bound gives an accurate approximation,
which approaches the exact result in the high-temperature
limit.

Periodic boundary conditions are often used in practice to
simplify the solution of statistical mechanics problems. With
short-range interactions they can be shown to preserve the ther-
modynamic properties of the system, up to a surface term that
has a subleading contribution in the thermodynamic limit [11].
While the gravitational interaction is long-ranged and does not
satisfy the conditions under which the results of [11] are ob-
tained, modifications of the one-dimensional interaction with
periodic boundary conditions have been considered as well.

One of the best known models of this type in the literature
is perhaps the Hamiltonian mean-field (HMF) model with the
Hamiltonian [12]

HHMF =
N∑

i=1

1

2
mv2

i + γ

N

∑
i<j

[1 − cos(θi − θj )], (3)

where θi ∈ (0,2π ). This corresponds to particles moving on a
circle of unit radius and interacting by attractive potentials
Vij = γ

4N
d2

ij where the distance between the particles is

dij = 2 sin[ 1
2 (θi − θj )]. Note that the potential is quadratic

in the distance, as opposed to linear as appropriate for one-
dimensional gravity. A similar model is the self-gravitating
ring model, where the particles are constrained to move
on a circle and interact by three-dimensional gravitational
potentials [13–15].

We consider in this paper an alternative way of introducing
periodic boundary conditions in the one-dimensional gravita-
tional system, which was proposed by Miller and Rouet in [16],
and it has the advantage of preserving the linear dependence
of the potential on the distance d = |x − y| between particles
for sufficiently small d. This corresponds to the following

setup: the system is enclosed in the box [0,L] and has periodic
boundary conditions. In addition, the system is assumed to
be placed into the uniform background of a mass distribution.
The model is appropriate for studying one-dimensional density
fluctuations in a uniform mass distribution, and a Coulombic
version of the model has been used to investigate single-
component plasmas [17].

The Miller-Rouet model is somewhat similar to the OSC
model (one-dimensional static cosmology), which was in-
troduced by Aurell et al. [18–20] and studied further by
Valageas in [21,22]. This model differs from the former one
in how the periodic boundary conditions are implemented.
Specifically, the periodicity is imposed by adding an external
potential. In contrast, the Miller-Rouet model considered in
this paper maintains translation invariance and implements the
periodic condition by modifying only the two-body interaction
potential.

We use classical statistical mechanical methods to derive
the thermodynamic properties of the system in the canoni-
cal ensemble. We determine the single-particle distribution
function by minimizing the free energy, and we obtain explicit
results for the free-energy density. The system is homogeneous
for temperatures larger than a critical temperature, and it
develops a position-dependent density below this temperature.
The states with inhomogeneous density are states of thermo-
dynamic equilibrium.

Molecular dynamics (MD) simulations are generally em-
ployed in the study of the systems that exhibit considerable
chaotic dynamics needed to attain a phase-space equilibrium.
A smaller finite-sized version of an otherwise ergodic-like
system may have a segmented phase space with KAM tori
separating the stable and unstable regions. For example, in
a three-body version of the Miller-Rouet gravitational gas, it
was shown that the phase space always exhibits chaotic as well
as stable regions, and a KAM breakdown to complete chaos is
not observed at any energy [23]. However, as the number of
particles (N ) is increased, the contribution from chaotic orbits
increases drastically, and any randomly selected initial con-
dition results in a chaotic orbit with Lyapunov characteristic
exponents (LCEs) converging to a single universal value for a
given energy [24]. Such behavior has also been shown for the
free-boundary version of the one-dimensional gravitational gas
system in which the phase space was found to be practically
fully chaotic for N � 5 [25]. In general, caution must be taken
while applying theoretical and MD methods to systems with
segmented phase space.

Phase-space mixing leading to a relaxed state is a prerequi-
site for equilibrium statistical mechanics to apply to a system.
Mixing in phase space arises as a result of dynamical instability
in the phase space and is usually characterized by the existence
of at least one positive LCE [26]. For a Hamiltonian system
with n degrees of freedom, a full Lyapunov spectrum has up
to n − 1 positive LCEs [27,28]. Of particular interest is the
maximal positive LCE λ1, which quantifies the largest average
rate of exponential divergence of a given phase-space orbit
with respect to the nearby orbits [25,27,29,30].

Apart from being important from a dynamical perspective,
LCEs also play an important role in thermodynamic studies
and have been shown to serve as indicators of phase transitions
[15,31–35]. For example, the largest LCE was shown to
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attain a maximum at the fluid-solid phase transition for a
two-dimensional particle system [34]. The largest LCE has
also been observed to display a transition-like variation at the
critical temperature for a one-dimensional chain of coupled
nonlinear oscillators [35]. In N -body simulations with a
finite number of particles, LCEs have also been shown to
exhibit behaviors that are observed in the thermodynamic limit
[36,37].

An exact numerical method of calculating the full Lyapunov
spectrum was proposed for the case of one-dimensional
gravitational gas [25], and the approach was further extended to
the periodic-boundary versions of Coulombic and gravitational
systems [24]. As we shall see in Sec. V D of this paper, we
use the formulations presented in Ref. [24] to calculate the
largest LCE and examine its temperature dependence for an
indication of a phase transition.

The paper is structured as follows. For ease of reference,
we give an overview of the Miller-Rouet model and of its
derivation in Sec. II. In Secs. III and IV, we formulate
the statistical mechanics for the model in the canonical
ensemble and derive its thermodynamic properties. We work
in the Vlasov limit by taking the particle number very large,
N → ∞, at fixed total particle mass M = Nm. This leads to
finite results for the energy and free energy per particle. The
single-particle distribution function, giving the gas density, is
obtained by solving a variational problem for the free energy.
In Sec. V, we verify the validity of the theoretical predictions
by numerically computing the time-averaged values of such
thermodynamic parameters as temperature, radial distribution
function, and pressure in N -body simulations of the model
using a molecular-dynamics (MD) approach. A few technical
derivations are given in two Appendixes.

II. THE MILLER-ROUET MODEL

We consider in this paper a one-dimensional gas of particles
of mass m enclosed in a box [0,L], and interacting with
potential energy [16]

V (x,y) = 2πGm2

(
|y − x| − 1

L
(y − x)2 − 1

6
L

)
. (4)

This is the potential energy of a mass at position x due to
the interaction with another particle at y and all its mirror
images separated by the periodicity length L. The plot of
the potential V (x,y) is shown in Fig. 1. At small distances
|x − y| � L it grows approximately linearly, just as the one-
dimensional gravitational potential, but for |x − y| > L/2 it
becomes repulsive.

We recall briefly the derivation of this potential and its
relation to one-dimensional gravitation. The potential V (x,y)
is the difference of two terms: the sum of the contributions from
mirror images V0(x,y), and the contribution of the uniform
background of mass 	(x),

V (x,y) = V0(x,y) − 2πGm2 1

L

∫ ∞

−∞
dy|x − y|e−κ|x−y|.

(5)

The interaction V0(x,y) gives the potential felt by a particle
placed at y from a particle at x plus the infinite number of its
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FIG. 1. Plot of the interaction energy LV (x,y) vs 1
L
|x − y| in the

Miller-Rouet model.

mirror images, separated by L in both directions,

V0(x,y) =
∞∑

k=−∞
2πGm2|x − y + kL|e−κ|x−y+kL|. (6)

The damping factor e−κ|x−y+kL| with κ → 0 is introduced
following [38] and has the advantage that it makes the sum
over mirror images convergent.

The sum over mirror images can be evaluated in closed
form with the result

∞∑
k=−∞

|x − y + kL|e−κ|x−y+kL|

= |x − y|e−κ|x−y| + 2L
eκL

(eκL − 1)2
cosh[κ(y − x)]

− 2
1

eκL − 1
(y − x) sinh[κ(y − x)], (7)

where the first term is the contribution from the n = 0 term in
the sum, and the remaining terms are the contributions from
the mirror images of the particle at x. The proof of this result
is given in Appendix A.

Expanding Eq. (7), we get

V0(x,y) = 2πGm2

(
|y − x| − 1

L
(y − x)2 + 2

κ2L
− 1

6
L

)
+O(κ). (8)

The first term is the original linear attractive interaction, and
the second term is a quadratic repulsive interaction, which
vanishes in the limit of a very large periodicity radius L → ∞.
The physical meaning of this repulsive term is as follows. As
two particles are separated by more than L/2, the attractive
effect of their mirror images in the nearby cells overcomes the
attractive interaction between them. This appears as a repulsive
force when the distance satisfies |x − y| > L/2.
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Finally, before taking the limit κ → 0, we subtract the
contribution of a uniform background of mass. This amounts
to an interaction energy 	(x) given by

	(x) = 2πGm2

L

∫ ∞

−∞
dy|y − x|e−κ|x−y| = 4πGm2

κ2L
. (9)

This is a uniform potential, independent of position. The effect
of subtracting the uniform background contribution 	(x) from
(8) amounts to canceling out the (positive) constant term
4πGm2/(κ2L). The remaining constant term − 1

6 2πGm2L is
negative and finite. The method of employing an exponential
damping introduced by Kiessling was also utilized by Gabrielli
et al. in their study of infinite systems of point masses [39].

III. THERMODYNAMICS IN THE STATIC VLASOV LIMIT

We would like to derive the thermodynamic properties of a
continuous gas enclosed in the [0,L] volume with the periodic
boundary condition and interacting by the potential (4).

We work at fixed L and total particle mass M = mN . This
implies that the particle masses scale as m ∼ 1/N . Since both
the inertial and gravitational mass are scaled, the dynamics
of the system is the same as if the inertial mass is 1, and the
particles interact by the potential

V (x,y) = 2πGM
1

N

(
|x − y| − 1

L
(x − y)2 − 1

6
L

)
. (10)

This requires also that the temperature is rescaled as T/m →
T . To make this rescaling explicit, in this section we will
denote the rescaled temperature as TV = T/m (the subscript
stands for Vlasov temperature).

It is well known that a system with interaction of the
form (10) can be described by a mean-field theory [40,41].
The interaction potential scales like ∼1/N with the number
of particles at fixed volume L. In the limit N → ∞, the
energy per particle approaches a finite value, and the system
is described by the one-particle distribution function ρ(x),
giving the probability of finding a particle in the volume
element [x,x + dx]. This limiting procedure corresponds to
the mean-field or the static Vlasov limit.

Assume that the system is at a given temperature TV . The
free energy per particle is

f = F

N
= u − TV s, (11)

where f = fQ + fkin consists of a configurational contribution
fQ and a contribution from the kinetic degrees of freedom
fkin = kBTV [log N − 1 + 1

2 log( h2

2πkBTV
)]. The configurational

contribution is given by the solution of the variational problem

fQ = infρ

{
1

2
(2πGM)

∫ L

0
dx dyρ(x)ρ(y)

×
(

|x − y| − 1

L
(x − y)2 − 1

6
L

)
(12)

+ kBTV

∫ L

0
dx ρ(x) log ρ(x)

}
,

where the infimum is taken over all functions ρ(x) normalized
as ∫ L

0
dx ρ(x) = 1. (13)

The solution of the variational problem (12) gives the single-
particle distribution function ρ(x). This gives the so-called
isothermal Lane-Emden equation for ρ(x) [40,41].

The energy u = U
N

and entropy s = S
N

per particle are easily
obtained from the free energy f as u = f − TV ∂TV

f and s =
−∂TV

f . They are given by

u = 1

2
kBTV + 1

2
(2πGM)

∫ L

0
dx dy ρ(x)ρ(y)

×
(

|x − y| − 1

L
(x − y)2 − 1

6
L

)
, (14)

s = −kB

∫ L

0
dx ρ(x) log ρ(x) + skin, (15)

where ρ(x) is the minimizer of the functional (12). The total
energy per particle is the sum of the contribution from the
kinetic energy and the interaction energy with the remaining
N − 1 particles. The contribution of the kinetic degrees of
freedom to the entropy per particle is skin = −∂TV

fkin =
−kB(log N − 3

2 + 1
2 log h2

2πkBTV
).

A. High-temperature approximation

For temperatures kBTV 	 2πGM 1
4L much larger than the

range of variation of the potential V (x,y), the density of the
gas approaches a constant value ρ(x) = 1/L. Expressed in
terms of the actual temperature T = mTV , this condition reads
kBT 	 1

4 2πGM2

N
.

In this regime, the thermodynamic properties of the gas
simplify very much. The energy and entropy per particle
become

u = 1

2
kBTV + 1

2
g2

∫ L

0
dx dy

(
|x − y| − (x − y)2

L
− L

6

)

= 1

2
kBTV , (16)

s = kB log(L/N) + kB

(
3

2
− 1

2
log

h2

2πkBTV

)
. (17)

Note that the constant term −L
6 in the interaction energy

cancels the contributions from the linear and quadratic terms,
and the total interaction energy of the gas vanishes in the
uniform density limit. The only contribution in (16) comes
from the kinetic degrees of freedom.

The total free energy of the gas is

F = N (u − TV s) = 1

2
NkBTV − NkBTV log(L/N)

−NkBTV

(
3

2
− 1

2
log

h2

2πkBT

)

= L

(
1

2
kBρ̄TV + kBTV ρ̄ log ρ̄

)

−Lρ̄kBTV

(
3

2
− 1

2
log

h2

2πkBTV

)
, (18)
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where we have introduced ρ̄ = N/L, which is the particle
number density of the gas.

The pressure of the gas is

p(ρ̄,TV ) = −(∂LF )N,TV
= kBρ̄TV , (19)

which is the ideal gas equation of state.

B. An energy-entropy argument

For temperatures TV comparable to 2πGM 1
4L and below,

the thermodynamics of the system with interaction (4) is
expected to be more complex. We give next a qualitative dis-
cussion based on an energy-entropy minimization argument.
The equilibrium state is given in general by the minimum of
the free energy F = U − T S. For T = 0 this corresponds to
the minimum of U , while for T → ∞ it corresponds to a
maximum of the entropy S.

In the low-temperature limit T → 0, the equilibrium state
of the system corresponds to a minimum of the total energy.
An examination of the plot of the interaction energy V (x,y) in
Fig. 1 shows that the system has two possible ground states:
(i) a state in which the particles are grouped together into
one block (minimal separation), and (ii) a state in which the
particles are separated into clumps separated by a distance L.
These two states correspond to the minima of the interaction
potential V (x,y); see Fig. 1.

On the other hand, in the infinite-temperature limit, the
equilibrium state corresponds to the maximum of the entropy,
which is given by the uniform density state studied in the
previous section. This state is unique. Therefore, as the
temperature is lowered, we expect that at some critical
temperature we have a bifurcation (or transition) where the
system condenses into one of the two ground states, or into a
combination of them.

The situation is very similar to that encountered in the
OSC model [21], which is also a model of one-dimensional
gravitation in a uniform background of mass and with periodic
boundary conditions. The treatment of the periodic boundary
conditions is different, and it results in a nontrivial external
potential 	(x). The Hamiltonian of this model is

HOSC =
N∑

i=1

1

2
mv2

i + gm2
∑
i>j

|xi − xj |

− gmρ̄

N∑
i=1

[(
xi − 1

2
L

)2

+ 1

4
L2

]
. (20)

Each particle feels the potential interaction with the uniform
background 	(x) = −gmρ̄[(x − 1

2L)2 + 1
4L2], which has the

effect of pushing the particles toward the ends of the box
x → 0 and x → L. The combined effect of the linear attraction
potential, and of the external potential 	(x), is to produce a
complex phase diagram with several phase transitions.

IV. SOLUTION OF THE MODEL

We derive in this section the exact result for the thermo-
dynamic properties of the system in the canonical ensemble
for arbitrary temperature. First we simplify the problem by
taking the size of the box, without any loss of generality, to be

L = 1. The parameter L can be absorbed into a redefinition
of the coordinate x/L → x. Second, for notational simplicity
we denote the rescaled temperature TV = T/m simply as T .
We will convert back to T in Sec. V in order to compare the
theoretical predictions with the numerical simulation.

A. Lane-Emden equation

The single-particle distribution function is found by solving
the Lane-Emden equation. The result is given by the following
proposition:

Proposition 1. The single-particle distribution function of
the gas in thermodynamic equilibrium ρ(x) with x ∈ [0,1]
satisfies the Lane-Emden equation

d2

dx2
log ρ(x) = 2β[1 − ρ(x)] (21)

normalized as ∫ 1

0
dx ρ(x) = 1 . (22)

Proof. The functional fQ[ρ] for the configurational con-
tribution to the free energy per particle (12) can be written
as

fQ[ρ] = infρ

{
1

2
g2

∫ 1

0
dx dy ρ(x)ρ(y)

×
(

|x − y| − (x − y)2 − 1

6

)

+ T

∫ 1

0
dx ρ(x) log ρ(x) − T log L

}
, (23)

where we introduced g2 = 2πGML. The function ρ(x)
appearing in this expression is a rescaled density and is related
as ρ(x) = Lρ̃(xL), where ρ̃(y) is the density appearing in
(12). For simplicity, we assume in the remainder of the paper
that the Boltzmann constant is kB = 1. At equilibrium the
free energy is minimal. We would like to minimize F under
the constraint (22). This constraint can be taken into account
by introducing a Lagrange multiplier λ and considering the
functional G[ρ] = fQ[ρ] + λ[

∫ 1
0 dx ρ(x) − 1].

This variational problem gives the Euler-Lagrange equation
for the gas density ρ(x),

δ

δρ(x)
G[ρ] = g2

∫ 1

0
dy ρ(y)

(
|x − y| − (x − y)2 − 1

6

)
+ T [log ρ(x) + 1] + λ = 0. (24)

This integral equation can be transformed into a differential
equation by taking two derivatives with respect to x. Writing
explicitly the first integral, the Euler-Lagrange equation is
written as

g2

(∫ x

0
dy ρ(y)(x − y) +

∫ 1

x

dy ρ(y)(y − x)

−
∫ 1

0
dy ρ(y)(x − y)2 − 1

6

)
+ T [log ρ(x) + 1] + λ = 0.

(25)
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Taking one derivative with respect to x, we get

g2

(∫ x

0
dy ρ(y) −

∫ 1

x

dy ρ(y) − 2
∫ 1

0
dy ρ(y)(x − y)

)

+ T
d

dx
log ρ(x) = 0. (26)

Take a second derivative,

2g2ρ(x) − 2g2 + T
d2

dx2
log ρ(x) = 0. (27)

This is the Lane-Emden equation (21), which holds for the
single-particle distribution function for a gas at temperature T

[40]. This concludes the proof of this relation.
We would like to solve Eq. (21) with the constraint (22)

for given temperature T . It is convenient to introduce the new
unknown function y(x) defined by

ρ(x) = ey(x). (28)

Expressed in terms of this function, the differential equation
(21) reads

y ′′(x) = 2βg2(1 − ey(x)) (29)

with the normalization constraint∫ 1

0
dx ey(x) = 1. (30)

We impose periodic boundary conditions

y(0) = y(1), y ′(0) = y ′(1). (31)

We note that Eq. (29) is identical to Eq. (12) in [21] [up
to the redefinition y(x) → −βψ(x) and rescaling x/L → x],
giving the density of the gas in the OSC model. However,
our boundary conditions (31) are more constraining than the
boundary condition in [21]. In particular, we require y(0) =
y(1), which is not imposed in [21]. As a result, although the
qualitative properties of the solution are similar in both cases,
the details of the solution are different.

Remark 1. We note that the normalization constraint (22)
is automatically satisfied with the boundary condition y ′(0) =
y ′(1). Indeed, using Eq. (29), we have∫ 1

0
dx ey(x) =

∫ 1

0
dx

(
1 − 1

2βg2
y ′′(x)

)

= 1 − 1

2βg2
[y ′(1) − y ′(0)] = 1. (32)

We write Eq. (29) in the form

y ′′(x) = −V ′[y(x)], V (y) = α2(ey − y − 1), (33)

where we define α2 = 2βg2. This has same form as Newton’s
equation of motion for a particle of mass 1 in the potential
V (y). The total energy is conserved,

E = 1
2 [y ′(x)]2 + α2[ey(x) − y(x)]. (34)

Using this dynamical analogy, it is easy to understand the
qualitative behavior of the solutions of the differential equation
(33). Equation (33) has always the trivial solution y(x) = 0,
which corresponds to the particle sitting at rest at the bottom
of the potential V (y). In addition to this trivial solution, it

can have oscillatory solutions, corresponding to the particle
moving in the potential V (y), starting at some nonzero value
y(0) �= 0 with a positive or negative initial speed y ′(0), and
then performing one full oscillation or several oscillations
before returning to the starting point y(1) = y(0) with the same
velocity y ′(1) = y ′(0) at time 1. The movement of the particle
is spanned by yL � y(x) � yR , where yL < 0,yR > 0 are the
turning points at which the particle speed vanishes. They are
related by energy conservation to the initial position and speed
as V (yL) = 1

2 [y ′(0)]2 + V [y(0)] = V (yR). It is easy to see that
one can take y ′(0) = 0 without any loss of generality, as the
solutions with nonzero y ′(0) are related to those with y ′(0) = 0
by a translation.

We will be seeking solutions of Eq. (33) with boundary
conditions y(0) = y(1), y ′(0) = y ′(1) = 0 corresponding to
the particle starting at rest at time 0 at y(0) and returning to
the same position at time 1. There are two solutions that are
distinguished by the sign of the initial position: y(+)(0) > 0
and y(−)(0) > 0. However, it is easy to see that they are related
by a translation x → x + C, and it is sufficient to determine
only one of them. We will choose as the representative
solution the solution with y(0) < 0. From this one can generate
a continuous family of solutions by translations in the x

coordinate.
The solution y(x) is given implicitly by

x =
∫ y(x)

y(0)

dy√
2α2[y − ey − y(0) + ey(0)]

, (35)

where y(0) is a solution of the equation

2kt(y0,α) = 1, k = 1,2, . . . . (36)

t(y0,α) is the time it takes the particle to move from y0 <

0 when starting at rest y ′(0) = 0 to the turning point with
opposite sign yR(y0). This function is given by

t(y0,α) = 1√
2α2

∫ yR(y0)

y0

dy√
y − ey − y0 + ey0

≡ 1√
2α

F (y0),

(37)

with yR(y0) > 0 the positive solution of the equation ey0 −
y0 = eyR (y0) − yR(y0). We defined the function F (y0) as the
integral appearing in this expression. The plot of F (|y0|) is
shown in Fig. 2. It has the limiting value limy0→0 F (y0) =√

2π , and it is an increasing function of |y0|.
The solutions of Eq. (36) with k = 1 describe trajecto-

ries where the particle performs one full oscillation before
returning to y(0) at x = 1, the solutions with k = 2 give
trajectories with two oscillations, and so on. Equation (36)
has both positive and negative solutions for y0. As discussed
above, it is sufficient to consider only the y0 < 0 solution. We
will denote the solution corresponding to given k as yk(x) and
we will call it the kth mode.

It is clear that Eq. (36) has solutions for given k ∈ N only
if 2πk

α
> 1. In particular, for α < 2π this equation does not

have a nonzero solution for y0, and the only solution of the
equation of motion (33) is the trivial solution y(x) = 0. For
2π < α < 4π there is the solution k = 1, for 4π < α < 6π

there are two solutions with k = 1,2, and so on. We give in
Table III a tabulation of the k = 1 solutions of Eq. (36) for
values of α > 2π .
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FIG. 2. Plot of the function F (y0) defined in (37) for y0 < 0
vs |y0|.

The higher-order solutions are related to the k = 1 solution
as

y1(x,α) = y2

(
1

2
x,2α

)
= · · · = yk

(
1

k
x,kα

)
. (38)

It is easy to check by direct substitution into the equation
y ′′(x,α) = α2(1 − ey(x,α)) that these are indeed solutions of
this equation. In particular, this gives a relation among the
solutions of Eq. (36) with different values of k: y1(0,α) =
y2(0,2α) = · · · .

For sufficiently small oscillation amplitude |y0| � 1, the
function t(y0,α) is given by the approximative formula

t(y0,α) = π

α

(
1 + 1

24
y2

0 + O
(
y4

0

))
. (39)

This follows from the expansion of the oscillation period for
an anharmonic potential with small amplitude; see [42] for a
detailed discussion and references to the literature. The small
amplitude region |y0| � 1 corresponds to α just above 2π (for
k = 1), just above 4π (for k = 2), etc.

Using this approximation, we get the solution of (36) for
values of α around the critical value 2π ,

y2
0 �

{
0, α � 2π,

24
(

α
2π

− 1
)
, α > 2π.

(40)

A similar formula gives yk(0) for α slightly above 2πk with
k = 2,3, . . . . This is y2

k (0) � 24( α
2πk

− 1).
For |y0| � 1, we can find also an explicit approximative

solution of Eq. (35). This is given for k = 1 by

y1(x) = y1(0) cos(2πx). (41)

This follows by expanding the exponentials in the denominator
of the integrand in a Taylor series to second order, which gives

x = 1

α

∫ y(x)

y0

dy√
y2

0 − y2
= arccos

(
y(x)

y0

)
. (42)

The properly normalized density of the gas is ρ(x) =
1

I0[y1(0)]e
y1(0) cos(2πx).

Combining (41) with (38), one can obtain also approxima-
tive solutions for yk(x) for α slightly larger than 2πk.

The analysis presented above gives the following qualitative
behavior of the gas density as the temperature is lowered. In the
infinite temperature limit T → ∞, we have α → 0 and the gas
density is constant, ρ(x) = 1. As the temperature is lowered,
the density ρ(x) remains constant until we reach α = 2π when
one nontrivial solution for y0 appears. This point corresponds
to temperature

Tc1 = g2

2π2
= 2πGML

2π2
. (43)

Compared to the critical temperature in the OSC model
[21], this is smaller by a factor of 1

4 . This is due to our
boundary condition y(0) = y(1), which is not imposed in
[21]. However, the result for Tc1 has the same dependence
on model parameters as in the OSC model, see Eq. (11) in
[22], which gives Tc1 = 2g2

π2 in our notations. Note that in this
reference, 2πG is denoted by g.

As the temperature is lowered below this point, nontrivial
solutions with inhomogeneous gas density appear. They are
translated versions of the basic solution ρ1(x) = exp[y1(x)].
ρ1(x) has a maximum at x = 1/2. We show in Fig. 3 typical
results for the gas density profiles ρ1(x) for two values of
α = 6.3 (just above 2π ) and α = 7 (solid curves). These are
compared with the approximation (41) (dashed curves), which
is seen to work well for temperature just below the transition
temperature Tc1.

As the temperature is lowered further, we reach the point
α = 4π , corresponding to temperature Tc2 = g2ML

8π2 . Below this
temperature there are two solutions for y(x) corresponding to
k = 1,2. In addition to the k = 1 solution, we have another
solution with k = 2, which has oscillatory density behavior
and two maxima or minima within the box. In general, there
is an infinite sequence of critical temperatures at which new
solutions appear, given by α = 2nπ , with n = 1,2, . . . ,

Tcn = g2

2n2π2
= 2πGML

2n2π2
. (44)

Note that we have not yet proven that these solutions of the
Lane-Emden equation for the gas density ρ(x) correspond to
stable configurations of the gas. To decide which solutions are
stable, one has to compare their free energy and determine the
solution that minimizes the free energy. This will be done in
the next section.

B. Thermodynamics

We discuss next the thermodynamic properties of the
system. They can be obtained from the free energy F , which
is given by the following result.

Proposition 2. The free energy per particle of the gas is
given by

F

N
= 1

2g2
T 2

∫ 1

0
dx[y ′(x)]2 + T (1 − ey0 + y0)

− T log L + fkin, (45)
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FIG. 3. Plots of the density ρ(x) vs x for several values of α2 = 2βg2 (solid curves). The dashed curves show the approximation (41),
which is valid for α ∼ 2π . Left: α = 6.3, right: α = 7.

where y0 < 0 is the solution of the equation
√

2
α
F (y0) = 1

with F (y0) defined in (37). The contribution from the kinetic
degrees of freedom is fkin = T (log N − 1 + 1

2 log h2

2πT
). The

integral in the first term depends only on α2 = 2g2β and is
given explicitly for the kth solution of Eq. (36) as

Kk(α) ≡
∫ 1

0
dx[y ′

k(x)]2

= 2k

∫ yR (y0)

y0

dx
√

2α2(x − ex − y0 + ey0 ). (46)

Recall that yR(y0) > 0 is the unique positive solution of the
equation ey0 − y0 = eyR (y0) − yR(y0) with y0 < 0. This is the
turning point in the equivalent dynamical interpretation of the
equation satisfied by y(x).

Proof. See Appendix B.
We note that in the T → ∞ limit, we have α → 0 and the

free energy (45) reduces to the free energy of the uniform gas,
which is given in (18).

For α slightly above 2π (corresponding to temperature T

just below the first critical point Tc1), we can derive a closed-
form approximation for the function K1(α) by expanding the
exponential function in the integrand. This gives

K1(α) = 2αy2
0

∫ 1

−1
dx

√
1 − x2 = παy2

0 . (47)

We study the behavior of the free energy around the critical
point Tc1. The free energy per particle is

f = f0 + 1

2g2
T 2K1(α) + T (1 − ey0 + y0), (48)

where f0 = T [log(N/L) − 1 + 1
2 log h2

2πT
] is the free energy

per particle in the homogeneous density phase, below the
critical temperature.

Substituting here the approximations for K1(α) and y2
0 [(47)

and (40)], we have, for α just above 2π ,

f − f0 � 1

2g2
T 2παy2

0 + T

(
−1

2
y2

0

)

= 1

2
Ty2

0

(
2π

α
− 1

)
= −24πT

α

( α

2π
− 1

)2
. (49)

Expressing α in terms of temperature as α
2π

=
√

Tc1
T

, we have

f − f0 � −12Tc1
√

x(1 − √
x)2 (50)

with x ≡ T/Tc1. It is easy to see that the free-energy difference
f − f0 and its first derivative with respect to temperature
vanish at T = Tc1, while the second derivative has a jump
from 0 at T > Tc1 to limT →Tc1−0 ∂2

T (f − f0) = −6Tc1. Since
the difference f − f0 vanishes for T > Tc1, this implies that
the free energy and its derivative are continuous at T = Tc1

while its second derivative has a jump. We conclude that
the phase transition at T = Tc1 is a second-order phase
transition.

We study further the properties of the system around the
critical temperature Tc1. The energy per particle of the gas
is given by (14). This can be written in a more explicit
way as

u = 1

2
T − 1

4g2
T 2

∫ 1

0
dx[y ′(x)]2. (51)

The first term is the kinetic energy contribution, which is
given by the equipartition theorem as 1

2kBT per particle. The
second term is the contribution of the interaction energy, which
can be expressed in this form using the Lane-Emden equation
as shown in Appendix B,

1

2
(2πGML)

∫ 1

0
dx dy ρ(x)ρ(y)

(
|x − y| − (x − y)2 − 1

6

)

= −1

2
T J − 1

2
(λ + T ). (52)
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The integral J = ∫ 1
0 dx ρ(x) log ρ(x) and Lagrange multiplier

λ are given explicitly in Appendix B. Substituting their
expressions here gives the result (51).

For temperature above the critical temperature, the gas
density is uniform and the contribution of the interaction
energy vanishes. The energy per particle is due in this region
only to the kinetic degrees of freedom. Below the critical
temperature, the gas becomes nonuniform and the interaction
energy starts to contribute a nonvanishing amount.

We compute next the specific heat per particle. This can
be obtained by taking a derivative of (51) with respect to the
temperature, and it is given by

cV =
(

∂u

∂T

)
L

= 1

2
+ 1

8π

√
T

Tc1
K ′

1(α) − 1

4π2

T

Tc1
K1(α)

= 1

2
+ 3FcV

(α), (53)

where we defined

FcV
(α) ≡ 1

12α
K ′

1(α) − 1

3α2
K1(α). (54)

This was obtained by writing α = 2π
√

Tc1/T and using (43).
For temperatures just below Tc1 we can approximate K1(α) us-
ing (47). Using this approximation, we have limα→2π K1(α) =
0, limα→2π K ′

1(α) = 24π , which gives

lim
α→2π

FcV
(α) = 1. (55)

This implies that the specific heat is discontinuous at the
critical point. Above the critical point Tc1 the specific heat
is constant and equal to cV = 1

2 , and below the critical point it
takes the value

lim
T →Tc1−0

cV = 3 + 1
2 = 7

2 . (56)

We can obtain an approximation for the temperature
dependence of the specific heat per particle cV (T ) below
the critical temperature, using the approximation (47) for the
function K1(α). This gives the following approximation for
FcV

(α) defined in (54), valid for α − 2π � 1,

FcV
(α) � 6π

α
− 2. (57)

The corresponding result for the specific heat per particle is

cV (T ) � 1
2 + 3(3

√
T/Tc1 − 2). (58)

We show in Fig. 4 the plot of the specific heat cV (T ) versus
T/Tc1. The solid curve is the exact result (53), and the dashed
curve shows the approximative result (58).

We can study the critical exponent α, which is defined
by the behavior of cV near the critical point. Defining ε =
(Tc − T )/Tc, the specific heat near the critical point has the
form cV (T ) ∼ |ε|α± , with α± corresponding to the sign of
ε. Usually one has α+ = α−. From Eq. (58) one has α = 0,
which is the mean-field result. This implies that the phase
transition in the system considered belongs to the mean-field
universality class. Similar behavior is well known for the van
der Waals gas [43] and the Curie-Weiss model [44]. We note
that non-mean-field critical exponents have been obtained in
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T/Tc1

1 3
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FIG. 4. Plot of the specific heat per particle 1
3 [cV (T ) − 1

2 ] vs
T/Tc1. This is the excess of the specific heat over the constant value
1
2 , which it takes in the homogeneous phase (times 1/3). The specific
heat has a finite jump at Tc1. The solid curve shows the exact result
(53) and the dashed curve shows the approximation (58) valid near
the critical point.

approximative models of the Vlasov-Poisson system [45] and
in the HMF model [46–48].

C. The higher modes

The properties of the k � 2 modes can be related to those
of the k = 1 mode. This implies that it is sufficient to study
the solution of the system for the k = 1 mode. This is given
by the following relations.

Proposition 3. The solutions of Eq. (36) are related as

yk(0,α) = y1

(
0,

1

k
α

)
(59)

and the integrals (46) are related as

Kk(α) = k2K1

(
1

k
α

)
. (60)

For simplicity, we prove these relations for k = 2. The
generalization to arbitrary k � 2 is immediate. These relations
follow from Eq. (38). For k = 2, this gives y2(x,2α) =
y1(2x,α). Taking here x = 0 gives the first identity (59). The
second identity (60) is proved as

K2(2α) =
∫ 1

0
dx[y ′

2(x,2α)]2 = 2
∫ 1/2

0
dx[y ′

2(x,2α)]2

= 8
∫ 1/2

0
dx[y ′

1(2x,α)]2

= 4
∫ 1

0
dx[y ′

1(x,α)]2 = 4K1(α). (61)

D. Stability analysis

The difference between the free energy of the kth mode and
that of the uniform density state (k = 0) is obtained by taking
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the difference of (45) and (18). This can be written as

�fk ≡ f [yk(x)] − f0 = T

(
1 − ey0 + y0 + 1

α2
Kk(α)

)
≡ T δk(α), (62)

where we defined δk(α). This function has a simple interpre-
tation in terms of the dynamical analogy of the anharmonic
oscillator discussed above.

Remark 4. The function δk(α) is related to the classical
action along the trajectory of the equivalent dynamical system
discussed above as

S[y(x)] =
∫ 1

0
dx

[
1

2
[y ′(x)]2 − α2[ey(x) − y(x)]

]
. (63)

It is easy to see that we have

δk(α) = 1 + 1

α2
S[yk(x)]. (64)

The function δk(α) is tabulated numerically for the first
two modes in Table III in Appendix B. From these results one
observes that �f1,2 is negative for temperatures below Tc1 cor-
responding to α > 2π . We prove this result analytically for k =
1 and temperature just below the first critical temperature Tc1.

For temperatures just below the first critical temperature
Tc1, the free-energy difference of the k = 1 mode is given
approximately by

δ1 = 1

2
πT αy2

0 + 1 − ey0 + y0 � 1 − ey0 + y0 + πT

√
T

2ρ̄
y2

0 ,

(65)

where we used the approximation (47), which is valid
for |y0| � 1, just below the first critical temperature Tc1.
Equivalently, we have the upper bound

δ1 � 1 − ey0 + y0 + 1

2
T

√
T

Tc1

y2
0 � 1 − ey0 + y0 + 1

4π2
y2

0 ,

(66)

where we used T < Tc1.
It is easy to see by numerical evaluation that the function

f (x) = 1 − ex + x + 1
4π2 x

2 is strictly negative for x > x0 =
−38.4, which covers the region of validity of the approxima-
tion |y0| � 1. This shows that the first mode y1(x) is a stable
equilibrium state for the gas at temperatures just below the
first critical temperature T < Tc1. The gas density becomes
inhomogeneous in this region and has a unimodal shape.

Next we study the stability of the higher modes. Proposition
4 implies the following result:

δk(kα) = δ1(α). (67)

This shows that it is sufficient to compute the free energy of
the k = 1 mode, and we obtain automatically also the free
energies of the higher modes. For example, these relations
give δ2(2α) = δ1(α), which can be checked to hold indeed on
the numerical results in Table III.

Numerical calculation of δ1(α) shows that it is a
monotonously decreasing function of α, which is zero at
α = 2π and decreases to larger and larger (in absolute value)

negative values as α increases. Relation (67) implies that the
k = 1 mode has the lowest free energy at all temperatures
below the first critical point T < Tc1. The higher modes k � 2,
when they exist (for temperatures below the corresponding
critical temperatures), are unstable minima of the free energy,
and the system will always relax into a k = 1 state. Some of
the higher modes that are unstable thermodynamically could
be metastable. This turns out to be the case with the n = 2
state in the OSC model, as discussed in Refs. [21,22] using a
study of the stability of the time-dependent Vlasov equation.
We leave such a study of the metastability of the higher states
for future work.

V. NUMERICAL SIMULATION

We present in this section the results of a numerical
simulation of the model. The simulation solved numerically
the dynamical equations of motion of N particles interacting by
the potential (4). Since the dynamical behavior of the system
only depends on the net gravitational field experienced by
the gravitating sheets (henceforth referred to as “particles” or
“bodies”), we drop the constant term in the potential energy
for simplicity. Hence, the potential energy for a system with a
primitive cell of length L and containing N particles may be
expressed as

V = −2πGm2
N∑

j=2

j−1∑
i=1

(
(xj − xi)2

L
− |xj − xi |

)
, (68)

where xi and xj represent the primitive-cell positions of the
ith and the j th particles, respectively, with x ∈ [−L/2,L/2).
It should be noted that Miller and Rouet considered an
“expanding-universe” version of the gravitational system
whereby the positions of the particles were expressed in
comoving spatial coordinates. Equations of motion were
derived, and it was shown that the choice of comoving
coordinates invoked a damping factor in the equations of
motion. The exact evolutions of each particles’ positions
and velocities were implicit in the derived equations of
motion. However, expressions for the time dependence were
not explicitly provided. Here, for the sake of completion,
we provide the time dependencies in fixed (non-comoving)
coordinates and discuss the evolution algorithm briefly.

Following Ref. [16] for non-comoving spatial coordinates,
it can be shown for an ordered system (x1 < x2 < · · · < xN )
that

d

dt
Wj (t) = d2

dt2
Zj (t) = 2πmG

{
2N

L
Zj (t) − 2

}
, (69)

where vj is the velocity of the j th particle, Zj ≡ (xj+1 − xj ),
and Wj ≡ (vj+1 − vj ). Solutions to Eq. (69) provide the
displacements and velocities of the (j + 1)th particle with
respect to those of the j th particle in between events of
interparticle crossing:

Zj (t) = L

N
+ 1

2

{
Zj (0) − L

N
+ Wj (0)

�

}
e�t

+ 1

2

{
Zj (0) − L

N
− Wj (0)

�

}
e−�t , (70)
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Wj (t) = �

2

{
Zj (0) − L

N
+ Wj (0)

�

}
e�t

− �

2

{
Zj (0) − L

N
− Wj (0)

�

}
e−�t , (71)

where � ≡
√

4πmGN
L

.
Crossing times, tcj

may be obtained analytically as the
smaller positive root (out of the two possible real ones) of
Zj (tcj

) = 0. We find the crossing times using an event-driven
algorithm similar to the ones discussed in Refs. [16,17].
The algorithm keeps track of the evolution by assigning an
identifying label to each particle. Once a crossing occurs, the
algorithm interchanges the labels and the velocities of the two
participating particles at the crossing location. In the following
iteration, the algorithm treats the updated system as a new,
ordered one but maintains the original labels, thereby allowing
for correct tracking of each particle’s position and velocity.
At the end of each iteration, positions xj and velocities vj

are obtained, respectively, from Zj and Wj by utilizing the
constraints set forth by the conservation of momentum on the
position and velocity of the center of mass [17].

In the simulation, we adopt a set of dimensionless units
and rescale the system parameters as follows: 2πG = 0.5, the
total mass per unit cell, mN = 1, and the unit-cell size, L = 1.
Consequently, the characteristic frequency of the system � =
1. Without losing generality, we set the initial velocity of the
center of mass to zero.

With the ability to follow the exact time evolution, we study
the thermodynamic behavior of the system for different values
of N and, for each N , with varying per-particle energy. For the
system to exhibit ergodic-like behavior, we avoid low values
of N [24], i.e., we choose N � 20. A molecular-dynamics
approach then predicates that the time-averaged values of
the thermodynamic quantities will converge to those in the
thermodynamic limit when N becomes sufficiently large.

A. Kinetic energy

Per-particle kinetic energies (Ekin/N ) have been found by
sampling the velocities at fixed intervals and averaging the per-
particle kinetic energies from each interval over a sufficiently
long time. The simulation is first run for t = 1200, and if
the standard deviation σkin from the last 200 time units has
converged to within a set tolerance with respect to the average
value, the simulation is terminated. Otherwise, the simulation
is allowed to run until the last 200 time units produce a standard
deviation smaller than the tolerance. In our simulations, we
specified a tolerance of 1%, that is, σkin � (0.01 × Ekin/N ).

Figure 5 shows the evolution of Ekin/N for the first 100
time units out of a total evolution time of t = 1200 at four
different values of per-particle energy U/N for a system with
N = 160. Table I shows the converged value of Ekin/N for
the same four energies and the corresponding values of σkin

relative to Ekin/N . Evidently, if the value of U/N exceeds the
maximum allowed per-particle potential energy, the system
acts as an ideal gas, and average values of Ekin/N converges
very rapidly. On the other hand, at energies lower than than the
maximum allowed values, the system goes through a relaxation
phase before the time-averaged values of Ekin/N converge.
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FIG. 5. Illustration of convergence of kinetic energy per particle
in simulation for the first 100 time units out of a total time of 1200.
The numbers in the legend represent the value of U

N
(×10−4). The

upper pair of plots represent temperatures above the critical point
while the lower pair represents temperatures below it.

Figure 6 shows the caloric curves, Ekin/N versus U/N ,
for N = 20, 40, 80, and 160. Although a transitioning trend
is observed for each N , the results indicate that the system
approaches a “thermodynamic-limit” behavior at N ∼ 80, that
is, the transitions become sharp for N � 80. The caloric curve
for N = 160 has been reproduced separately in Fig. 7. A
discontinuity in the first derivative is profoundly evident.

B. Radial distribution function

The radial distribution function, g(r), encapsulates how
the density varies with respect to distance r from a reference
particle in a system. To calculate g(r) in simulation, we employ
the approach proposed in Ref. [17]. The positions of the
particles are sampled at fixed time intervals of dτ . At the end
of the kth interval (corresponding to time t = kdτ ), we find
the number of particles �Nj (r,t) in a small volume (length)
element �r at a distance r from a reference particle at xj . The
radial distribution function is then found as

g(r) = lim
l→∞

∑l
k=0

∑N
j=1 �Nj (r,t = kdτ )

(2�r)Nlρ̄
, (72)

TABLE I. Converged values of kinetic energy per particle from
simulation for N = 160 found at the four values of per-particle
energies used in Fig. 5. In each case, the total simulation time was
1200 and the standard deviation σkin was calculated for the last 200
time units.

U

N
(×10−4) Ekin

N
(×10−4) σkin

(Ekin/N) (×10−4)

1.30 0.39 2.67
2.08 0.56 9.92
4.17 1.59 1.70
4.69 2.10 0.19
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FIG. 6. Per-particle kinetic energy plotted against per-particle
energy for varying number of particles.

where l is the number of iterations and ρ̄ = N/L. Note that, in
Ref. [17], the bulk number density ρ̄ was chosen to be unity,
and hence it was not included in the expression for g(r). In our
simulation, however, L has been set to unity, and therefore ρ̄

is simply equal to N .
For systems that are homogeneous (and isotropic, in

the case of two- or three-dimensional systems), ρ̄g(r)dr

represents the probability of observing a second particle in
dr at a distance r provided a particle is located at r = 0 and
g(r) → N−1

N
for large r [49]. However, in our case, the system

remains essentially nonhomogeneous at low energies, and the
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FIG. 7. Per-particle kinetic energy vs per-particle energy for N =
160. A clear-cut jump is evident in the first derivative of the caloric
curve.

FIG. 8. μ-space snapshots (left column) and time-averaged val-
ues of the radial distribution function (right column) for U/N =
2.08 × 10−4 and N = 160 at different instants of time. Corresponding
elapsed time for each row is mentioned in the g(r) plot.

time-averaged value of the density at a position r relative to
any given particle at ri is not equal to the space-averaged bulk
density ρ̄. That is, 〈ρ(r − ri)〉 �= ρ̄. Therefore, for low-energy
configurations of the Miller-Rouet gravitational gas, g(r), as
expressed in Eq. (72), does not quite represent the standard
definition of the radial distribution function as generally used
in statistical mechanics. However, it still serves as a good
indicator of the relative distribution of the particles with
respect to one another. Figure 8 shows typical low-energy
μ-space distributions and the corresponding plots of g(r) at
different values of elapsed time. It is evident that the particles
tend to stay clumped together and the particle distribution is
inhomogeneous.

At high energies, the particles are able to spread across
the entire primitive cell, and the distribution tends to be
homogeneous. That is, 〈ρ(r − ri)〉 ∼ ρ̄ for U > Vmax, where
Vmax represents the maximum allowed value of the potential
energy for a given number of particles. Under such conditions,
g(r) as given in Eq. (72) represents the radial distribution
function in the standard sense. Figure 9 shows a set of
high-energy μ-space distributions and the corresponding plots
of g(r) at different instants of time. Clearly, the distribution
is more uniform in this case (as compared to Fig. 8) and g(r)
appears to approach the expected value of 159

160 away from r =
0. From the above, we can conclude that the radial distribution
function might provide a useful choice for constructing the
order parameter of this second-order transition.

C. Pressure

The pressure has been calculated in simulation by following
the method discussed in Ref. [17]. The method involves
placing virtual walls at regular spatial intervals throughout the
primitive cell and time-averaging the momentum transferred
from hypothetical elastic collisions to each wall from a given
direction (left or right side of the wall). The wall separation and
the averaging time are decided by an adaptive algorithm that
takes into account a user-provided tolerance as the convergence
criterion.
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FIG. 9. μ-space snapshots (left column) and time-averaged val-
ues of the radial distribution function (right column) for U/N =
4.17 × 10−4 and N = 160 at different instants of time. Corresponding
elapsed time for each row is mentioned in the g(r) plot.

Before we start calculating the pressure, the system is
allowed to relax for t = 1200. Positions and velocities after
the initial run of 1200 time units are then used as initial
conditions for the pressure routine. For energies greater than
the maximum allowed potential energy in the system, the value
of pressure converged fairly easily to within 1% in t = 500,
with as few as 10 walls per unit length for N = 160. The
relatively easy convergence may be attributed to the fact that
the behavior of the system resembles that of an ideal gas for
energies greater than the critical value of U , However, for
energies lower than that corresponding to the critical point,
we had to increase the convergence tolerance to 5% for the
adaptive algorithm to terminate eventually. At a 5% tolerance,
convergence times varied between t = 800 and 1400 with 100
walls for N = 160 and energies below the critical value.

It should be noted that the particles are tightly coupled
via potential at lower energies, and the time evolutions of the
particles’ positions and velocities are strongly exponential be-
tween events of crossings (as opposed to being uniform, “ideal-
gas-like” for higher energies). Hence, at energies below the
critical value, finding pressure as an average rate of momentum
transferred by placing regularly spaced virtual walls becomes a
rather crude approximation. To counter the effect of the strong
coupling on the accuracy of the results, one would have to put
an increasingly larger number of virtual walls as the energy
gets closer to the critical value. However, the marginal increase
in the accuracy from inserting additional walls diminishes
drastically as the interactions get stronger, thereby making
the simulation increasingly time-consuming for a given con-
vergence tolerance. Nevertheless, as shown in Fig. 10, a 5%
tolerance provided a fairly good handle on the temperature
dependence of pressure for N = 160, and a clear-cut change
in slope is displayed near the critical value of Ekin/N .

D. Largest Lyapunov exponent

The largest Lyapunov characteristic exponents (LCEs) have
been calculated for N = 160 using the method discussed in
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FIG. 10. Time-averaged pressure vs per-particle kinetic energy
for N = 160.

Ref. [24]. Similar to the pressure algorithm, the LCE routine
uses the positions and velocities from a prior relaxation run
of 1200 time units as the initial conditions. The program is
adaptive in that it is allowed to run as long as the standard
deviation of the largest Lyapunov exponent from the last 1
million crossings is greater than 1% of the average value, with
a minimum of 4 million crossings. We found that the largest
LCE for each U/N converged to within 1% in the first 4 million
crossings. Results for N = 160 have been presented in Fig. 11.
It can be seen from the figure that the largest LCE exhibits a
local maximum as well as a discontinuity in the slope near the
transition point.

0 1 2 3

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

Ekin/N

λ1

 

 

Simulation data
Shape−preserving polynomial fit
Shape−preserving polynomial fit

FIG. 11. Largest Lyapunov characteristic exponent vs per-
particle kinetic energy for N = 160.
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VI. DISCUSSION

In this section, we compare the results of our simulation
with those predicted by our theoretical treatment. We recall
that the theoretical results are expressed in terms of the
Vlasov rescaled temperature TV = T/m. To compare with the
simulation, we have to express the theoretical predictions in
terms of the usual temperature T = TV m = TV M/N . We also
express the energies (U and Ekin) in the rescaled units that
were adopted in the simulation.

The simulation used the following parameter values: inter-
action coupling 2πG = 1

2 , total gas mass M = mN = 1, and
gas volume (length of elementary cell) L = 1. Thus we have
g2 = 2πGML = 1

2 . Also, the constant term g2(− 1
6L) in the

potential (10) was not included in the simulation, and its effect
has to be explicitly subtracted from the theoretical result.

A. Energy per particle

The total gas energy per particle is given by Eq. (14), which
gives

u = U/N = 1

2
TV − 1

2
T 2

V

∫ 1

0
dx[y ′(x)]2. (73)

To compare with the numerical simulation, the result (73)
must be adjusted in two ways:

(i) We must subtract the contribution of the constant term
− 1

6 in the interaction energy (14), which was not included in
the simulation.

(ii) We must multiply u with m, the particle masses, in order
to account for the fact that we rescaled both the kinetic and
interaction potential energies by one factor m.

We get thus the following theoretical prediction for the
energy per particle in the simulation:

usim = Usim

N
= m

(
u + 1

24

)
= 1

2
mTV + 1

24
m

− 1

2
mT 2

V

∫ 1

0
dx[y ′(x)]2 (74)

= 1

2
T + M

24N
− 1

2M
NT 2

∫ 1

0
dx[y ′(x)]2.

The second term is the contribution of the constant term
− 1

6 , which was not included in the simulation. This is

�U/N = 1

2
g2

∫ 1

0
dx dy ρ(x)ρ(y)

1

6
= 1

24
. (75)

B. Critical temperature

The critical Vlasov temperature is given by Eq. (43).
Taking into account the normalization factor g2 = 1

2 , this
is (TV )c1 = 1

4π2 . Converting to the actual temperature as
T = TV m = TV M/N , we get the critical temperature

Tc1 = 1

4π2N
. (76)

Thus we expect to see a discontinuity in the derivative of the
caloric curve, defined as usim(T ) with usim the total gas energy

TABLE II. Numerical results for the kinetic energy per particle at
the critical temperature, from Eq. (77), for the values of N considered
in the simulation.

N 1
2 Tc1 (×10−4)

20 6.33
40 3.17
80 1.58
160 0.79

per particle, given in (74), at

Ekin

N
= 1

2
Tc1 = 1

8π2N
. (77)

We tabulated in Table II the values of the kinetic energy per
particle at the critical temperature Tc1 for several values of N

used in the simulation.
The results of Table II agree qualitatively with the behavior

observed in Fig. 6—the critical temperature decreases with
the number of particles. The position of the discontinuity
is reproduced reasonably well, and the agreement improves
with increasing N . For N = 160 the discontinuity appears
at Ekin/N = 0.72 × 10−4, which is very close to the theory
prediction of 0.79 × 10−4.

C. The caloric curve

The simulation computed the average values of the total gas
energy U/N and kinetic energy Ekin/N = 1

2T per particle. We
compare next the simulation result for the caloric curve with
the theoretical prediction in (74).

Above the critical temperature, the last term in the energy
formula (74) vanishes, and we get, with the normalization of
the simulation,

Usim

N
= 1

2
T + 1

24N
= Ekin

N
+ 1

24N
. (78)
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FIG. 12. Caloric curve: theoretical prediction vs simulation re-
sults for N = 160.
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FIG. 13. Plot of the caloric curve (Usim/N,Ekin/N ) for N = 160.
Dashed curve: approximative result using the approximation K1(α) =
παy2

0 .

The kinetic energy per particle expressed as a function of total
energy per particle is a straight line with intercept − 1

24N
. For

N = 160 this intercept is −2.604 × 10−4, which is very close
to the intercept of the straight line observed in Fig. 7. Figure 12
presents a comparative plot of the theoretical and simulation

data graphed together.
For temperatures below the critical temperature, T < Tc1,

the last term in the energy formula (74) starts contributing. In

this region, we have

Usim

N
= −1

2
NT 2

∫ 1

0
dx[y ′(x)]2 + 1

2
T + 1

24N

= −2N

(
T

2

)2

K1(α) + 1

2
T + 1

24N
. (79)

An analytical approximation for the integral K1(α) =∫ 1
0 dx[y ′(x)]2, which is valid very close to the critical point, is

given in Eq. (47),

K1(α) � παy2
0 = 24πα

(√
Tc1

T
− 1

)
(80)

= 24π
1√
NT

(√
1

8π2N

2

T
− 1

)
.

The dashed curve in Fig. 13 represents the result for the
caloric curve following from this approximation. The solid
curve shows the exact caloric curve obtained using the exact
(numerical) result for K1(α) in Table III. This table contains a
tabulation of the integral K1(α) for values of α from 2π to 13.
Each of these points corresponds to a value of the temperature,
according to

α2 = (2π )2 Tc1

T
. (81)

From this we get the kinetic energy per particle,

Ekin

N
= 1

2
T = (2π )2Tc1

α2
. (82)

The corresponding result for the total energy per particle is
obtained from (79). Thus for each value of α in Table III we

TABLE III. Numerical solutions of Eq. (36) for α � 2π . Only the solution with y0 < 0 is given; all other solutions can be obtained from
this by a translation. We also give the values of the integral Kk(α) defined in (46). The column δk(α) = 1 − ey0 + y0 + 1/α2Kk gives the
function appearing in the free-energy difference with the k = 0 mode; see Eq. (62).

α y1(0) K1(y0) δ1(α) y2(0) K2(y0) δ2(α)

2π 0 0 0
6.3 −0.2646 1.27286 −0.00004
6.4 −0.7495 9.01418 −0.00203
6.5 −1.06682 17.0712 −0.00687
6.6 −1.335 25.4278 −0.01442
6.7 −1.5800 34.1811 −0.02453
6.8 −1.8084 43.2443 −0.03710
6.9 −2.0267 52.6788 −0.05200
7.0 −2.2377 62.4879 −0.06914
8.0 −4.2155 184.617 −0.34562
9.0 −6.2459 362.172 −0.77658
10.0 −8.4725 613.968 −1.33303
11.0 −10.9388 960.43 −2.00138
12.0 −13.6589 1423.37 −2.77439
4π −15.3135 1745.99 −3.25689 0 0 0
12.6 −15.4145 1766.68 −3.28651 −0.2646 5.09144 −0.00004
12.7 −15.7162 1829.17 −3.37532 −0.5508 20.4223 −0.00067
12.8 −16.0205 1893.24 −3.46508 −0.7495 36.0567 −0.00203
12.9 −16.3272 1958.87 −3.55585 −0.917 52.0220 −0.00410
13.0 −16.6366 2026.14 −3.64761 −1.0668 68.2824 −0.00687
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get a point with coordinates (Usim/N,Ekin/N). The set of all
these points forms the caloric curve for temperatures below
the critical temperatures shown in Fig. 13.

D. Equation of state

The comparison of the simulation results for the pressure
with the theoretical calculation is more difficult. It is known
[50] that for systems with long-range interactions, one has to
distinguish between the thermodynamic pressure [computed
as −(∂F/∂L)N,T ] and the kinetic pressure (computed as in the
numerical simulation). Additional complications have to be
taken into account when using periodic boundary conditions
[51].

To illustrate these issues, consider the case of a one-
dimensional system of particles interacting by a constant
attractive potential V (x,y) = −cL, proportional to the volume
of the system L and c > 0. [Such a constant term is present
in the interaction potential (4), where it appears because of
imposing periodic boundary conditions.] The free energy is

F = −cNL − kBTV N log L + Fkin, (83)

which yields the thermodynamic pressure

p = kBTV

N

L
+ cN. (84)

This is the ideal gas law, supplemented by the addition
of a positive term. On the other hand, it is clear that the
kinetic pressure will not be changed by the constant potential
V (x,y) = −cL, which corresponds to zero forces. This simple
argument illustrates the difficulties encountered with the
interpretation of the thermodynamic pressure in systems with
long-range interactions. For these reasons, we show only the
results for the kinetic pressure obtained from the numerical
simulation; see Fig. 10.

VII. CONCLUSIONS

We studied in this paper the thermodynamic properties
of a one-dimensional gas of N particles interacting via
one-dimensional gravitational potentials, subject to periodic
boundary conditions. This results in a modification of the
two-body interaction potential, which takes into account the
contributions of an infinite number of mirror images (Ewald
sum). The method of derivation is an application of Kiessling’s
approach to an infinite gravitational system where the potential
is regularized by an exponential damping factor that is finally
taken to the limit where the damping factor vanishes [38].
This model was proposed in Ref. [16] and was also used in
Ref. [17] to describe a plasma consisting of charged particles
in a uniform charge background. In this formulation, each
particle carries with it a uniformly distributed negative mass (or
charge) background that arises from its infinite replicas. This
should not be confused with an external background potential
that is introduced in an ad hoc approach [21,22]. The system
possesses complete translational invariance without imposing
any additional constraints.

In carrying out our computations of the thermodynamic
properties, we considered the Vlasov limit, which corresponds
to taking the particle number very large, at fixed volume

(length) and total mass. In this limit, the total energy and
entropy have usual extensive properties, and we derived
the exact solutions for the thermodynamic properties in the
canonical ensemble. Note that no ensemble inequivalence is
expected for the thermodynamic properties of our model. This
is in contrast with the self-gravitating ring (SGR) model,
where such ensemble inequivalence has been observed for
sufficiently small energy, where the phase transition becomes
discontinuous. For our case the transition is continuous, and
there is no jump in the kinetic energy per particle (temperature)
at the critical point. Ensemble equivalence has been obtained
in the OSC model [21,22], which is similar to our model, and
we expect these results to hold here as well.

In common with a gravitational system with an externally
imposed background potential, the spatially periodic system
considered here also undergoes a phase transition at a critical
temperature Tc1 [21]. Above the critical temperature the gas
density is uniform, while below this temperature it becomes
nonuniform and has a stable unimodal density profile that is not
fixed in position. Thus there is a continuum of solutions that
differ only by a translation. Both the translationally invariant
system considered here and the rigid system with an externally
imposed background potential exhibit an infinite sequence
of critical points at which the system develops additional,
unstable states. We show that only the inhomogeneous density
state with unimodal density distribution appearing at Tc1

is stable. This is in contrast with the free-boundary self-
gravitating system that has been studied extensively (for
reviews, see Refs. [41,52]). For that system, it was shown
analytically by Rybicki that no phase transition occurs at
any energy [4] in the one-dimensional gravitational system
without hard-core interaction. Note that in higher dimension it
is necessary to screen the singularity of the gravitational force
to obtain a phase transition [53–55].

Here we showed that the equilibrium density obeys a variant
of the Lane-Emden equation, which determines the gas density
up to a translation. Both approximative and numerically
computed exact solutions for the thermodynamic properties
were obtained and used to evaluate the internal energy and
heat capacity as a function of temperature. A discontinuity in
the slope of the caloric curve and corresponding discontinuity
in the heat capacity, manifestations of a second-order phase
transition, were obtained. A vanishing critical exponent for
the heat capacity indicates that our system is of the mean-field
universality class. A related model of a gravitational Vlasov
fluid was introduced in Ref. [45], for which different critical
exponents were obtained. Critical behavior of purely Vlasov
versions of the HMF model has also been investigated [46–48].

In addition to the theoretical derivation of the thermody-
namic properties, we carried out dynamical N -body simula-
tions of the model, which confirmed the analytically predicted
features of the phase transition at the critical temperature Tc1.
The temperature dependencies of the numerically computed
averages of the per-particle energy and pressure as well as the
largest Lyapunov exponent display sudden changes in their
slopes at T ∼ Tc1. The simulations utilized efficient event-
driven algorithms that employed exact expressions for the
time evolution of the system’s phase-space and tangent-space
vectors. It should be noted that the discontinuity in the slope
of temperature dependence of the largest Lyapunov exponent
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near the critical temperature exhibited by the gravitational
gas is reminiscent of that shown by the SGR model [15]. A
contrasting feature, however, between the two systems is that
the temperature dependence of the largest Lyapunov exponent
displays a local minimum in (0,Tc1), whereas that for the SGR
is not characterized by a local minimum.

The long-range nature of the interaction potential of the
model considered introduces known difficulties in the theoret-
ical calculation of the equation of state in the inhomogeneous
density state below the critical point. We plan on returning
to this issue in future work. Nonetheless, the simulation
tools employed here allowed for the numerical estimations
of the thermodynamic quantities and their corresponding
behavior with changing temperature. Moreover, the μ-space
distributions obtained in simulation confirm the existence of
inhomogeneity in density below the critical temperature, as
predicted by our analytic treatment of the system.

Finally, it is worth highlighting that the discontinuity
in the slope of the temperature dependence of the largest
Lyapunov exponent displayed by our simulations near the
critical temperature reaffirms the previously reported findings
that suggested the applicability of the Lyapunov exponents as
a possible indicator of phase transitions.
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APPENDIX A: PROOF OF EQ. (7)

In this Appendix, we provide further details of the calcu-
lation of the sum over mirror images. This is done by writing
the sum in (6) as

∞∑
k=−∞

|x − y + kL|e−κ|x−y+kL| (A1)

= |x − y|e−κ|x−y| +
−1∑

n=−∞
[y − (x + nL)]e−κ(y−nL−x) +

∞∑
n=1

(x + nL − y)e−κ(x+nL−y)

= |x − y|e−κ|x−y| +
∞∑

n=1

[y − (x − nL)]e−κ(y+nL−x) +
∞∑

n=1

(x + nL − y)e−κ(x+nL−y)

= |x − y|e−κ|x−y| +
∞∑

n=1

nLe−κnL(e−κ(y−x) + eκ(y−x)) + (y − x)
∞∑

n=1

e−κnL(e−κ(y−x) − eκ(y−x)). (A2)

The sums over n can be evaluated in closed form,

∞∑
n=1

e−κnL = 1

eκL − 1
, (A3)

∞∑
n=1

nLe−κnL = L
eκL

(eκL − 1)2
. (A4)

Substituting into the sums above gives Eq. (7).

APPENDIX B: DERIVATION OF THE FREE ENERGY

We prove here the result (45) for the configurational
contribution to the free energy per particle fQ[ρ]. The starting
point is the expression

fQ = 1

2
T

∫ 1

0
dx ρ(x) log ρ(x) − 1

2
λ − 1

2
T − T log L, (B1)

which is obtained by eliminating the double integral in (23)
using the Euler-Lagrange equation (24). Multiplying (24) with
1
2ρ(x) and integrating over x, we get

1

2
g2

∫ 1

0
dx dy ρ(x)ρ(y)

(
|x − y| − (x − y)2 − 1

6

)

= −1

2
T

∫ 1

0
dx ρ(x) log ρ(x) − 1

2
λ − 1

2
T . (B2)

Substituting this into (23) gives (B1).

We will evaluate the integral in the first term and the
Lagrange multiplier, and we will show that they are given
by

J :=
∫ 1

0
dx ρ(x) log ρ(x)

= 3

2α2

∫ 1

0
dx[y ′(x)]2 + [1 − ey(0) + y(0)], (B3)

λ = −g2

α4

∫ 1

0
dx[y ′(x)]2 + T [ey(0) − y(0) − 2]. (B4)

(i) The calculation of the integral (B3). This is done by
writing it as

J =
∫ 1

0
dx ρ(x) log ρ(x)

=
∫ 1

0
dx

(
1 − 1

α2
y ′′(x)

)
y(x) = I1 − 1

α2
I2, (B5)

where we used the Lane-Emden equation y ′′(x) = α2[1 −
ρ(x)], and evaluating the resulting integrals as follows.

There are two integrals appearing here,

I1 :=
∫ 1

0
dx y(x) = 1

2α2

∫ 1

0
dx[y ′(x)]2 + 1 − ey(0) + y(0).

(B6)
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This follows from the relation (energy conservation for the
equivalent dynamical problem)

α2[ey(0) − y(0)] = 1
2 [y ′(x)]2 + α2[ey(x) − y(x)] (B7)

and integration over x : (0,1) using the normalization condi-
tion

∫ 1
0 dx ey(x) = 1.

The second integral is

I2 :=
∫ 1

0
dx y ′′(x)y(x)

= y ′(1)y(1) − y ′(0)y(0) −
∫ 1

0
dx[y ′(x)]2

= −
∫ 1

0
dx[y ′(x)]2, (B8)

where we used the boundary conditions y(0) = y(1), y ′(0) =
y ′(1).

(ii) Next we compute the Lagrange multiplier λ. This is
expressed by taking x = 0 in the Euler-Lagrange equation
(24), which gives

λ =−g2
∫ 1

0
dx ρ(x)

(
x − x2 − 1

6

)
− T [log ρ(0) + 1]. (B9)

The integral appearing here is evaluated by integration by parts.
This is

I3 :=
∫ 1

0
dx ey(x)

(
x − x2 − 1

6

)

=
∫ 1

0
dx

(
1 − 1

α2
y ′′(x)

)(
x − x2 − 1

6

)

= − 1

α2

∫ 1

0
dx y ′′(x)

(
x − x2 − 1

6

)

= − 1

α2
y ′(x)

(
x − x2 − 1

6

)∣∣∣∣
1

0

+ 1

α2

∫ 1

0
dx y ′(x)(1 − 2x)

= 1

α2
y(x)(1 − 2x)|10 + 1

α2
2
∫ 1

0
dx y(x)

= − 2

α2
y(0) + 2

α2
I1, (B10)

where the integral I1 is given in (B6).
We get finally the result for the Lagrange multiplier,

λ = −g2I3 − T [y(0) + 1], (B11)

where the integral I3 is given in (B10). Combining all terms
gives the result (B4).
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