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The properties of the random sequential adsorption of objects of various shapes on a two-dimensional triangular
lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by
self-avoiding lattice steps, whereby the size of the objects is gradually increased by wrapping the walks in several
different ways. The aim of this work is to investigate the impact of the geometrical properties of the shapes
on the jamming density θJ and on the temporal evolution of the coverage fraction θ (t). Our results suggest
that the order of symmetry axis of a shape exerts a decisive influence on adsorption kinetics near the jamming
limit θJ. The decay of probability for the insertion of a new particle onto a lattice is described in a broad range
of the coverage θ by the product between the linear and the stretched exponential function for all examined
objects. The corresponding fitting parameters are discussed within the context of the shape descriptors, such
as rotational symmetry and the shape factor (parameter of nonsphericity) of the objects. Predictions following
from our calculations suggest that the proposed fitting function for the insertion probability is consistent with the
exponential approach of the coverage fraction θ (t) to the jamming limit θJ.

DOI: 10.1103/PhysRevE.95.022114

I. INTRODUCTION

Understanding various aspects of random sequential ad-
sorption (RSA) has a great scientific and industrial importance
as it has been linked to a wide range of applications in
biology, nanotechnology, device physics, physical chemistry,
and materials science [1–4]. Depositing objects range in
size from micrometer scale down to nanometer scale, and
depending on the application in question, the objects could
be colloidal particles, polymer chains, globular proteins,
nanotubes, DNA segments, or general geometrical shapes,
such as disks, polygons, etc.

The RSA model adsorption process considers sequential
addition of particles on the n-dimensional substrate such that
at each time step only one particle is added on the substrate at
a randomly selected position. During the process of addition,
newly added particles are forbidden from overlapping with
the already adsorbed particles, and any attempt of adsorption
resulting in an overlap is rejected. The adsorbed particles are
permanently fixed at their spatial positions so that they affect
the geometry of all later placements. This leads to slowing of
the rate of adsorption due to unavailability of the surface for
further addition. The most common parameter to characterize
the kinetic properties of a deposition process is the coverage
θ (t), defined as the ratio of the number of occupied sites at
time t and the total number of sites. Due to the blocking of
the substrate area by the already randomly adsorbed particles,
at large times the coverage θ (t) approaches the jammed-state
value θJ, where only gaps too small to fit new particles are left
in the monolayer.

The RSA models are broadly classified into continuum
models and lattice models on the basis of the nature of the
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substrate. The long-term behavior of the coverage fraction
θ (t) is known to be asymptotically algebraic for continuum
systems [5–8] and exponential for lattice models [9–12]. For
the latter case the approach of the coverage fraction θ (t) to its
jamming limit θJ is given by the time dependence:

θJ − θ (t) ∼ exp(−t/σ ), (1)

where parameters θJ and σ depend on the shape, orientational
freedom of depositing objects, and the dimensionality of the
substrate [11,12].

An important issue in RSA is the influence of the shape of
depositing objects on kinetics of irreversible deposition and
on the morphological characteristics of coverings. RSA of
many different geometric objects has been studied for both
continuum and lattice models in order to determine the signif-
icance of particle anisotropy in formation of the jammed-state
coverings. For this purpose, the jamming coverings generated
by RSA on continuous substrates have been analyzed for
depositing particles of various shapes, such as spherocylinders
and ellipsoids [13,14], rectangles [15,16], starlike particles
[17,18], and polymers [19,20]. Results obtained for anisotropic
particles show that jamming coverage reaches its maximum
when the long-to-short particle axis ratio is approximately
1.5–2.0 [13,16]. Recently Cieśla et al. have performed an
extensive numerical simulation of the RSA of smoothed
n-mers, spherocylinders, and ellipses [21–23] in order to find a
shape which maximizes the jamming coverage. It is found that
the highest packing fraction is obtained for ellipses having the
long-to-short axis ratio of 1.85, which is the largest anisotropy
among the investigated shapes.

The kinetics of the deposition process is strongly depen-
dent on geometrical properties of the objects. For instance,
Khandkar et al. [24] have studied RSA of zero-area symmetric
angled objects on a continuum substrate for the full range
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(0 ◦–180 ◦) of values of the arm angle φ and have observed that
θJ − θ (t) ∼ tα as expected. Value of the exponent α exhibits
a crossover near φ = 0 ◦ or 180 ◦ and is significantly lower in
the case of the angled objects than in the case of needles.

Formation of random deposits of extended objects on
discrete substrates and their properties have been extensively
studied in many different contexts and using a number of
different tools, including irreversible deposition [11,25,26],
an adsorption-desorption model [27–29], random deposition
with diffusional relaxation [30–32], and percolations [33–35].

Wang and Pandey [36] have studied the kinetics and
jamming coverage in RSA of self-avoiding walk chains on
a square lattice and found that the jamming coverage θJ

decreases with the chain length with a power law. They
observed a crossover from a power-law variation of the
coverage fraction θ (t) in the intermediate time regime to an
exponential growth in the long time, especially for short chains.

Budinski and Kozmidis [11,26] have carried out extensive
simulations of irreversible deposition using objects of different
sizes and rotational symmetries on a square and triangular
lattice. They reported that shapes with the symmetry axis of
a higher order have lower values of σ [Eq. (1)], i.e., they
approach their jamming limit more rapidly. This confirms
the crucial role of the geometrical character of the objects
in deposition dynamics.

The main goal of the present study is to extend the
analysis in Ref. [11] to large collections of objects of various
shapes that can be made by self-avoiding random walks on
a triangular lattice. The large number of examined objects
represents a good basis for testing the impact of the geometrical
properties of the shapes on the jamming density θJ and on the
temporal evolution of the coverage fraction θ (t). We address
the following questions regarding the influence of the shape
on the rapidity of the approach to the jamming state. First, we
investigate the interplay between the size and the symmetry
properties of depositing shapes. This is an important question
because the slowing of the dynamics in the RSA model can
be understood as a consequence of steric effects that make
certain insertions of particles infeasible owing to an effective
high local density on the lattice. Second, we analyze whether
there is some intrinsic property of the objects that, in addition to
symmetry, also promotes or suppresses rare adsorption events
which take place on isolated islands of connected unoccupied
sites at the late times of the deposition process.

For this purpose we use the concept of the shape factor
to measure the circularity of depositing objects. The shape
factor (parameter of nonsphericity) was introduced by Moučka
and Nezbeda [37], for tracking the change in structure
as a liquid-like system approaches a disordered jammed
state. Shape factor, ζ , is defined as the degree to which a
particle is similar to a circle, taking into consideration the
smoothness of the perimeter. This means the parameter ζ

is a measurement of both the particle form and roughness.
Thus, the farther away from a perfectly round and smooth
circle that a particle becomes, the higher the ζ value. The
shape factor is a dimensionless value. Moreover, we gener-
alize the definition of the shape factor for planar geometric
figures [see Eq. (6)] to make it applicable to the objects
made by directed self-avoiding walks on the two-dimensional
lattice.

In this paper the shape factor ζ is associated with the
evolution of probability for the insertion of a new particle onto
a lattice during the deposition process. This work provides
a closer insight into the behavior of the insertion probability
during the irreversible deposition of extended objects. The
decay of the insertion probability is described in a broad range
of the coverage θ by the product between linear and stretched
exponential function for all examined objects. We discuss the
fitting parameters from the proposed fitting function within the
context of the shape descriptors, such as rotational symmetry
and shape factor of the objects.

The paper is organized as follows. Section II describes
the details of the simulations. The approach of the coverage
fraction θ (t) to the jamming limit θJ is analyzed in Sec. III A.
Section III B is devoted to the analysis of the behavior
of probability for the insertion of a particle onto a lattice
during the deposition process. Finally, Sec. IV contains some
additional comments and final remarks.

II. DEFINITION OF THE MODEL
AND THE SIMULATION METHOD

The depositing objects are modeled by self-avoiding walks
on the planar triangular lattice. A self-avoiding shape of length
� is a sequence of distinct vertices (ω0, . . . ,ωl) such that each
vertex is a nearest neighbor of its predecessor, i.e., a walk of
length � covers j = � + 1 lattice sites. Starting from a dimer,
size of the objects is gradually increased by wrapping the walks
in several different ways. Formation of wrapping triangles Tj is
shown in Table I. In a similar way, rhombuses Rj and hexagons
Hj of larger sizes j = 2,3, . . . ,30 are obtained by wrapping
as shown in Tables II and III, respectively. In this manner,
wrapping objects of larger sizes occupy all comprised sites on
the lattice.

On a triangular lattice objects with a symmetry axis of
first, second, third, and sixth order can be formed. Rotational
symmetry of order ns , also called n-fold rotational symmetry,
with respect to a particular axis perpendicular to the triangular
lattice, means that rotation by an angle of 2π/ns does not
change the object. The values of the order of symmetry axis ns

are given in Tables I–III for all wrapping triangles, rhombuses,
and hexagons. We concentrate here on the influence of
the order of symmetry axis of the shape on the kinetics
of the adsorption process. Special attention is paid to the
comparison of the results for lattice objects of different
rotational symmetries but of the same number of segments.

At each Monte Carlo step a lattice site is selected at random.
If the selected site is unoccupied, we fix the beginning of the
walk that makes the chosen shape Tj (or Rj , Hj ) at this site.
Then we randomly pick one of the six possible orientations
on the lattice with equal probability, start the corresponding
�-step walk in that direction, and search whether all successive
� sites are unoccupied. If so, we occupy these j = � + 1 sites
and place the object. If the attempt fails, a new site and a
new direction are selected at random. This scheme is usually
called the conventional or standard model of RSA. The other
strategy to perform an RSA, where we check all possible
directions from the selected site, is named the end-on model
[11]. The jamming limit is reached when no more objects can
be placed in any position on the lattice. Since the local domain
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TABLE I. Wrapping triangles, Tj . The colors are associated with
different order ns of the symmetry axis. For each shape, θJ is the
jamming coverage and σ is the relaxation time [Eq. (1)].

Shape (Tj ) j ns σ θJ

2 2 3.03 0.9141
3 3 1.97 0.7969

4 1 5.99 0.7741

5 1 6.01 0.7605

6 3 2.04 0.7210

7 1 5.97 0.6901

8 1 6.09 0.6993

9 1 5.99 0.7101

10 3 2.00 0.6816

11 1 5.83 0.6493

12 1 5.71 0.6624

13 1 5.97 0.6683

14 1 5.94 0.6816

15 3 2.01 0.6572

16 1 5.81 0.6263

17 1 5.80 0.6368

18 1 6.05 0.6445

19 1 5.95 0.6518

20 1 5.90 0.6633

21 3 1.99 0.6407

22 1 5.56 0.6119

23 1 6.05 0.6197

TABLE I. (Continued.)

Shape (Tj ) j ns σ θJ

24 1 5.89 0.6286

25 1 5.98 0.6323

26 1 5.79 0.6406

27 1 5.92 0.6498

28 3 1.93 0.6286

29 1 5.86 0.6016

30 1 5.92 0.6079

structures for the end-on model are more dense than those of
the conventional model, the jamming limit θJ for the end-on
model is slightly larger than that for the conventional model.

It is well established that correlations in RSA decay
extremely fast [1,6,38]. Therefore, one can obtain high-
precision results numerically on relatively small lattices, with-
out worrying about finite-size effects [39–41] and averaging
over not too many runs because the system is self-averaging.
Numerical studies have shown that the finite-size effects on
the lattice of size L can be neglected for object sizes �L/8
[10]. Consequently, Monte Carlo simulations are performed
on a triangular lattice of size L = 240. Periodic boundary
conditions are used in all directions. The time t is counted
by the number of attempts to select a lattice site and scaled
by the total number of lattice sites N = L2 = 57 600. The
simulation data are averaged over 1000 independent runs for
each depositing object.

III. RESULTS AND DISCUSSION

A. Particle jamming and late-stage deposition kinetics

First, we report and discuss the numerical results regarding
the influence of the order of the symmetry axis of the shape
on the kinetics of the deposition processes. The simulations
have been performed for all wrapping triangles, rhombuses,
and hexagons from Tables I–III. Figure 1 shows the plots of
ln[θJ − θ (t)] versus t for three wrapping triangles (T3, T4, T6)
and hexagons (H4, H7, H19), and for two wrapping rhombuses
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TABLE II. Wrapping rhombuses, Rj . The colors are associated
with different order ns of the symmetry axis. For each shape, θJ is the
jamming coverage and σ is the relaxation time [Eq. (1)].

Shape (Rj ) j ns σ θJ

2 2 3.02 0.9141
3 1 6.03 0.8345
4 2 3.08 0.7591

5 1 6.00 0.7605

6 2 3.00 0.7299

7 1 5.98 0.7075

8 1 6.01 0.6956

9 2 2.99 0.6792

10 1 5.98 0.6706

11 1 5.78 0.6885

12 2 2.90 0.6716

13 1 6.01 0.6506

14 1 6.04 0.6531

15 1 6.01 0.6463

16 2 2.99 0.6428

17 1 6.02 0.6332

18 1 6.00 0.6439

19 1 5.72 0.6549

20 2 2.97 0.6416

21 1 5.79 0.6224

22 1 5.99 0.6258

23 1 5.78 0.6254

24 1 6.02 0.6226

25 2 2.79 0.6220

26 1 5.95 0.6126

27 1 5.90 0.6199

TABLE II. (Continued.)

Shape (Rj ) j ns σ θJ

28 1 5.71 0.6260

29 1 5.97 0.6349

30 2 3.10 0.6236

(R3, R6), so that it contains results for shapes of all symmetry
orders. Lines with four different slopes are plotted in Fig. 1,
showing the late times of the deposition process corresponding
to objects of different symmetry order, ns = 1,2,3,6, as
indicated in the legend. Following the objects formed by
walks of increasing length (e.g., T3 and T4), we can see that
objects differing in only one self-avoiding lattice step can have
significantly different values of the relaxation time σ . On the
other hand, for a given value of symmetry order ns , these plots
are parallel lines in the late stages of the deposition process for
shapes of very different lengths (e.g., H7 and H19). This means
that for a given ns , rapidity of the approach to the jamming
state is not affected by the length of the shape. Consequently,
order of symmetry of the shape has an essential influence in
the late times of the deposition process. To further confirm
this notion, we have calculated the values of the parameter σ

[Eq. (1)] from the slopes of the ln[θJ − θ (t)] versus t curves in
the late times of the process. Parameter σ determines how fast
the lattice is filled up to the jamming coverage θJ. The values
of relaxation time σ are given in Tables I–III for all examined

FIG. 1. Plots of ln(θJ − θ (t)) vs t for wrapping triangles T3, T4,
T6, rhombuses R3, R6, and hexagons H4, H7, H19 from Tables I–III.
The curves correspond to various values of the order of symmetry
axis of the shape, ns , as indicated in the legend. Additionally, the
slanted straight lines with the slope −1/σ = −1,−1/2,−1/3,−1/6
are shown, indicating the late-time RSA behavior and are guides for
the eye.
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TABLE III. Wrapping hexagons, Hj . The colors are associated
with different order ns of the symmetry axis. For each shape, θJ is the
jamming coverage and σ is the relaxation time [Eq. (1)].

Shape (Hj ) j ns σ θJ

2 2 2.99 0.9141

3 3 1.99 0.7970

4 2 2.94 0.7591

5 1 6.01 0.7604

6 1 6.00 0.7347

7 6 0.98 0.6697

8 1 5.78 0.6923

9 1 5.99 0.6857

10 2 2.97 0.6813

11 1 6.00 0.6665

12 3 2.01 0.6508

13 1 5.98 0.6431

14 2 3.00 0.6457

15 1 5.99 0.6433

16 1 6.00 0.6623

17 1 6.05 0.6472

18 1 6.01 0.6367

19 6 1.02 0.6147

20 1 6.05 0.6163

21 1 5.79 0.6352

22 1 6.01 0.6265

23 1 6.03 0.6293

24 2 2.98 0.6327

TABLE III. (Continued.)

Shape (Hj ) j ns σ θJ

25 1 6.01 0.6204

26 1 5.94 0.6190

27 3 2.01 0.6136

28 1 5.98 0.6057

29 1 5.76 0.6099

30 2 2.83 0.6119

objects. Approximate values of the parameter σ for the four
classes of objects of different symmetry are found to be the
following:

σ � 6.0 for the shapes with a symmetry axis of first order,
ns = 1;

σ � 3.0 for the shapes with a symmetry axis of second
order, ns = 2;

σ � 2.0 for the shapes with a symmetry axis of third order,
ns = 3;

σ � 1.0 for the shapes with a symmetry axis of sixth order,
ns = 6.

This means that the approach to the jamming limit is
faster for more regular and symmetric shapes. At large times,
adsorption events take place on islands of unoccupied sites.
The individual islands act as selective targets for specific
deposition events. In other words, there is only a restricted
number of possible orientations in which an object can reach
a vacant location, provided the location is small enough. For
a shape of a higher order of symmetry ns , there is a greater
number of possible orientations for deposition into a selective
target on the lattice. Hence, the increase of the order of
symmetry of the shape enhances the rate of single particle
adsorption. This shortens the mean waiting time between
consecutive deposition events and the approach to the jamming
state is faster.

Figures 2(a)–2(c) show the dependence of the jamming
coverage θJ on the number j of sites covered by an object
for wrapping triangles (a), rhombuses (b), and hexagons (c).
Numerical values of the obtained jamming coverages θJ are
also given in Tables I–III for all examined wrapping shapes.
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FIG. 2. Jamming coverages θJ for all wrapping (a) triangles Tj ,
(b) rhombuses Rj , and (c) hexagons Hj , from Tables I–III. Here j =
2, . . . ,30 denotes the number of sites covered by an object. Numerical
values of the symmetry order ns of the shapes are given in the square
brackets above the corresponding plot symbols.

From Fig. 2 it is evident that for small values of j � 7,
jamming coverages θJ decrease very rapidly with the size of the
objects. A noticeable drop in the jamming coverage θJ is thus
a clear consequence of the enhanced frustration of the spatial

adsorption. However, adding a single node to large objects does
not result in a significant increasing in their size. Therefore,
changing the shape of the large objects has considerably more
influence on the jamming density than increasing the object
size. For example, jamming coverages for objects T11 and T27

from Table I are almost identical, although they are of different
sizes. The presented results in Fig. 2 also suggest that there is
no correlation between the order of symmetry axis ns of the
shape and the corresponding values of the jamming density
θJ. It is interesting that, for the wrapping hexagons [Fig. 2(c)],
the jamming density θJ reaches a local minimum for the most
regular hexagons H7 and H19 with symmetry axis of sixth
order, ns = 6, while the jamming density θJ for object H16 of
low symmetry order, ns = 1, is greater than θJ for the wrapping
hexagons that cover more than j = 11 sites.

In order to gain a better insight into the complex kinetics
of the adsorption processes of wrapping objects it is useful
to analyze in particular the temporal evolution of probability
for the insertion of a new particle onto a lattice. Insertion
probability pj for the object j at time t is calculated from the
expression

pj = 1 − cj

N
, j = 1,2,3, . . . ,30, (2)

where

cj = 1
6

(
6n

(j )
0 + 5n

(j )
1 + 4n

(j )
2 + 3n

(j )
3 + 2n

(j )
4 + n

(j )
5

)
. (3)

Here n
(j )
k is the total number of sites at which the beginning of

the walk that makes the shape j can be placed, whereby the
deposited object j at each available site can be oriented in k

(k = 0, . . . ,5) different ways. We emphasize that the first step
determines the orientation k of the object. In Eq. (2), N denotes
the total number of lattice sites, N = L2. The quantities
n

(j )
k , k = 0,1,2,3,4,5 are calculated numerically from the

simulation data. Let us remark that a different choice of the
head of the object (the beginning of the walk) does not change
the value of the coefficient cj . We have verified that usage of
a different head for all examined objects gives quantitatively
the same results for coefficients cj and probabilities pj .

Below we try to characterize quantitatively the time and
density dependence of the insertion probability pj during
irreversible deposition of wrapping triangles Tj , rhombuses
Rj , and hexagons Hj . In Fig. 3(a) the coefficients cj [Eq. (3)]
are plotted as a function of the number n of randomly deposited
objects for all wrapping triangles Tj (Table I). Numerical
simulations for wrapping rhombuses Rj and hexagons Hj

(Tables II and III) produce qualitatively similar results for the
evolution of coefficients cj (n) during the deposition process.
At very early times of the process, deposited objects do not
“feel” the presence of the others, and cj (n) = n cj (1) for
sufficiently low densities θ . Therefore, at the very early times,
the plot of the coefficients cj with respect to n is linear on a
double logarithmic scale with the slope 1. At higher densities,
“excluded volumes” for deposited objects begin to overlap,
leading to slowing of the linear growth of the coefficients cj

with n. In Fig. 3(b) we show the behavior of coefficients cj (θ )
in the late stages of deposition process. As can be seen from
Fig. 3(b), the final value N = L2 = 57600 of coefficients cj

is reached when the coverage θ of the system approaches
the jammed-state value θJ . The curves cj (θ ) shift to lower
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FIG. 3. The coefficients cj [Eq. (3)] as a function (a) of the
number n of deposited objects, and (b) of the coverage θ , in the late
stage of the deposition process, for all wrapping triangles Tj (Table I).
The horizontal line represents the final value N = L2 = 57600 of the
coefficients cj that is reached when the coverage θ approaches to the
jamming limit θJ . The solid black line has slope 1 and is a guide for
the eye.

densities θ when the object size increases. Some of the lines
cj (θ ) intersect with the other ones in the late stage of the
process when the influence of the shape on the densification
kinetics becomes very important.

The results for the insertion probability pj are shown in
Fig. 4 for the same wrapping objects as in Fig. 1. Insertion
probability pj is a monotonically decreasing function of the
coverage fraction θ for all the shapes. When the coverage θ

approaches the jamming limit θJ, the probability pj decreases
very rapidly with θ and vanishes at θJ.

B. Properties of the insertion probability:
Role of rotational symmetry of the shapes

In the following, we try to find a universal functional type
that describes the decay of the insertion probability pj for
all shapes in a broad range of the coverage θ . In addition,
the proposed function pj = f (θ ) should be consistent with
the exponential approach of the coverage fraction θ (t) to the
jamming limit θJ [Eq. (1)]. Looking for a function that gives
the best fit to probability pj , we have tried a wide set of

FIG. 4. Shown here is the insertion probability pj vs the coverage
θ for triangles T3, T4, T6, rhombuses R3, R6, and hexagons H4, H7,
H19 from Tables I–III.

phenomenological fitting functions for relaxation processes in
many complex disordered systems [42]. The best agreement
with our simulation data was obtained by the fitting function
of the form

pj (θ ) = A

(
1 − θ

θJ

)
exp(−λ1θ

λ2 )

= A

(
1 − θ

θJ

)
exp

[
−

(
θ

θ (c)

)λ2
]
, (4)

where A, λ1, and λ2 are the fitting parameters, and

θ (c)(j ) = [λ1(j )](−1/λ2(j )). (5)

Parameter θ (c)(j ) determines the characteristic density scale,
and exponent λ2 measures the decay rate of the probability
pj (θ ) on this scale. Interestingly, Ludewig et al. [43] have
proposed that the decrease of the grain mobility with the
packing fraction during the granular compaction is well
described by the empirical law of the form (4).

In Fig. 5 some representative results for the insertion
probability pj (θ ) are shown together with the fitting functions
of the form (4). The fitting parameters are obtained by
using the nonlinear fitting routine FMINSEARCH in MATLAB R©
(MathWorks, Natick, MA). This is an implementation of
the Nelder-Mead simplex algorithm [44], which minimizes
a nonlinear function of several variables. For each shape,
a fitting procedure is carried out within a certain range of
coverage θ below θJ, where the probability pj is lower than
pc

j = 0.15. The cutoff probability pc
j = 0.15 is chosen to

provide a wide density range within which the fitting procedure
is implemented for all wrapping shapes. For most shapes, the
cutoff probability pc

j = 0.15 corresponds to the densities that
are 30%–40% lower than the corresponding jamming limit
θJ. We have verified that usage of different, but sufficiently
small, values of the cutoff parameter pc

j gives quantitatively
similar results for fitting coefficients leading to qualitatively
same conclusions.

The data for fitting parameters λ1 and λ2 for all wrapping
triangles Tj from Table I are plotted in Fig. 6. The parameters
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FIG. 5. The decay of the insertion probability pj (θ ) for the same
objects as in Fig. 4 in the range of coverage θ where the corresponding
probability pj is lower than pc

j = 0.15 (thin horizontal line). The
continuous superimposed lines are the fits according to Eq. (4).
The fitting parameters λ1 and λ2 are reported in Fig. 6.

FIG. 6. Parameters (a) λ1 and (b) λ2 of the fit (4) for all wrapping
triangles from Table I. Numerical values of the symmetry order ns of
the shape j are given in the square brackets above the corresponding
plot symbols.

FIG. 7. Characteristic density θ (c) (Eq. (5)) for all wrapping
triangles Tj from Table I (solid symbols, left-hand axis). The opened
symbols are plotted against the right-hand axis and give the values of
the shape factor ζ (j ) for all wrapping triangles Tj . The characteristic
density θ (c)(j ) is anticorrelated with the shape factor ζ (j ).

λ1 and λ2 depend both on the symmetry order and on
the size of the object. The size dependence of the fitting
parameters is more pronounced for the parameter λ1. However,
the most striking feature is that the fitting parameters λ1

and λ2 exhibit a local minima for wrapping triangles of
the highest symmetry order, ns = 3. It is important to note
that the fitting procedure for wrapping rhombuses Rj and
hexagons Hj from Tables II and III produce qualitatively
similar results for the dependence of the fitting parameters λ1

and λ2 both on the symmetry order ns and on the size j of the
object.

We have also considered the behavior of the characteristic
density θ (c) [Eq. (5)] as a function of the object size j . Figure 7
shows the variation of the parameter θ (c) with j for all wrapping
triangles Tj . It is obvious that the symmetry order ns of the
shape is not correlated with the characteristic density θ (c)(j )
for various objects. The behavior of θ (c)(j ) differs from case
to case. For example, for shapes j = 4,7,11,16,22,29 formed
by adding a node to the triangle of the highest symmetry order
(ns = 3), θ (c)(j ) has a local minima. On the other hand, for
shapes j = 5,9,14,20,27 formed by removing a node from the
triangle of the highest symmetry order (ns = 3), θ (c)(j ) has a
local maxima.

Previous findings suggest that we should consider the
connection of deposition kinetics with some of the new
geometrical properties of the extended objects. For this
purpose we use the concept of the shape factor, which is a
dimensionless measure of deviation of the extended objects
from circularity. Let us first mention the definition of the shape
factor in the case of planar geometric figures. Shape factor ζ

(parameter of nonsphericity) combines the circumference C

and the surface S of the planar figure [37,45]. It is defined
as

ζ = C2

4πS
. (6)
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FIG. 8. Construction of the polygon determined by the first
neighboring sites on the lattice for the wrapping triangles T6 and
T8, rhombus R8, and hexagon H9. The shape factor of the extended
object is equal to the shape factor (6) of the polygon of the first
neighboring sites on the lattice.

For a square ζ = 4/π ≈ 1.273, for a regular pentagon
ζ = π/5 tan(π/5) ≈ 1.156, and for a regular hexagon ζ =
6/

√
3π2 ≈ 1.103. Generally, for a regular N -sided polygon

we have ζ = (N/π ) tan(π/N ), which sets a lower bound for
other N -sided polygons. Thus a circular structure has a shape
factor ζ = 1, while for a convex polygon, the more anisotropic
is the polygon, the higher is ζ > 1.

In the case of extended objects on a triangular lattice, the
above definition of the shape factor (6) must be generalized.
Each lattice shape can be surrounded by the first neighboring
sites on the lattice. These nodes unambiguously define a
polygon containing the given object. For example, the polygon
of the first neighboring sites for a monomer (j = 1) is a
hexagon; the constructions of such polygon for wrapping
triangles T6 and T8, rhombus R8, and hexagon H9 are shown
in Fig. 8. Thus, the shape factor of the extended object is
equal to the shape factor (6) of the polygon defined by the first
neighboring sites on the lattice.

Values of the shape factor ζ (j ) for all wrapping triangles
Tj are given in Fig. 7 together with the corresponding
characteristic densities θ (c)(j ). We can see that θ (c)(j ) increases
with j > 2 if ζ (j ) decreases and vice versa. In other words,
positions of the local maxima (minima) of θ (c)(j ) coincide with
position of the local minima (maxima) of ζ (j ). Qualitatively
the same behavior of the shape factor ζ (j ) and the parameter
θ (c)(j ) is found in the cases of wrapping rhombuses Rj and
hexagons Hj . Indeed, in Figs. 9 and 10 we show that the
characteristic density θ (c)(j ) is anticorrelated with the shape
factor ζ (j ) for the wrapping rhombuses Rj and hexagons Hj .

Figure 11 illustrates that when the product between the
shape factor and the characteristic density, ζ (j ) × θ (c)(j ), is
plotted as a function of the object size j , the data for wrapping
triangles Tj , rhombuses Rj , and hexagons Hj collapse onto

FIG. 9. Characteristic density θ (c) [Eq. (5)] for all wrapping
rhombuses Rj from Table II (solid symbols, left-hand axis). The
opened symbols are plotted against the right-hand axis and give
the values of the shape factor ζ (j ) for all wrapping rhombuses Rj .
The characteristic density θ (c)(j ) is anticorrelated with the shape
factor ζ (j ).

a single curve. This figure demonstrates the existence of the
single universal master function of the form

F (j ) = ζ (j ) × θ (c)(j ) = 1 − C1
{
1 − exp

[− 1
2 (j − 2)C2

]}
,

(7)

where the two fitting parameters are C1 = 0.525 and C2 =
0.685. This result strongly suggests that, for various objects
of the same length, the characteristic density θ (c)(j ) of
more rounded shapes exceeds the θ (c)(j ) of the elongated
ones. Indeed, in Fig. 12 we show the parameter θ (c) as a
function of the shape factor ζ for various triplets of triangles,
rhombuses, and hexagons (Tj ,Rj ,Hj ) of the same size,

FIG. 10. Characteristic density θ (c) [Eq. (5)] for all wrapping
hexagons Hj from Table III (solid symbols, left-hand axis). The
opened symbols are plotted against the right-hand axis and give
the values of the shape factor ζ (j ) for all wrapping hexagons Hj .
The characteristic density θ (c)(j ) is anticorrelated with the shape
factor ζ (j ).
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FIG. 11. The product between the shape factor and characteristic
density, ζ (j ) × θ (c)(j ), as a function of the object size j for
all wrapping triangles Tj , rhombuses Rj , and hexagons Hj from
Tables I–III. The black solid curve is the stretched exponential fit
of Eq. (7).

j = 14,17,19,22,25,28,30. For each triplet (Tj ,Rj ,Hj ), our
data confirm that the parameter θ (c) decreases with the shape
factor ζ .

Now, it is necessary to establish a connection between the
proposed fitting function pj (θ ) [Eq. (4)] and the exponential
approach of the coverage fraction θ (t) to the jamming limit
θJ [Eq. (1)]. It is easy to show that the following differential
equation,

dθ

dt
= j pj (θ ) = j A

(
1 − θ

θJ

)
exp

[
−

(
θ

θ (c)

)λ2
]
, (8)

describes the temporal evolution of the coverage θ (t) in the
late stages of deposition process. Let θ (t) = jn(t)/L2 be the
fraction of total lattice sites covered by the deposited objects of

FIG. 12. Characteristic density θ (c) [Eq. (5)] as a function of
the shape factor ζ for various triplets of triangles, rhombuses and
hexagons (Tj ,Rj ,Hj ) of the same size, j = 14,17,19,22,25,28,30.
The letter above the plot symbol indicates the object type. Sizes of
the objects for the corresponding triplets are given in the legend.

FIG. 13. Functions �1(θ ) and �2(θ ) [Eqs. (9) and (10)] obtained
by fitting Eq. (4) to the insertion probability data for wrapping
triangles T2 and T27 in the case of pc

j = 0.15. The solid lines give
the fitting function pj (θ ) = �1(θ )�2(θ ) [Eq. (4)]. The dot-dashed
lines give the approximation pj (θ ) = �1(θ ) exp [−(θJ/θ

(c))λ2 ], as
indicated in the legend. Approximation (11) is applicable in the
narrower density range in the case of the large object T27 than in the
case of the dimer T2. The parameters of the fit (4) are θ (c) = 0.8313,
λ2 = 3.6964 for shape T2, and θ (c) = 0.3619, λ2 = 2.5266 for shape
T27. The thin vertical lines indicate the values of jamming coverage
for shapes T2 (θJ = 0.9141) and T27 (θJ = 0.6498).

size j at time t [n(t) denotes the number of objects adsorbed at
time t]. Since the time t is counted by the number of adsorption
attempts and scaled by the total number of lattice sites L2, the
number of deposited objects is increased by pjL

2 per unit time
t → t + 1. Therefore, the coverage at time t + 1 is equal to
θ (t + 1) = j [n(t) + pjL

2]/L2, so that θ (t + 1) − θ (t) = jpj

is the increase of the coverage per unit time. Since θ (t + 1) −
θ (t) ≈ dθ/dt , we get dθ/dt = jpj . Finally, we obtain Eq. (8)
assuming that function (4) describes the decay of the insertion
probability pj for all shapes in a wide range of the coverage θ

just below θJ.
Unfortunately, differential equation (8) cannot be solved

analytically. However, Eq. (8) can be simplified and solved
if we restrict ourselves to the consideration of the very late-
time behavior of the deposition process. The right side of
differential Eq. (8) is proportional to the product between linear
�1 and stretched exponential function �2, which are given by

�1(θ ) = A

(
1 − θ

θJ

)
, (9)

�2(θ ) = exp

[
−

(
θ

θ (c)

)λ2
]
. (10)

There is a significant difference in the behavior of these
functions near the jamming density for all examined objects.
Figure 13 shows the functions �1(θ ) and �2(θ ) obtained by
fitting Eq. (4) to the insertion probability data in the late stage
of the deposition processes for wrapping triangles T2 and T27.
Since the time derivative of coverage dθ/dt vanishes at t → ∞
and �2 → exp [−(θJ/θ

(c))
λ2 ] > 0, t → ∞, it is obvious that

the function �1 is essential for controlling the kinetics of
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FIG. 14. Relaxation time σ calculated from the expression (13)
for all wrapping triangles (Table I). Results are given for three values
of threshold pc

j = 0.12, 0.02, 0.002, as indicated in the legend. The
full circles correspond to values of σ in Table I. Open circles
correspond to values 6/ns(j ) [Eq. (14)] for j = 2, . . . ,30. Numerical
values of the symmetry order ns(j ) of the shape are given in the square
brackets above the x axis.

adsorption process near the jamming limit θJ. Our further
analysis deals with the rapidity of the approach to the jammed
state, so that we can introduce the following approximation:

�2(θ ) = exp

[
−

(
θ

θ (c)

)λ2
]

≈ exp

[
−

(
θJ

θ (c)

)λ2
]
,

for θ � θJ. (11)

This approximation allows us to solve Eq. (8). Accordingly,
the coverage fraction of the system θ grows exponentially in
time towards the jamming state value θJ:

θ (t) = θJ

[
1 − exp

(
− t

σ

)]
, for θ � θJ, (12)

where

σ = θJ exp
(
λ1θ

λ2
J

)
jA

= θJ exp
[(

θJ
θ (c)

)λ2
]

jA
. (13)

Consequently, the function (4) that we have proposed to
characterize the insertion probability pj is compatible with
the exponential approach (1) to the jamming limit θJ.

Equation (13) is a functional relationship between the
relaxation time σ and the parameters A, λ1, and λ2 in the fitting
function (4). Our previous findings concerning the kinetics of
the deposition process clearly confirm that the relaxation time
σ in Eq. (1) is inversely proportional to the order of symmetry
axis ns of the shape:

σ = 6

ns

. (14)

It is interesting to verify whether the Eq. (13) gives the values
of the parameter σ that are in accordance with the symmetry
order ns of the shape [Eq. (14)]. Figure 14 shows the values of
the relaxation time σ obtained from the expression (13) for all
wrapping triangles (Table I). For each object, the values of the

parameters A, λ1, and λ2 in Eq. (13) were calculated by fitting
the function (4) to the insertion probability data for three values
of the cutoff probability pc

j = 0.12, 0.02, 0.002. It is obvious
that Eqs. (13) and (14) give approximately equal relaxation
times σ in the case of more symmetric shapes (ns = 2,3;
j = 2,3,6,10,15,21,28). However, the values of parameter
σ obtained by Eq. (13) in the case of asymmetric shapes
(ns = 1) are not well fitted by integer 6/ns = 6 [Eq. (14)].
These deviations are particularly high for the large objects.
The reasons for these differences can be seen in Fig. 13.
Comparing the insertion probabilities near the jamming state
for the objects T2 and T27, one can see that approximation (11)
is applicable in the narrower density range in the case of the
large object T27 than in the case of the dimer T2. Accordingly,
the lowering of the cutoff value pc

j reduces the deviation of the
relaxation time σ , calculated from Eq. (13), from the integer
value of 6 (see Fig. 14). The presented results provide a further
justification for the choice of function (4) to describe the decay
of the insertion probability pj for all extended shapes on the
triangular lattice.

IV. SUMMARY

RSA kinetics of particles of various shapes on flat two-
dimensional homogeneous surfaces depends generally on
the shape anisotropy and on the number of degrees of
freedom. However, in the case of irreversible deposition on
planar lattices, the kinetics of the late stage of deposition is
determined exclusively with the symmetry properties of the
shapes. To demonstrate this, we have performed extensive
numerical simulations of the RSA using the shapes of different
number of segments and rotational symmetries on a triangular
lattice. The shapes are made by self-avoiding lattice steps,
whereby the size of the objects is gradually increased by
wrapping the walks in several different ways.

As expected, the approach to the jamming limit was found
to be exponential for all the shapes. It was shown that the
coverage kinetics is severely slowed with the decrease of the
order of symmetry of the shape. We have also pointed out that
the relaxation time σ [Eq. (1)] is inversely proportional to the
order of symmetry axis ns of the shape, σ = 6/ns . We found
that for small objects, jamming coverages θJ decrease very
rapidly with the size of the objects, regardless of their shape.
But for sufficiently large objects it turned out that changing the
shape has considerably more influence on the jamming density
than increasing the object size.

Special attention is paid to the behavior of probability pj

for the insertion of a new particle onto a lattice during the
deposition process. The insertion probability pj is found to
decay with the coverage θ according to Eq. (4). It is shown that
the characteristic density θ (c)(j ) [see Eq. (4)] is anticorrelated
with the shape factor ζ (j ) of the objects. In addition, our
data confirm that, for objects of the same length, parameter
θ (c) decreases with the shape factor ζ . Consequently, this
work provides the link between the behavior of the insertion
probability pj and the intrinsic properties of the shapes.

We have established a connection between the proposed
fitting function [Eq. (4)] for the decay of the insertion
probability and the exponential approach of the coverage
fraction θ (t) to the jamming limit θJ [Eq. (1)]. It was shown
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LJ. BUDINSKI-PETKOVIĆ et al. PHYSICAL REVIEW E 95, 022114 (2017)

that the obtained functional relationship (13) between the
relaxation time σ and the fitting parameters in expression (4)
gives the values of the parameter σ that are in accordance with
the symmetry order ns of the shape [Eq. (14)].

It must be stressed that the presence of desorption and dif-
fusional relaxation of particles changes some of the important
properties of the RSA. When desorption is introduced in RSA
processes, slowing of the deposition dynamics occurs with
increasing of symmetry order of the shapes [29]. Furthermore,
the presence of diffusion only hastens the approach to the
final disordered state [32]. As expected, the behavior of
the insertion probability during the reversible deposition of
extended objects look very different in comparison with the
irreversible case. When desorption of the objects is present,
insertion probability first follows the corresponding RSA

curve until it reaches a value close to the equilibrium one
at which point it plateaus and evolves very weakly towards the
equilibrium [46]. Consequently, function (4) is not suitable to
describe the decreasing of the insertion probability toward its
equilibrium value during the reversible RSA.
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[21] M. Cieśla, Properties of random sequential adsorp-
tion of generalized dimers, Phys. Rev. E 89, 042404
(2014).
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