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Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients
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Systems of particles with long-range interactions present two important processes: first, the formation of out-
of-equilibrium quasistationary states (QSS) and, second, the collisional relaxation towards Maxwell-Boltzmann
equilibrium in a much longer time scale. In this paper, we study the collisional relaxation in the Hamiltonian
mean-field model using the appropriate kinetic equations for a system of N particles at order 1/N : the Landau
equation when collective effects are neglected and the Lenard-Balescu equation when they are taken into account.
We derive explicit expressions for the diffusion coefficients using both equations for any magnetization, and we
obtain analytic expressions for highly clustered configurations. An important conclusion is that in this system
collective effects are crucial in order to describe the relaxation dynamics. We compare the diffusion calculated
with the kinetic equations with simulations set up to simulate the system with or without collective effects,
obtaining a very good agreement between theory and simulations.
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I. INTRODUCTION

Systems with long-range interactions present the generic
evolution in two distinct stages: first, the evolution to a
quasistationary state in a process called collisionless (or
violent) relaxation [1] in a time scale τdyn, and, second,
the evolution towards thermodynamic equilibrium in the so-
called collisional relaxation process, in a time scale of order
τcoll ∼ Nδτdyn, where δ > 0 depends on the system considered.
The mechanism of collisional relaxation is qualitatively well
known since the seminal work of Chandrasekhar [2]: The
main elements are two-body collisions, which randomizes the
velocity of the particles, leading to a Maxwell-Boltzmann
velocity distribution. Using simple calculations and approx-
imating the system as spatially homogeneous, Chandrasekhar
was able to determine that, for gravitational systems in
three dimensions, τcoll ∼ τdynN/ ln N . This approach was
subsequently used by other authors, notably Hénon in the
1960s (see, e.g., Ref. [3]), and led to the development
of Fokker-Planck techniques. All these methods share the
same feature of approximating the system as homogeneous.
For example, in the orbit-averaging approach (see, e.g.,
Ref. [4]), diffusion coefficients are computed approximating
the system as homogeneous, and then they are averaged over
the actual orbits of the particles. This method is used because
it is technically difficult to compute diffusion coefficients
for inhomogeneous configurations, essentially because the
trajectories of the unperturbed particles (i.e., in the mean-field
limit) would need to be computed, which is generally a very
difficult task. Moreover, using this approach, it is not possible
to take into account collective effects, which can be important
for some systems and configurations, which we will see it is
the case in the present work.

At the same time, a rigorous kinetic theory for (repul-
sive, neutral) plasmas was being developed first by Landau
(introducing, notably, the concept of Landau damping) and
subsequently by other authors such as Lenard, Balescu, etc.
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(see, e.g., Ref. [5]). When the system is neutral, the mean-field
configuration is homogeneous, and it is therefore possible to
attack the problem in an essentially analytical way, including
even collective effects.

Over the past few years a rigorous kinetic theory for inho-
mogeneous configurations has been developed by different
authors [6–10]. In these works, the general procedure in
order to compute kinetic equations at order 1/N has been
described. There are, however, many practical difficulties
when trying to compute quantities of interest such as the
diffusion coefficients, and this for various reasons. The natural
way to write these equations is to use angle-action variables
(see, e.g., Ref. [11]). To compute them as a function of the
natural variables (x,v) is technically equivalent to solving the
equations of motion for the unperturbed (N → ∞) potential,
which is in general impossible analytically. The subsequent
calculation of the diffusion coefficient (which involves, e.g.,
Fourier transform about the angle variable) becomes (even
numerically) very difficult. For this reason, we are only aware
of the study of self-gravitating tepid disks [12,13]. In this case,
it is possible to make controlled approximations, which makes
the semianalytical calculations feasible.

In this paper we have chosen to study exactly a sufficiently
simple model in order to compute the diffusion coefficients
without approximations (up to order 1/N). To do so, we
use the popular Hamiltonian mean-field model (HMF) [14],
which has widely been used to study long-range systems.
Its simplicity permits us to compute some analytical and
numerical quantities which would be impossible in more
realistic models such as three-dimensional gravity. For this
reason, the diffusion coefficients have already been studied in
the much simpler spatially homogeneous configuration [15].
Our work has two main objectives: On one side, it will
permit us to compare the diffusion coefficients with numerical
simulations in order to check the validity of the assumptions
made deriving the kinetic equations in the case of spatially
inhomogeneous distributions. On the other side, it will set up
the method to solve numerically the Lenard-Balescu equation
not only for the HMF but also for other more complicated
models, as self-gravitating systems.
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The paper is organized as follows: In the first section we
summarize the kinetic theory we will apply in the paper. In the
next section, we apply the equations for the HMF to compute
the diffusion coefficients, giving also analytical results for
some cases. Then we compare the theoretical predictions with
molecular dynamics simulations, including or not collective
effects, and then we give conclusions and perspectives.

II. KINETIC THEORY

The evolution of an N -body system under Hamiltonian
dynamics can be described using kinetic theory. The approach
outlined in this section follows that of several previous works
(see Introduction) and is summarized in, e.g., Ref. [16].1 The
problem addressed by this kinetic approach is the following:
Given a set of N particles of mass m with initial positions
{ri} and velocity {vi} and their Hamiltonian equations of
motion, how and to what steady state will they evolve? We
start with the discrete distribution function fd (r,v,t), which
contains all the information of the state of the system at a given
time t ,

fd (r,v,t) = m

N∑
i=1

δ[r − ri(t)]δ[v − vi(t)]. (1)

The evolution of the discrete distribution function is given
exactly by the Klimontovich equation [17]

∂fd

∂t
+ v · ∂fd

∂r
− ∂φd

∂r
· ∂fd

∂v
= 0, (2)

φd (r,t) =
∫

u(|r − r′|)fd (r′,v′,t)dr′dv′, (3)

where φd (r,t) is the discrete convolution potential, u(r − r′)
is the pair interaction potential between particles at positions
r and r′, and ∂f

∂u =∑d
i=1

∂f

∂ui
ei and d is the spatial dimension.

For a given initial distribution f d
0 (r,v) = m

∑N
i=1 δ[r −

ri(t = 0)]δ[v − vi(t = 0)], the discrete distribution is deter-
mined at all future times t . A smooth distribution function
can be obtained by averaging over an ensemble of initial
conditions,

f (r,v,t) = 〈fd (r,v,t)〉 (4)

and thus fd (r,v,t) = f (r,v,t) + δf (r,v,t).
The same smoothing process can be done for the Klimon-

tovich equation. Since averages over the fluctuations are zero,
this leads to

∂f

∂t
+ v · ∂f

∂r
− ∂φ

∂r
· ∂f

∂v
= ∂

∂v
·
〈
δf

∂δφ

∂r

〉
. (5)

The above equation gives the evolution of the smooth dis-
tribution due to correlation between its own fluctuations and
the fluctuation of the smooth potential φ(r,t), determined by

1Here we use the Klimontovich formulism; the same equations may
be obtained from the Born-Bogoliubov-Green-Klimontovich-Yvon
(BBGKY) hierarchy, see, i.e., Ref. [8].

φd (r,t) = φ(r,t) + δφ(r,t), where

φ(r,t) =
∫

u(|r − r′|)f (r′,v′,t)dr′dv′, (6)

δφ(r,t) =
∫

u(|r − r′|)δf (r′,v′,t)dr′dv′. (7)

Subtracting Eq. (5) from the Klimontovich equation and
keeping only terms of order lower than O(1/N ) gives the
linearized Klimontovich equation,

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f

∂v
− ∂φ

∂r
· ∂δf

∂v
= 0. (8)

The system of Eqs. (5) and (8) are known as the quasilinear
approximation, since in the first equation the correlation term
on the right-hand side is of order 1/N , while in the second
equation all terms of order 1/N or higher have been neglected.

A. Homogeneous systems

We will first give a brief derivation of the kinetic equations
for the spatially homogeneous case. It is technically simpler
than the inhomogeneous one while sharing the same ideas. In
this case f = f (v,t), so Eqs. (5) and (8) become

∂f

∂t
= ∂

∂v
·
〈
δf

∂δφ

∂r

〉
, (9a)

∂δf

∂t
+ v · ∂δf

∂r
− ∂δφ

∂r
· ∂f

∂v
= 0. (9b)

The fluctuation terms are more easily dealt with by using
the Fourier-Laplace transforms

δ̃f (k,v,ω) = 1

(2π )d

∫
dr
∫ ∞

0
dt e−i(k·r−ωt)δf (r,v,t) (10)

and

δ̃φ(k,ω) = 1

(2π )d

∫
dr
∫ ∞

0
dt e−i(k·r−ωt)δφ(r,t). (11)

Taking the Fourier-Laplace transform of Eq. (9b), we have

δ̂f (k,v,0) − i(k · v − ω) δ̃f (k,v,ω)

+ ik · ∂f

∂v
δ̃φ(k,ω) = 0, (12)

where

δ̂f (k,v,0) =
∫

dr
(2π )d

e−ik·rδf (r,v,0). (13)

From the above equation, we can isolate δ̃f and thus find an
expression relating the fluctuations of the distribution function
and the fluctuations of the potential and the initial condition,

δ̃f = k · ∂f

∂v δ̃φ(k)

k · v − ω︸ ︷︷ ︸
collective

effects

+ δ̂f (k,v,0)

i(k · v − ω)︸ ︷︷ ︸
initial

conditions

. (14)

Because collective effects are difficult to compute analytically,
a common approximation found in the literature consists
in neglecting them (see, e.g., Ref. [9]). In this paper we
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will consider the complete problem, and we will study their
importance in the inhomogeneous HMF.

The next step in the derivation consists in expressing the
Fourier transform of the fluctuation of the potential δ̃φ(k,ω)
as a function of the fluctuation δ̃f (k,w). To do so, we integrate
Eq. (14) over v, and, using the Fourier transform of Eq. (7),
we get∫ ∞

−∞
dvδ̃f (k,v,ω) = 1

ε(k,ω)

∫ ∞

−∞
dv

δ̂f (k,v,0)

i(v · k − ω)
, (15)

where we have defined the plasma response dielectric function

ε(k,ω) = 1 − û(k)
∫

dv
k · ∂f (v)/∂v

v · k − ω
. (16)

Using again Eqs. (7) and (15), we get

δ̃φ(k,ω) = û(k)
∫ ∞

−∞
dvδ̃f (k,v,ω)

= û(k)

ε(k,ω)

∫ ∞

−∞
dv

δ̂f (k,v,0)

i(p · k − ω)
. (17)

Inserting Eqs. (14) and (17) into Eq. (9a), after some algebra,
we get the Lenard-Balescu equation (using the notation [17]):

∂f

∂t
= π (2π )dm

d∑
i,j=1

∂

∂vi

∫
dkdv′kikj

û(k)2

|ε(k,k · v)|2

× δ[k · (v − v′)]

(
∂

∂vj

− ∂

∂v′
j

)
f (v,t)f (v′,t). (18)

When collective effects are neglected, i.e., the first term of
Eq. (14) is neglected, it is simple to see from Eq. (16) that
ε(k,ω) = 1.

B. Inhomogeneous systems

In inhomogeneous systems, the strategy is to use, instead
of the variables (r,v), the angle-action variables (w,J) cor-
responding to the Hamiltonian H of smooth dynamics (i.e.,
the one corresponding to the limit N → ∞) [18]. Using these
variables, particles described by the Hamiltonian H keep their
action J constant during the dynamic and their angle evolves
with time as w = 	(J)t + w0, where w0 is the angle at t = 0
and 	(J) = ∂H/∂J is the angular frequency [19]. The system
thus becomes “homogeneous” in the new coordinates [20].

The equations for evolution of smooth distribution function
f and its fluctuation δf are [7,10]

∂f (J)

∂t
+ [H(J),f (J)] = −〈[δφ,δf (J)]〉, (19a)

∂δf (J)

∂t
+ [H(J),δf (J)] + [δφ,f (J)] = 0, (19b)

where φ is the smooth mean-field potential and δφ is its
fluctuation, and [H,B] = ∂H

∂J
∂B
∂w − ∂H

∂w
∂B
∂J are Poisson brackets

with action-angle variables as the canonical coordinates.

Since by construction ∂H/∂w = 0 and ∂f/∂w = 0, the
terms in Poisson brackets reduce to

[H,δf ] = ∂H
∂J

∂δf

∂w
= 	(J) · ∂δf

∂w
, (20)

[δφ,f ] = −∂δφ

∂w
· ∂f

∂J
. (21)

Substituting the above in Eq. (19) and averaging over
angles w,

∂f

∂t
= ∂

∂J
·
〈

δf
∂δφ

∂w

〉
, (22a)

∂δf

∂t
+ 	(J) · ∂δf

∂w
− ∂δφ

∂w
· ∂f

∂J
= 0, (22b)

where A represents the angle-averaging of A. From now on,
we disregard this notation and write A = A for simplicity,
but we emphasize that the equations from this point further
correspond to the angle-averaged quantities.

Observe that Eq. (22) have the same structure as their
homogeneous counterpart equation (9) identifying the action
J with the velocity v and the angle w with the spatial variable
r. The only difference appears in the second term of Eq. (22b)
in which the velocity v is substituted by the frequency of the
unperturbed orbit 	(J). Following then the same procedure
as the one described in the homogeneous case, we get the
Lenard-Balescu-type kinetic equation (with collective effects)
in action-angle variables [8,10],

∂f

∂t
= π (2π )dm

∂

∂J
·
∑
k,k′

∫
dJ′k

δ[k · 	(J) − k′ · 	(J′)]
|Dk,k′(J,J′,k · 	(J))|2

×
(

k · ∂

∂J
− k′ · ∂

∂J′

)
f (J,t)f (J′,t), (23)

where
1

Dk,k′(J,J′,ω)
=
∑
α,α′

�̂α(k,J)(ε−1)α,α′ (ω)�̂�
α′(k′,J′), (24)

and εαα′(ω) is the dielectric tensor

εαα′ (ω) = δαα′ + (2π )d
∑

k

∫
dJ

k · ∂f/∂J
k · 	(J) − ω

× �̂�
α(k,J)�̂α′ (k,J). (25)

The indices (α,α′) are labels for the biorthogonal basis
{ρα,�α}, where ρ(r) = ∫ f (r,v,t)dv, which satisfies [21]∫

u(|r − r′|)ρα(r′)dr′ = �α, (26)∫
ρα(r)��

α′(r)dr = −δα,α′ . (27)

The terms �̂α are the Fourier transforms of the potential in the
biorthogonal representation with respect to the angles,

�̂α(k,J) = 1

(2π )d

∫
dwe−ik·w�α(w,J). (28)

The Lenard-Balescu equation (23) gives the evolution of f due
to the inclusion of a finite-N correction to the collisionless
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(Vlasov) kinetic equation. From Eq. (23), we see that the
evolution, which slowly deforms the orbits of constant J, is
driven by resonances between orbital frequencies, k · 	(J) =
k′ · 	(J′). This differs from the homogeneous case, Eq. (18),
where f evolves due to the resonances v = v′.

Using the chain rule, the Lenard-Balescu-type equation (23)
can be written in the form of a Fokker-Planck equation,

∂f

∂t
=

d∑
i,j=1

∂2

∂Ji∂Jj

D
ij

dif(J,t)f (J,t) − ∂

∂J
· Df r (J,t)f (J,t),

(29)

where

D
ij

dif(J,t) = π (2π )dm
∑
k,k′

∫
dJ′kikj

1

|Dk,k′(J,J′,k′ · 	(J′))|2

× δ[k · 	(J) − k′ · 	(J′)]f (J′,t) (30)

is the diffusion coefficient and the friction coefficient is

Df r (J,t) = π (2π )dm
∑
k,k′

∫
dJ′f (J′) k

(
k

∂

∂J
− k′ ∂

∂J′

)

× δ[k · 	(J) − k′ · 	(J′)]
|Dk,k′(J,J′,k′ · 	(J′))|2 . (31)

The ith component of the friction coefficient (31) can also be
written as the sum of the derivative of the diffusion coefficient,
plus a polarization force [10],

Di
f r (J,t) = ∂

∂Ji

D
ij

dif(J,t) + Di
pol(J,t), (32)

where the i component of the polarization force is

Di
pol(J,t) = π (2π )dm

∑
k,k′

∫
dJ′kik′ 1

|Dk,k′(J,J′,k′ · 	(J′))|2

× δ[k · 	(J) − k′ · 	(J′)]
∂f (J′,t)

∂J′ . (33)

When collective effects are not considered, we have

εαα′ = δαα′ , (34)

and therefore the Landau equation is obtained using the bare,
undressed Fourier transforms of the potential,

1∣∣Dbare
k,k′ (J,J′,k′ · 	(J′))

∣∣2 = |�̂α(k,J)�̂�
α(k′,J′)|2. (35)

III. KINETIC EQUATIONS FOR THE HAMILTONIAN
MEAN-FIELD MODEL

We will compute explicitly the diffusion coefficients for the
HMF model. It is given by the Hamiltonian

H =
N∑

i=1

p2

2
− 1

2N

N∑
i,j=1

cos(θi − θj ). (36)

The energy of one particle can be written as

h(θ,p) = p2

2
+ φ(θ ) = p2

2
− 1

N

N∑
i=1

cos(θi − θ ). (37)

The potential φ(θ ) = −1/N
∑

i cos(θi − θ ) can be rewritten
as

φ(θ ) = −
∑N

i=1 cos θi

N
cos θ −

∑N
i=1 sin θi

N
sin θ

= −Mx cos θ − My sin θ, (38)

where M = (Mx,My) is the magnetization vector. Its modulus
quantifies how bunched, or clustered, the particles are. Shifting
all angles by a phase α = arctan(My/Mx), we can write
the potential simply as a function of the modulus of the
magnetization M ,

φ(θ�) = −M cos θ�, (39)

where θ� = θ − α and M = Mx =∑N
i=1 cos θ�

i . For simplic-
ity, henceforth we denote θ� as θ .

A. Action-angle variables

Inhomogeneous states of the HMF model have previously
been studied using action-angle variables in the case of Vlasov
stability [22,23]. We define our action angle variables in the
same way as these references. The action J is defined as

J = 1

2π

∮
pdθ

with p = √
2[h − φ(θ )], where energy h is the one-particle

energy and φ(θ ) is the mean-field potential, Eq. (39). The
potential can be fully specified with a single scalar quantity,
the modulus of the magnetization M . It is possible to write
simply and in a generic way an expression for the action which
depends only on the energy of the particle h and the adiabatic,
static magnetization M0 (see Appendix A),

J (κ) = 4
√

M0

π

{
2[E(κ) − (1 − κ2)K(κ)], κ < 1

κE
(

1
κ

)
, κ > 1

, (40)

where

κ =
√

h + M0

2M0
. (41)

The action J is discontinuous at the separatrix κ = 1, the
boundary between rotating and librating orbits (see Fig. 1).
Figure 2 shows the action as a function of κ and the
discontinuity at the separatrix.

The frequency 	(J ) is 	(J ) = ∂h/∂J . Due to the fre-
quency being noninjective in J , and J being a function of
elliptical integrals of κ , it is easier to treat all expressions
directly as a function of κ . We use the Jacobian ∂κ/∂J to
change variables,[

∂J

∂κ

]
= 4

√
M0

π

{
2κK(κ), κ < 1

K
(

1
κ

)
, κ > 1.

(42)

Thus the frequency is given by 	(J ) = (∂κ/∂J )(∂h/∂κ),

	(κ) = π
√

M0

{
1

2K(κ) , κ < 1
κ

K( 1
κ ) , κ > 1

. (43)

The explicit expressions for the action-angle variables is a
great advantage of the HMF model for the investigating
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θm

θ

p 0

0

3

2

1

−3

−2

−1

− ππ

FIG. 1. Examples of a librating orbit (red solid line), for which
κ < 1, a rotating orbit (blue dotted line), for which κ > 1, and the
separatrix orbit (green dashed line), for which κ = 1. For the librating
orbit, θm = arccos(1 − 2κ2), while for the other orbits θm = π .

inhomogeneous states. For most systems, this is not possible,
a few exceptions in astrophysics being spherical potentials and
flat axisymmetric potentials such as razor-thin and tepid disks,
as well as some nonaxisymmetric potentials such as Stäckel
potentials [18].

B. Kinetic equations

For the HMF model, the pair potential u(θ − θ ′) =
− cos(θ − θ ′) can be written in the two-dimensional
biorthogonal representation as �c = − cos[θ (w,κ)] and �s =
− sin[θ (w,κ)], and its Fourier transforms are

�̂c(m,κ) = −cm(κ) = −1

2π

∫ π

−π

cos[θ (w,κ)]e−imwdw,

(44)

�̂s(m,κ) = −sm(κ) = −1

2π

∫ π

−π

sin[θ (w,κ)]e−imwdw.

These can be written more simply as (see Appendix B)

cn(κ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π2

K(κ)2
|n|q(κ)|n|/2

1−q(κ)|n| κ < 1, n even,

0 κ < 1, n odd,

2π2κ2

K( 1
κ )2

|n|q( 1
κ )|n|

1−q( 1
κ )2|n| κ > 1,

(45)

√√
M0

4
√√

M0
π

4
√√

M0
π

8
√√

M0
π

8
√√

M0
π

J

Jκ

κΩ

0

1

1

FIG. 2. Action as a function of κ for the HMF model (left), and
frequency 	 versus J (inset: 	 vs κ) (right) for the HMF model.

and

sn(κ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 κ < 1, n even,

−i π2

K(κ)2
nq(κ)|n|/2

1+q(κ)|n| κ < 1, n odd,

−i 2π2κ2

K( 1
κ )2

nq( 1
κ )|n|

1+q( 1
κ )2|n| κ > 1, p > 0,

i 2π2κ2

K( 1
κ )2

nq( 1
κ )|n|

1+q( 1
κ )2|n| κ > 1, p < 0,

(46)

where q(k) = exp[−πK(
√

1 − k2)/K(k)]. To switch vari-
ables from J to κ , we use the Dirac δ identity δ[f (x)] =∑

x∗ δ(x − x∗)/|∂f/∂x|x∗ [where x∗ are the roots of f (x)].
Thus, the Lenard-Balescu equation for the HMF model is

∂f

∂t
= 2π2

N

∣∣∣∣∂J

∂κ

∣∣∣∣−1
∂

∂κ

∞∑
n,n′=−∞

∫
dκ ′n|∂J ′/∂κ ′|

|Dnn′(κ,κ ′,n	(κ))|2

×
∑
κ�

δ(κ ′ − κ�)∣∣n′ ∂	
∂κ ′
∣∣
κ�

(
n

∣∣∣∣∂J

∂κ

∣∣∣∣−1
∂

∂κ
− n′

∣∣∣∣∂J ′

∂κ ′

∣∣∣∣−1
∂

∂κ ′

)
× f (κ,t)f (κ ′,t), (47)

where κ� are the roots of the equation m	(κ) − m′	(κ ′) = 0,
the Jacobian |∂J/∂κ| is given by Eq. (42), and ∂	/∂κ is

∂	

∂κ
= π

√
M0

⎧⎨⎩
E(κ)+(κ2−1)K(κ)

2κ(κ2−1)K2(κ) , κ < 1,

κ2E( 1
κ )

(κ2−1)K2( 1
κ ) , κ > 1.

(48)

The associated diffusion coefficient is

Ddif(κ) = 2π2

N

∞∑
n,n′=∞

∑
κ�

n2|∂J/∂κ|κ�

|Dnn′(κ,κ�,n	(κ))|2
f (κ�,t)∣∣n′ ∂	

∂κ ′
∣∣
κ�

(49)

and the polarization coefficient is

Dpol(κ) = 2π2

N

∞∑
n,n′=−∞

∑
κ�

n n′

|Dnn′(κ,κ�,n	(κ))|2
∂f/∂κ ′|κ�∣∣n′ ∂	

∂κ ′
∣∣
κ�

.

(50)

Equation (24), which determines Dnn′ (κ,κ ′,ω), becomes

1

Dnn′(κ,κ ′,ω)
= cn(κ)cn′(κ ′)

εcc(ω)
− sn(κ)sn′(κ ′)

εss(ω)
. (51)

If collective effects are neglected, then εcc = εss = 1, and we
get simply

1

Dbare
nn′ (κ,κ ′)

= cn(κ)cn′(κ ′) − sn(κ)sn′(κ ′). (52)

If collective effects are not neglected, then it is necessary to
compute numerically the dielectric tensor, with the procedure
we detail below.

C. Numerical computation of the dielectric tensor

The cc and ss components of the dielectric tensor are

εcc(ω) = 1 + 2π

∞∑
�=−∞

∫ ∞

0
dκ

gcc
� (κ)

	(κ) − ω/�
(53)
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1

FIG. 3. Poles of integral in the dielectric tensor components (53)
and (54). For ω/� > 	0 (dash-dotted line), only one pole occurs (κ2),
while for 0 < ω/� < 	0 (dashed line), there are two (κ1 and κ2).

and

εss(ω) = 1 + 2π

∞∑
�=−∞

∫ ∞

0
dκ

gss
� (κ)

	(κ) − ω/�
, (54)

respectively, where, to simplify the notation, we have defined

gcc
� (κ) = |c�(κ)|2∂f/∂κ, (55a)

gss
� (κ) = |s�(κ)|2∂f/∂κ. (55b)

The off-diagonal terms, involving products of the type
cn(κ)sn′(κ ′), are zero after integration.

The integrals in Eqs. (53) and (54) must be performed
carefully due to the poles at ω = �	(κ). Poles can only
occur if � and ω are of the same sign. Moreover, the number
of poles depends on the value of ω, since 	(κ) can have
the same value at two different values of κ for 	(κ) < 	0

where 	0 = 	(0) = √
M0. Therefore, we distinguish among

the following cases (see Fig. 3):
(1) ω/� < 0: no poles;
(2) 0 < ω/� < 	0: one pole κ1 < 1 and one pole

at κ2 > 1;
(3) ω/� > 	0: one pole at κ2 > 1.
For each case, the integrals must be separated into different

regions. In all cases we separate between the regions κ ∈ (0,1)
and κ ∈ (1,∞), due to the different expressions of 	(κ),
cn(κ), and sn(κ) in the two domains. Therefore, for case 1,
the integrals in Eqs. (53) and (54) are∫

dκ
g

cc/ss

� (κ)

	(κ) − ω/�
=
∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�

+
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
. (56)

For case (2), we must use the Landau contour in both regions,∫
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
= P

∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ1

+P
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ2,

(57)

and, for case (3), only in the second region,∫
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
=
∫ 1

0
dκ

g
cc/ss

� (κ)

	(κ) − ω/�

+P
∫ ∞

1
dκ

g
cc/ss

� (κ)

	(κ) − ω/�
+ iπResκ2,

(58)

where P
∫

denotes the Cauchy principal value and Resx is the
residue of the integrand at x.

Equations (49), (51), (53), and (54), with 	(κ), sm(κ),
and cm(κ) determined by equations (43), (45), and (46),
respectively, enable us to calculate the diffusion coefficient
of the HMF model in action-angle variables, with collective
effects. The same can be done neglecting collective effects,
using the same equations with εcc = εss = 1. The inclusion
or exclusion of collective effects greatly affects the resulting
diffusion coefficient. This is shown in Fig. 6, where we present
diffusion coefficients considering a thermal bath,

f (κ,t) = C exp[−βM0(2κ2 − 1)], (59)

for two equilibrium configurations (β,M0), where C =√
β/(2π )3/I0(βM0) and In(z) is the nth-order modified Bessel

function of the first kind. For the numerical results, all sums
over n, n′, and � are truncated at nmax = 6 and �max = 6, re-
spectively (although normally nmax = 4 and �max = 2 suffice).

From the forms of equations of the diffusion coeffi-
cients (49), we see that the contributions to the diffusion of
a particle with a parameter κ come from its resonances with
particles of parameter κ�, where κ� and κ satisfy n	(κ) =
n′	(κ�) and n,n′ are integers. In order to see how each
resonance contributes to the diffusion coefficient, in Fig. 4 we
plot maps showing the normalized contribution of each term
in the κ� sum, for a given κ , for a thermal distribution function
corresponding to M0 = 0.05 (top) and M0 = 0.9 (bottom). In
other words, if we write the diffusion coefficient as

Ddif(κ) =
∑
κ�

γ (κ,κ�), (60)

then the color map shows γ (κ,κ�)/Ddif(κ).
In the highly inhomogeneous case, M0 = 0.9, almost all

the contribution comes from κ� < 1 (inside the separatrix).
This is mainly due to the distribution being highly clustered,
so most particles are below the separatrix. Consequently, for
most particles, the main contribution to their diffusion comes
from resonances with particles at their same frequency. This
is represented by the strong yellow line at κ� < 1. For the
almost-homogeneous case, M0 = 0.05, the particles are not
so clustered and so particles with κ� �= κ also contribute, as
demonstrated by the presence of other curves in the top panel.

D. Examples of numerical calculations

In this section we show the predictions for the diffusion
coefficients both including or neglecting collective effects.
Note that, near the separatrix (κ = 1), we do not plot the value
of the diffusion coefficient. This is because the calculation
becomes numerically unstable in this region. Indeed, the
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FIG. 4. Normalized contribution to the Lenard-Balescu diffusion
coefficient Ddif (κ), Eq. (49), as a function of κ�. Both panels
correspond to thermal equilibrium distributions but with different
magnetizations: (a) almost homogeneous, M0 = 0.05, and (b) highly
inhomogeneous, M0 = 0.9. In the latter case, most of the contribution
comes from resonances at κ� < 1.0 (below the separatrix), while for
the nearly homogeneous system this is not the case.

perturbative approach we have used may not be valid [24,25]
for particles crossing the separatrix. Since it does not seem to
play an important role in the diffusion, we neglect the point
κ ≈ 1. First, we notice that, as in the homogeneous case [15],
collective effects are very important in this system. To illustrate
this behavior, we plot the components of the dielectric tensor
in Fig. 5. We observe a characteristic frequency (materialized
by a “bump”) at a frequency of order n	0, with n = 1 for
sine perturbations and n = 2 for cosine ones. We observe that
collective effects are very important for frequencies ω � n	0

in this case, i.e., the modulus of the components of the dielec-
tric tensor differs considerably from 1. Inspecting the kinetic
equation (47), we see that this implies that for values of κ which
correspond to these frequencies (which correspond mainly to
librating particles) collective effects are important. However,
particles with larger frequencies do not present strong collec-
tive effects, because they have frequencies ω  	0 for which
the components of the dielectric tensor is close to 1.

This fact is apparent in the computation of the diffusion
coefficients for two different magnetizations shown in Fig. 6.
For both small magnetization (i.e., system very close to
homogeneity) as well as magnetization closer to 1, the
diffusion coefficients predicted by the Landau equation (no
collective effects) and the Lenard-Balescu equation (collective
effects) difrer completely except, as expected, for κ > 1,
which corresponds to particles with frequencies for which

Re[ cc]
Im[ cc]

Re[ ss]
Im[ ss]

| cc|

| ss|

ω/Ω0

0.0

0.0

0.0

1.0

1.0

0.5

1.5

2.0

2.0

2.0

3.0
−4.0
−2.0

4.0

4.0
6.0
8.0

10.0
12.0

FIG. 5. Cosine (top) and sine (bottom) components of the
dielectric tensor ε(ω), given by Eqs. (53) and (54), respectively.
The equilibrium parameters are (u,M0) = (−0.1,0.728). The vertical
lines show ω = 	0 and ω = 2	0.

the modulus of the components of the dielectric tensor tends
to 1.

E. Analytical results for highly magnetized states

It is possible to obtain analytical expressions for the
diffusion coefficients for highly magnetized configurations. In
this case, all the particles have κ < 1 and it suffices to perform
the sums in the kinetic equations up to |n| = |n′| = 2 to obtain
a good approximation to the dielectric tensor and the diffusion
coefficients. This implies that the position of the resonances are
κ� = κ , simply.2 If the system is less magnetized, then there are
resonances with particles which are outside the separatrix, and
in this case it is necessary to solve numerically the resonance
condition n	(κ) = n′	(κ∗). We will study the case in which
collective effects are neglected, and then when collective
effects are considered for two paradigmatic cases: a core-halo
distribution and a Maxwell-Boltzmann distribution. These two
distributions can be considered as prototypes of the two classes
of distributions which appears after the violent relaxation
process. When initial condition leads to a very “violent” violent
relaxation, it results in a core-halo quasiequilibrium, while
when the initial condition leads to a “gentle” violent relaxation,
a compact distribution similar to a Gaussian one forms [26].

2Note that in this approximation the flux associated with Eq. (23)
is zero, and hence f does not vary with time.
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FIG. 6. Diffusion coefficient Ddif (κ) for two different equilib-
rium configurations: (u,M0) = (−0.1,0.7285) (top) and (u,M0) =
(0.2475,0.0632) (bottom). Solid (red) lines show the diffusion
coefficient with collective effects, Eqs. (49) and (51), while the dashed
(blue) lines show the result without collective effects, Eqs. (49)
and (52). Both curves are cut off near κ = 1 due to numerical
instability at the separatrix.

1. Without collective effects

When collective effects are neglected, εcc = 1 and εss = 1,
a very good approximation is given by taking only the first term
of Eqs. (49) and (50) (taking higher terms is straightforward).
We obtain therefore

Ddif(κ) =
4π8κ2(1 − κ2)sech4

[
πK(

√
1−κ2)

2K(κ)

]
NK(κ)5[(κ2 − 1)K(κ) + E(κ)]

f (κ), (61a)

Dpol(κ) =
π9κ(κ2 − 1)sech4

[
πK(

√
1−κ2)

2K(κ)

]
2N

√
M0K(κ)6[(κ2 − 1)K(κ) + E(κ)]

∂f

∂κ
(κ).

(61b)

If M0 is very close to 1, then most of the particles have
small κ . It is possible to expand Eq. (61) around κ = 0, giving
the following simple results:

Ddif(κ) = 1

N
[32π2κ4 + O(κ6)]f (κ), (62a)

Dpol(κ) = 1

N
√

M0
[8π2κ3 + O(κ5)]

∂f

∂κ
(κ). (62b)

2. With collective effects

We will first consider the core-halo distribution. It can be
modeled by the sum of two step functions,

fch(κ) = η1�[μ1 − h] + η2�[μ2 − h], (63)

where we have assumed that μ1 and μ2 corresponds to the
energy of particles which are inside the separatrix. Using the
definition of h = M0(2κ2 − 1), we can express Eq. (63) as a
function of κ

fch(κ) = η1�
[
2M0

(
κ2

1 − κ2
)]+ η2�

[
2M0

(
κ2

2 − κ2
)]

, (64)

where κi = √
μi/M0 + 1 and κ1 < 1 and κ2 < 1.

Computing the dielectric tensor is straightforward because
the derivative of fch about κ involves Dirac δ functions:

∂fch

∂κ
= −2κM0

{
η1δ
[
M0
(
κ2

1 − κ2)]+ η2δ
[
M0
(
κ2

2 − κ2)]}.
(65)

The dielectric tensor is purely real, and it can be calculated
inserting Eq. (64) into Eqs. (53) and (54):

εcc/ss(ω) = 1 + 2π

∞∑
�=−∞

{
g

cc/ss

� (κ1)

	(κ1) − ω/�
+ g

cc/ss

� (κ2)

	(κ2) − ω/�

}
+ (ω → −ω), (66)

where (ω → −ω) means to sum the same expression with
ω replaced by −ω. Using Eqs. (49) and (50) with Eq. (64)
and κ∗ = κ , it is straightforward to compute the diffusion
coefficients.

It is interesting to compare the diffusion coefficients for
an idealized core-halo distribution (64) with a more realistic,
smoother version of it, which is the kind of distribution we
simulated (see Sec. IV):

fch∗
i
(h) = η1

1 + exp[β1(h − μ1)]
+ η2

1 + exp[β2(h − μ2)]
.

(67)

For a given mean energy u and magnetization M0, plus
the normalization constraints, three of the six parameters
η1,η2,β1,β2,μ1,μ2 are determined. We have chosen the coef-
ficients η1 = 0.298, η2 = 0.05, μ1 = −0.517, and μ2 = 0.19
for i = 1,2; β1 = 70 and β2 = 70 for i = 1; and β1 = 30
and β2 = 10 for i = 2. As the coefficients βi increase, the
step functions become steeper. We observe in the top row of
Fig. 7 that for the steeper case ch∗

1 the two-step core-halo (64)
describes very well both the components of the dielectric
tensor and the diffusion coefficient. For the softer case ch∗

2,
we observe a correct agreement for the components of the
dielectric tensor for most of the frequencies. The disagreement
is responsible for the differences observed in the diffusion
coefficient for some ranges of κ .

For the case of distributions like the Maxwell-Boltzmann
one, the main difficulty consists of computing the dielectric
tensor. It is possible to do it analytically for a wide class of
functions taking the advantage that if M0 → 1, most of the
particles have small κ . We can thus expand in Taylor series the
different quantities which appear in the kinetic equations. We
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FIG. 7. [(a)–(c)] Comparison of the approximate expressions (C1) and (C2) and the diffusion coefficient for a core-halo system (see text
for details), and [(d)–(f)] the same quantities at Maxwell-Boltzmann equilibrium for magnetization M0 = 0.95.

need therefore (valid for κ � 1):

J (κ) = 2
√

M0κ
2 + O(κ4), (68a)

	(κ) =
√

M0

[
1 − κ2

4
+ O(κ4)

]
, (68b)

c2(κ) = κ2

2
+ O(κ4), (68c)

s1(κ) = −iκ + O(κ3). (68d)

The components of the dielectric tensor can be approxi-
mated as

εcc(ω) � 1 + π

2

∫ 1

0
dκ

κ4∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω/2
+ (ω → −ω),

(69a)

εss(ω) � 1 + 2π

∫ 1

0
dκ

κ2∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω
+ (ω → −ω).

(69b)

Taking as the distribution function the thermal equilibrium
one (59), the integrals can be expressed in terms of trigono-
metric and exponential integrals (for the explicit expressions,
see Appendix C). Using the approximations (C1) and (C2)
and the terms of Eqs. (49) and (50) corresponding to n and n′
taking the values from −2 to +2 we get, for large M0, a lengthy
but analytical approximation (which we do not explicitly write
here) of the diffusion coefficients which is very accurate for
M0 close to 1. In the bottom row of Fig. 7 we show the diffusion
coefficients for M0 = 0.95.

IV. COMPARISON WITH SIMULATIONS

The previous subsection presents the application of the
kinetic equations to the HMF model. In order to compare
those analytical results with the Hamiltonian dynamics of the
N -body system, we use molecular dynamics, integrating the
equations of motion of N particles and tracking their orbits
through time.

In order to compare the theoretical results with simulation
we adopt the point of view of the Fokker-Planck equation. The
idea is to study a test particle evolving in a field composed of
the other particles. The effect of the field on the test particle
is taken into account by the diffusion and friction coefficients.
The mean-field properties of the field evolve adiabatically
compared to the time scale of the fluctuations which lead to the
test particle’s relaxation. In the case of the HMF model, this
means that the field’s magnetization is M = M0 + δM , where
M0 evolves very slowly compared to δM . The test particle’s
base orbit is thus determined by M0, whereas the fluctuations
δM drive its relaxation. The collective effects represent the
reaction of the field to its own perturbations, that is, the field
particles are also affected by δM . If we disregard collective
effects, the field particles should evolve subject only to the
mean magnetization M0. Therefore, a possible way of testing
the importance of collective effects in the HMF model is to
simulate two types of N -body dynamics.

The first, which we will refer to as “MD(bath),” is a
dynamics without collective effects. The system is composed
of Nb particles which form a thermal bath and evolve with
the adiabatic, static magnetization M0 (corresponding to the
smooth potential),

θ̈i
b = −M0 sin θi, i = 1, . . . ,Nb (70)
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FIG. 8. Variation of J 2, Eq. (75), as a function of time for different
values of J0 and different thermal distributions. Points are molecular
dynamics results of the regular HMF model and lines are linear fits.
For longer times, the diffusion becomes sublinear.

and Ntp independent test particles which evolve under the
potential due to the oscillating magnetization of the bath
particles,

θ̈i
tp = −Mb

x sin θi + Mb
y cos θi, i = Nb + 1, . . . ,Nb + Ntp

(71)

Mb
x = 1

Nb

Nb∑
i=1

cos θi, Mb
y = 1

Nb

Nb∑
i=1

sin θi .

The bath particles are set up with any initial positions and
velocities corresponding to the Vlasov-stable distribution for
which we want to measure the diffusion coefficients, e.g., (59)
or (67). We detail the procedure for the former case: The
initial particle positions and velocities must be distributed

according to

feq(θ,p) =
√

β

(2π )3
I−1

0 (βM0) exp

[
−β

(
p2

2
− M0 cos θ

)]
.

(72)

For each M0, β must be determined self-consistently by

M0 = I1(βM0)

I0(βM0)
. (73)

Second, we simulate the full N -body simulation of the HMF
model—hence with collective effects—which we shall refer to
as “MD(full).” All N particles in the system evolve according
to

θ̈i = −Mx sin θi + My cos θi, i = 1, . . . ,N
(74)

Mx = 1

N

N∑
i=1

cos θi, My = 1

N

N∑
i=1

sin θi .

We have seen from the analytical calculations that collective
effects are important in the HMF model. Therefore, these
two N -body methods should result in very different diffusion
coefficients. We measure the diffusion coefficients of test
particles as follows: First, we calculate the initial action Ji(t0)
of each test particle—or simply each particle, in the case of
MD(full)—and separate them accordingly into L bins of size
�J0. Then we calculate the mean-square variation of J for
each J0 as a function of �t ,

〈δJ 2〉� = 1

N�

N�∑
i=1

[Ji(t0 + �t) − J0]2, � = 1, . . . ,L (75)

where the sum, for each bin �, is over all N� particles
with J (t0) ∈ [(� − 1/2)�J0,(� + 1/2)�J0). The diffusion

LandauLandauLandau
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FIG. 9. Diffusion coefficients calculated by molecular dynamics, Eq. (76), compared to the theoretical results, for an equilibrium distribution
with parameters (a) (u,M0) = (−0.2,0.816), (b) (u,M0) = (0.0,0.622), and (c) (u,M0) = (0.2475,0.06). On the bottom, MD simulations without
collective effects with the prediction of the Landau equation (49). On the top, MD simulations with collective effects with the theoretical curve
predicted by the Lenard-Balescu (Len-Bal) equation, using condition (34), and the molecular dynamics given by the regular HMF model,
MD(full). The gray vertical line represents the separatrix.
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FIG. 10. Diffusion coefficients for a system in a “core-halo”
type distribution, given by Eq. (67). On the top, without collective
effects: simulation of test particles interacting with the distribution
[MD(bath)] and the theoretical curve (Landau). The gray vertical line
represents the separatrix. On the bottom, MD simulation results of
the regular HMF [MD(full)] with the theoretical curve with collective
effects (Len-Bal). The parameters for the distribution are β1 = 30,
β2 = 10, η1 = 0.298, η2 = 0.051, μ1 = −0.517, and μ2 = 0.19,
which gives M0 = 0.8.

coefficient for a given J0 (or, equivalently, for a given bin �),
is half of the slope of the linear part of the curve 〈δJ 2(�t)〉�,

DMD
dif (J0) = 〈δJ 2〉�

2�t
. (76)

For some values of J0, care must be taken to calculate
the coefficient in the full HMF molecular dynamics: If the
magnetization is sufficiently high, then there are little to no
particles for higher values of J0. Therefore, to calculate the
coefficient in these regions, we simulate the dynamics of test
particles with high J0 that interact with the full HMF.

Examples of the linear fit are shown in Fig. 8, for two
values of J0. Typically, the fit is done over a time range of
t ∈ [100,500], although this may vary depending on the value
of J0 and M0. On average, choosing different time ranges does
not greatly affect the outcome. For the fits, we took averages
of 〈δJ 2(�t)〉� over many time intervals of the dynamics, that
is, for many values of t0. Typically, we used 100 intervals.

In Fig. 9, we compare the molecular dynamics results with
the kinetic theory diffusion coefficients for systems in thermal
baths.3

The top panels show the case without collective effects
[MD(bath)] and the Landau diffusion coefficient calculated

3For clarity, in the plots of the diffusion coefficients in which the
abscissa is the action, we use instead a rescaled action J̄ ,

J̄ =
{
J/2 κ < 1
J κ > 1

.

with (49) and (34), while the bottom panels show the case with
collective effects [MD(full)] and the Lenard-Balescu diffusion
coefficient (49). Each kind of simulation has been performed
with N = 500 000 particles, except for the lowest magnetiza-
tion case, which was performed with N = 1 000 000. We see
that for magnetizations not close to zero [Figs. 9(a) and 9(b)]
the MD fit matches very well the result from the corresponding
kinetic equation. In the case of magnetization close to zero
[Fig. 9(c)] the match is only reasonably good. This can be
explained because in this case the linear diffusion regime is
very short and, consequently, the fluctuations larger.

We test also the theoretical results for a core-halo distri-
bution ch∗

2 equation (67). For both without collective effects
(top) and with collective effects (bottom), the results match
very well, see Fig. 10.

V. CONCLUSION

In this paper we have studied the diffusion coefficients
corresponding the collisional relaxation in the inhomogeneous
HMF model. To perform these calculations we have used the
Landau and the Lenard-Balescu equations expressed in action-
angle variables. We have described precisely how to perform
the calculations and showed that the diffusion coefficients can
be easily computed in a very reduced computer time with high
precision. Moreover, we have given analytical expressions for
the dielectric tensor and the diffusion coefficients for systems
with magnetization close to 1, which agree very well with the
exact ones.

One of the conclusions of the paper is that, for the cases for
which we have calculated the diffusion coefficients, collective
effects are very important in the dynamics independently of
how much the system is clustered (i.e., magnetized). We note
that this is also the case in the homogeneous case [15].

We have also studied which particles “talk to each other”
in the collisional relaxation process. For highly clustered
systems (i.e., magnetization close to one), the contribution of
the relaxation of a given particle comes almost exclusively
from particles in the same orbit (i.e., with the same κ).
This is a similar behavior than in the homogeneous case,
for which it is simple to show that for any long-range
one-dimensional system the contribution for the relaxation
comes from particles with the same velocity [17]. As the
system becomes less clustered, the situation becomes more
complicated, and particles in different orbits start to “interact”
with one another (see Fig. 4).

In order to test the theoretical predictions, we have com-
puted numerically the diffusion coefficients using molecular
dynamics simulations. To check our calculations when the
collective effects are neglected, we have set up a simple method
to perform simulations in which collective effects are absent.
We have found a very good agreement between the theoretical
calculations and the simulations both for the dynamics with
and without collective effects. We have performed these tests
for baths at Maxwell-Boltzmann equilibrium as well as out of
equilibrium (core-halo distributions).

The next natural step of this work is to use the diffusion
coefficients to compute the whole evolution of the HMF model
up to thermalization. With the methods developed in the paper,
it is a relatively simple task to compute the evolution with the
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Landau or the Lenard-Balescu equation. The magnetization
should be computed self-consistently at each time step and then
the diffusion coefficient. We stress that the evolution of Eq. (47)
could present interesting features because it is nonlinear. This
subject will be presented in a forthcoming paper.

We note also that the analytical expressions for the dielectric
tensor can be used to study analytically the stability and the
mean-field evolution of the HMF model for highly clustered
states, computing in an appropriate but straightforward way
the pole contributions to the dielectric tensor (see Ref. [22] for
a detailed study on the subject).

The extension of our calculations to more complicated inter-
actions, e.g., one-dimensional gravity, is in principle feasible.
There are, however, two complications to the calculations
compared to the HMF model: first, the biorthogonal basis is
not constituted by only two functions but by a infinite number
of them. There is, however, the hope that with a suitable choice
of family of functions for a given shape of the QSS a reduced
number of elements of the basis is sufficient to obtain a good
accuracy in the calculations, similarly to the case studied in
Refs. [27,28]. Second, we do not expect to have an analytical
expression for the Fourier transform of the angle of the element
of the basis [Eq. (44)]. These calculations should be performed
numerically, which is feasible with a modest computer.
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APPENDIX A: ACTION-ANGLE VARIABLES
OF THE PENDULA

In this Appendix, we present action-angle variables for a
pendulum with the Hamiltonian

h(θ,p) = p2

2
− M0 cos θ, (A1)

using the same conventions as Refs. [22] and [29]. The action
J is given by

J = 1

2π

∮
pdθ. (A2)

If the energy h is greater than the magnetization M0, then
the orbit is rotating: Its momentum will never reach zero.
In such cases, the integration over θ will only go from −π

to π , for positive momentum, or π to −π , for negative
momentum. For librating orbits, which have energy h less
than the magnetization M0, the orbit completes a loop in phase
space (see Fig. 1 in the main text), reaching zero momentum

at the extreme value of θ , ±θm. The integration starts with
positive momentum at −θm and then goes to θm and then back
to −θm with negative momentum. The action is thus given by

J = 1

2π

{
2
∫ θm

−θm

√
2(h + M0 cos θ )dθ h < M0,∫ π

−π

√
2(h + M0 cos θ )dθ h > M0.

(A3)

Using the transformation x = θ/2 and cos θ = 1 −
2 sin2(θ/2), Eq. (A3) can be written as

J = 4
√

M0

π

⎧⎨⎩2
∫ θm

2
0

√
κ2 − sin2 xdx κ < 1,

κ
∫ π

2
0

√
1 − 1

κ2 sin2 xdx κ > 1,

(A4)

where

κ =
√

h + M0

2M0
(A5)

and θm = 2 arcsin(κ). For κ > 1, the integral in Eq. (A4) is
the complete Legendre elliptic integral of the second kind
E(1/κ) = E(π/2,1/κ), where

E(φ,k) =
∫ φ

0

√
1 − k2 sin2 θdθ, k < 1. (A6)

For κ < 1, switching variables with sin θ = κ sin x, the corre-
sponding integral in Eq. (A4) becomes∫ θm/2

0

√
κ2 − sin2 xdx = E(κ) − (1 − κ2)K(κ), (A7)

where K(k) is the complete elliptic integral of the first kind,

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

. (A8)

Therefore, the action is

J =
{

8
√

M0

π
[E(κ) − (1 − κ2)K(κ)], κ < 1,

4
√

M0

π
κE
(

1
κ

)
, κ > 1.

(A9)

The angle variables, w, satisfy [20]

w = 	t, (A10)

where 	 = ∂h/∂J is the angular frequency and t is the time
of the pendulum at position θ ,

t =
∫ θ

0

dθ ′
√

2(h + M0 cos θ ′)
. (A11)

Integrating
∫

dt = ∫ dθ/p(θ,κ) gives

t(θ,κ) = 1√
M0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (φ,κ) κ < 1, p > 0,

2K(κ) − F (φ,κ) κ < 1, p < 0,

1
κ
F
(

θ
2 , 1

κ

)
κ > 1, p > 0,

1
κ
F
(

θ
2 , 1

κ

)
κ > 1, p < 0,

(A12)
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where φ = arcsin ( 1
κ

sin θ
2 ). Multiplying by 	(κ) as given by

Eq. (43), we find the angle variables

w = π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (φ,κ)
2K(κ) κ < 1, p > 0,

1 − F (φ,κ)
2K(κ) κ < 1, p < 0,

F

(
θ
2 , 1

κ

)
K( 1

κ ) κ > 1, p > 0,

−F

(
θ
2 , 1

κ

)
K( 1

κ ) κ > 1, p < 0.

(A13)

APPENDIX B: ELLIPTIC IDENTITIES FOR
FOURIER TRANSFORMS

In this appendix, we show how to obtain the expressions
for the Fourier transforms of the orthogonal components of
the potential, proportional to cn(κ) and sn(κ) [Eq. (44)], as
obtained in Ref. [29]. First, we must find cos[θ (w,κ)] and
sin[θ (w,κ)] as functions of w and κ directly. These can be
obtained from the angle variable (A13), which depends on θ

through incomplete elliptic integrals [22]. For the incomplete
elliptic integral of the first kind F (α,k), α can be expressed
in terms of the Jacobi elliptic functions sn(u,k), cn(u,k), and
dn(u,k). In particular, if F (α,k) = u, then sin α = sn(u,k).
Applying to Eq. (A13) gives

cos[θ (w,κ)] =
{

1 − 2κ2sn2
[ 2K(κ)w

π
,κ
]

κ < 1,

1 − 2sn2
[

K(1/κ)w
π

,1/κ
]

κ > 1,
(B1)

and

sin[θ (w,κ)]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2κsn

[ 2K(κ)w
π

,κ
]
dn
[ 2K(κ)w

π
,κ
]

κ < 1,

2sn
[K( 1

κ
)w

π
, 1
κ

]
cn
[K( 1

κ
)w

π
, 1
κ

]
κ > 1, p > 1,

−2sn
[K( 1

κ
)w

π
, 1
κ

]
cn
[K( 1

κ
)w

π
, 1
κ

]
κ > 1, p < 1,

(B2)

where the properties sn2(u,k) + cn2(u,k) = 1 and dn(u,k) =√
1 − k2sn2(u,k) were used. Finally, (B1) and (B2) can be

expressed in terms of the following expansions involving the
elliptic functions [30],

sn2(u,k) = K(k) − E(k)

k2K(k)

− 2π2

k2K(k)2

∞∑
n=1

nq(k)n

1 − q(k)2n
cos

πnu

K(k)
, (B3)

sn(u,k)dn(u,k) = 2π2

kK(k)2

∞∑
n=1

(
n − 1

2

)
q(k)n− 1

2

1 + q(k)2n−1

× sin
π
(
n − 1

2

)
u

K(k)
, (B4)

sn(u,k)cn(u,k) = 2π2

k2K(k)2

∞∑
n=1

nq(k)n

1 + q(k)2n
sin

πnu

K(k)
, (B5)

where q(k) = exp[−(
√

1 − k2)/K(k)].
To find cn(κ) and sn(κ), the above expansions should be

applied in the equations for cos[θ (w,κ)] and sin[θ (w,κ)]. This
gives the results of Eqs. (45) and (46).

APPENDIX C: DIELECTRIC TENSOR FOR A
MAXWELL-BOLTZMANN DISTRIBUTION FOR M0 → 1

Taking as the distribution function the thermal equilibrium
one (59), the components of the dielectric tensor can be
approximated as

εcc(ω) � 1 + π

2

∫ 1

0
dκ

κ4∂fMB/∂κ√
M0
(
1 − κ2

4

)− ω/2
+ (ω → −ω)

= 1 + 16πβC(ω − 2
√

M0)2α1[Ei(x1) − Ei(x2)]√
M0

+ 2πC[α2 sinh(βM0) − βM0 cosh(βM0)]

βM
3/2
0

+ i
16π2bC(w − 2

√
M0)2α1�

(√
M0 − w

2

)
�(ω)√

M0

+ (ω → −ω). (C1)

εss(ω) � 1 + 2π

∫ 1

0
dκ

∂f/∂κ√
M0
(
1 − κ2

4

)− ω
κ2 + (ω → −ω)

� 1 + 64π
sinh(bM0)√

M0

− 64πb(
√

M0 − w)α3[Ei(x3) − Ei(x4)]

+ i16π3bC(
√

M0 − w)α3�(
√

M0 − w)�(ω)

+ (ω → −ω), (C2)

where α1 = e4β
√

M0ω−7βM0 , α2 = −4β
√

M0ω + 9βM0 + 1,
α3 = e8b

√
M0w−7bM0 , x1 = 6βM0 − 4β

√
M0ω x2 = 8βM0 −

4β
√

M0ω, x3 = 8b(M0 − √
M0w), x4 = 6bM0 − 8b

√
M0w,

�(x) is the Heaviside step function and (ω → −ω) to sum to
the expressions written the same with ω replaced by −ω.
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