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Dynamics and thermodynamics of systems with long-range dipole-type interactions
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A Hamiltonian mean field model, where the potential is inspired by dipole-dipole interactions, is proposed
to characterize the behavior of systems with long-range interactions. The dynamics of the system remains in
quasistationary states before arriving at equilibrium. The equilibrium is analytically derived from the canonical
ensemble and coincides with that obtained from molecular dynamics simulations (microcanonical ensemble) at
only long time scales. The dynamics of the system is characterized by the behavior of the mean value of the
kinetic energy. The significance of the results, compared to others in the recent literature, is that two plateaus
sequentially emerge in the evolution of the model under the special considerations of the initial conditions and
systems of finite size. The first plateau decays to a different second one before the system reaches equilibrium,
but the dynamics of the system is expected to have only one plateau when the thermodynamics limit is reached
because the difference between them tends to disappear as N tends to infinity. Hence, the first plateau is a type
of quasistationary state the lifetime of which depends on a power law of N and the second seems to be a true
quasistationary state as reported in the literature. We characterize the general behavior of the model according to
its dynamics and thermodynamics.
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I. INTRODUCTION

Systems with long-range interactions are very common in
nature. They are observed from the atomic scale to the astro-
nomical scale and exhibit anomalies, such as inequivalence
of ensembles, negative heat capacity, ergodicity breaking,
nonequilibrium phase transitions, quasistationary states, and
anomalous diffusion [1–4]. These anomalies are exacerbated
when special initial conditions are imposed [4]. The canonical
ensemble in statistical mechanics does not explain the molec-
ular dynamics on a short time scale, although it proves to be
correct on a larger canonical and microcanonical time scales,
where the phase diagrams overlap at equilibrium only.

An intriguing model used to characterize systems with
long-range interactions is the Hamiltonian mean field (HMF)
model [4,5], in which properties become axiomatic and perti-
nent. This characterization also appears to be shared by other
systems of this type. The existence of quasistationary states
(QSS) before reaching equilibrium constitutes a fingerprint
of systems with long-range interactions. The behavior of
the kinetic energy and other thermodynamic observables are
partly used to characterize the QSS in physical models and
systems [5,6].

Lynden-Bell statistics [6] approaches the general behavior
of long-range interacting systems such as the HMF model [1].
The theory proposes that systems with long-range interactions
can be trapped in QSS, unlike systems with short-range
interactions, which are going directly to equilibrium. Such
a description is based on Vlasov dynamics, which preserves
the hypervolume of phase-space density levels, and the
distribution functions are the solutions of the Vlasov equation.
The construction of Lynden-Bell statistics is similar to the
Boltzmann theory, but instead of working with particles, a
type of Fermi-Dirac distribution is used for the phase-space
density levels, which includes the single-particle energy and
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the phase-space density of the initial distribution. Additionally,
Lynden-Bell statistics requires the existence of ergodicity and
mixing properties, similar to the usual statistical mechanics,
which are not valid for systems with long-range interactions
where those properties are not upheld.

The primary motivation of this study is to help envision
potential future applications in nanoscience and nanotech-
nology involving systems of rotors mounted on surfaces or
inside solids. Most molecular rotors have been studied in
solution. After all, the rotor molecules synthesis and their basic
characteristics such as rotational barriers are nearly always
established in solution before mounting them on surfaces or
examining them inside solids [7]. Besides, to many authors, the
investigation of molecular rotors freely floating in a solution
is in itself a fascinating topic [7,8]. In this regard, families of
HMF models may have a favorable outlook. Nevertheless,
a variety of molecular systems that can exhibit controlled
rotational motion [9] have been created. In the development of
such systems, the key step is the addition of communication
between molecules in a network. Therefore, the total energy
of the rotor network, for the observed synchronized rotation
mechanism, is analyzed through a model that is described by
energy terms composed of the internal rotational kinetic en-
ergy, the dipole energy, the external field energy, the structural
energy including the dispersion interactions in the network,
and the thermal energy corresponding to a specific substrate
temperature [9]. We approach the model by taking into account
two terms in a Hamiltonian, namely, the classical rotational
energy and dipole potential in the mean field approximation.

Previous studies discuss some interesting systems related
to charges, spins, rotors, and dipoles, such as charged par-
ticles [10] and noninteracting dipoles [11] in an external
magnetic field, long-range interactions in a type of Ising
model, and other generalized models [12,13]. The present
work focuses on rotor-rotor interactions that depend on the
orientation of dipoles in the mean field approximation. The
main aim is to characterize the dynamics and thermodynamics
of systems with long-range interactions based on the dipole-
dipole potential energy [7].
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For several years, the Ising model has been considered
the most relevant tool for studying magnetic properties
and the statistical behavior of many-body systems. Great
efforts have been made to propose several variations of the
Ising model, especially for the theoretical and numerical
modeling of systems with long-range interactions [1,3], which
encompasses the family of HMF models [4]. We propose a
model based on the dipole-dipole interaction to search for
new properties that are general to these types of models.
We use the canonical ensemble to calculate the free energy,
magnetization, and internal energy at the equilibrium. Using
numerical simulation we characterize the mean kinetic energy,
distributions, caloric curve, and the diffusion law through the
mean square of displacement.

The paper is organized as follows. In Sec. II, we introduce
an HMF model (that we call d-HMF) to study systems with
long-range interactions. In Sec. III, we analytically solve the
statistics of the system in the canonical ensemble and show
the behavior of the system in the microcanonical ensemble
through molecular dynamics simulations. We also introduce
some diffusion properties of the system. Finally, Sec. IV
summarizes the results and presents the conclusions.

II. THE MODEL

For theoretical and numerical modeling of systems with
long-range interactions, we consider a system of N identical,
coupled, dipole-type particles with a mass equal to 1. The
dynamics evolves in a periodic cell described by a one-
dimensional, dipole-type, HMF model (d-HMF) given by

H =
N∑

i=1

p2
i

2
+ ε

2N

N∑
i �=j

[cos(θi − θj )

− 3 cos θi cos θj − �i,j ], (1)

where the variable pi represents the momentum of the particle
i, and θi represents its corresponding angle of orientation
(integer i ∈ [1,N ] for the system size N ). The parameters ε and
�i,j denote the coupling and initial conditions, respectively.
The parameter �i,j suitably establishes the zero of the potential
energy as

�i,j = cos(θ0i − θ0j ) − 3 cos θ0i cos θ0j , (2)

where the set of angles {θ0k} denotes the initial orientations
of the particles. The interaction coupling is rescaled by the
number of particles to make the potential thermodynamically
extensive [12–14]. The system is ferromagnetic if the coupling
ε is positive and antiferromagnetic if it is negative. The equilib-
rium state can be exactly derived but the QSS are not standard
and cannot be exactly obtained from the theory. Numerical
methods have become an acceptable tool for the study and
characterization of these anomalies. Following a previous
line of research, we describe the behavior of a dipole in a
uniform magnetic field [11]. However, the current discussion
shows some details related to these interactions. The spin
vector related to each particle is given by −→

m i = (cos θi, sin θi).
Therefore, we can introduce the total spin vector

−→
M = 1

N

N∑
i=1

−→
m i = (Mx,My) = M exp(iφ), (3)

where (Mx,My) and M are the components and the modulus

of the vector
−→
M , respectively, and φ denotes the phase of the

order parameter. The equation of motion is

ṗi = −ε

2
(2Mx sin θi + My cos θi) (4)

and the potential can be written as

V = −N
ε

2

(
2M2

x − M2
y + �

)
, (5)

where � = ∑
i,j �′

i,j with �′
i,j = �i,j /N

2 and defines the
zero of the energy.

III. DISCUSSION

In this section, we discuss analytical and numerical results
that characterize the present model. In Sec. III A, an analytical
approach in the canonical ensemble that corresponds to the
equilibrium of the system is obtained. In Sec. III C, numerical
simulations in the microcanonical ensemble are carried out
through molecular dynamics. The evolution of the system is
characterized by two time intervals of QSS. In Sec. III D,
the obtained dynamical intervals are typified by anomalous
diffusion.

A. The equilibrium

In the canonical ensemble, the partition function is

Z(β,N ) =
∫

dNpi d
Nθie

−βH = ZK (β,N )ZV (β,N ), (6)

where ZK (β,N ) is the kinetic part of the integral and ZV (β,N )
is the interacting part. Therefore, if {θ0,i = 0} for all i,

ZK (β,N ) =
∫

dNpi exp

(
−β

2

∑
i

p2
i

)
=

(
2π

β

)N/2

. (7)

Considering both the real and complex Hubbard-Stratonovich
transformations [16,17], we obtain

ZV (β,N ) =
√

βεN

π
e

�
2 βεN

∫ ∞

−∞
dx e−βεNx2

I0(2βεx)N, (8)

where Ik(y) is the kth-order modified Bessel function. This
integral can be evaluated using the saddle point method in the
thermodynamic limit for N → ∞. The free energy per particle
ϕ is given by

ϕ(β,N ) = 1

2
ln

β

2π
− �

2
εβ + inf

x�0
[−βεx2 + ln I0(2βεx)].

(9)
The solution of the extremal is obtained by

x = I1(2βεx)

I0(2βεx)
. (10)

The procedure is specific to this problem because it includes
the complex Hubbard-Stratonovich transformation [16,17],
although it is also partly analogous to the HMF model. The
critical temperature is Tc = 1, which is twice that obtained for
the HMF model. The clustered phase is found for T < Tc, and
the homogeneous phase occurs for T > Tc. If ε < 0, then the
equation has a trivial solution, x = 0. In contrast, if ε > 0, then
the equation has a set of values for x and β, which define the
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FIG. 1. Equilibrium magnetization as a function of internal
energy U . Simulation data (triangles) and the analytical solution
(solid line) from Eq. (11) are shown. The size of the simulated systems
is N = 4000 and the averages are made for 100 samples.

solution of the problem. Finally, the internal energy per particle
is obtained as a function of the temperature and magnetization:

U = ∂ϕ(β,N )

∂β
= 1

2β
− �

2
− M2, (11)

where M is the solution of the extremal problem and
corresponds to the solution that we derive from the canonical
ensemble. Thus, we obtain a solution by simulating the
microcanonical ensemble for several energy values. Figure 1
depicts the equilibrium magnetization M as a function of the
internal energy U . Numerical data are represented by triangles.
The analytical solution is depicted by the solid line obtained
from the canonical ensemble given by Eq. (11). The critical
point is located at Uc = 3/2, which is twice the value obtained
for the HMF model.

B. Initial conditions

Another challenge is evaluating the kinetic energy. The
behavior of this thermodynamic quantity is required to define
some properties of the system. In the first stage, we can set the
zero of the energy as � = −2 according to Eq. (5). As shown
in Eq. (11), the parameter � produces just a linear shift in the
energy.

In the dynamics of the model, it is important to observe
where the kinetic energy is constant, which is relevant for
determining the general behavior of other thermodynamic
observables.

To discuss the evolution of thermodynamical properties
of the system, we carry out molecular dynamics simulation
using a symplectic integrator [15] and water bag initial
conditions (WBIC). For the latter, consider particles confined
in a bounded domain in phase space that initially displays a
uniform distribution. Thus, the general definition of the WBIC
is related to the probability distribution function f (θ,p) as

f (x,p) dθ dp = dθ dp

4 θ0 p0
, (12)
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FIG. 2. The evolution of the average over 100 samples of the
kinetic energy with N = 25 000 as a function of the time for 100
samples. The evolution from three different initial conditions of
θ0 = 10−4,π/7, and π are presented. In the homogeneous case
(θ0 = π ), the behavior is similar to the HMF model. In the extremely
inhomogeneous case, θ0 ≈ 0, the anomaly is highest and we use this
case to characterize the two QSS. The inset shows the first evolution,
which is known as violent relaxation on a linear scale.

where −p0 � p � p0 and −θ0 � θ � θ0, which is properly
normalized in the entire space. If θ0 = π the function f (x,p)
may be called “homogeneous in space” and it is a stationary
solution of the Vlasov equation [18,19]. In the inhomogeneous
case, where 0 < θ0 < π , the dynamics of the system is
expected to evolve in a self-consistent way to satisfy the
pertinent thermodynamic properties. We shall discuss the case
where θ0 is close to zero, which corresponds to the case
where the dipoles are aligned in almost the same direction.
We characterize the properties of the system with this kind of
WBIC because the anomalous behavior is exacerbated.

Figure 2 presents the average dynamics of the system by
the evolution of 2〈K〉/N in 100 samples with N = 25 000
particles. The difference among curves comes from the three
different sets of initial conditions considered. We take the
WBIC given by Eq. (12) with a typical value of p0 and
three different values of θ0, which typically correspond to
the extremely inhomogeneous case (θ0 ≈ 0), an intermediate
inhomogeneous case (θ0 = π/7), and the completely homoge-
neous cases (θ0 = π ). In the inset of Fig. 2, the first evolution
is known as violent relaxation, which is clearly shown when
WBIC are inhomogeneous. For the homogeneous case the
quantity 2〈K〉/N = 0.76 coincides with its numerical value
for the second QSS. The dynamics of the HMF model does
not present evident differences if variations on the WBIC are
considered, but d-HMF shows two different plateaus when
the WBIC depart from the homogeneous case. Therefore, the
results, shown in Fig. 2, emphasize the relevance of the initial
conditions in the dynamics of the problem. The appearance
of two plateaus before reaching the equilibrium is due to
considering the inhomogeneous WBIC.

C. Quasistationary states

This subsection discusses some of the thermodynamic
properties obtained from the simulations that are related to
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FIG. 3. The dependence on system size N of twice the mean
kinetic energy is illustrated. The quantity 2〈K〉/N is depicted as a
function of the time. (a) Several sizes of the systems are considered.
The limiting cases are N = 8000 and 170 000. Intermediate cases
correspond to N = 16 000, 32 000, and 70 000. (b) The relaxation
time τ , of the first QSS that goes to the second QSS as a function
of 1/N in log-log scale. These results are used to obtain a power
law of the duration of the first QSS in terms of the system size.
Thus, we expect the lifetime observed in the first QSS to behave as
τ (N ) ∝ N 0.7.

the effects of finite size and finite time where QSS have been
observed.

Figure 3(a) shows the time evolution of 2〈K〉/N is
reported for several sizes of the system, that is, N =
8000, 16 000, 32 000, 70 000, and 170 000. The limiting cases
are indicated in the figure; these are N = 8000 and 170 000.
The quantity 2〈K〉/N shows that two plateaus with values and
durations clearly depend on N . If N increases, the plateau
value decreases as the duration increases. States defined by
these plateaus known as the QSS are notoriously lower than
the canonical temperature. WBIC stimulate the time that the
systems remain in states of nonequilibrium, which are the QSS
in this case. They need times that increase with N to transit
from the first QSS to the second QSS, and finally to relax to the
canonical equilibrium. The averages represented in Fig. 3(a)
are taken for 100 samples at N = 8000 and for 32 samples at
N = 16 000,32 000,70 000, and 170 000.

As mentioned, the system is sensitive to the WBIC, which
is shown in Fig. 3(a). In addition, these results evoke the
behavior of systems that strongly depend on the system
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BG Equilibrium
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2<
K
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FIG. 4. 2〈K〉/N as a function of the internal energy U . The lowest
QSS (circles) and its corresponding equilibrium values (triangles)
are compared to Teq (line), which was obtained analytically from
the canonical ensemble. The simulation requires N = 4000 and 100
samples.

size. The properties slowly reach the thermodynamic limit
and the results seem to indicate that the difference between
the two plateaus tends to disappear as N → ∞. Hence, the
dynamics of the system is expected to have only one plateau
when the thermodynamics limit is reached. Thus, the two
plateaus represent one peculiar effect induced by applying the
inhomogeneous WBIC and by considering finite system size.

For simulation with N = 32 000 and greater, it is not
possible to observe when the mean kinetic energy reaches
equilibrium in the time interval that we have used for the
molecular dynamics simulation, because of the computational
limitations. Hence, a detailed characterization of the duration
of the second QSS as a function of system size N is a good
challenge for future works. However, the behavior is expected
to become similar to the QSS observed for the HMF model.
Nevertheless, if we focus our attention on the first plateau,
which encompasses the duration of the first QSS of τ (N ),
the value depends on N according to a power law given by
τ (N ) ∝ Nμ. From Fig. 3(b), we obtain an approximate slope
of μ ≈ 0.7 on a log-log scale. This slope is less than that
known for the unique QSS observed in the HMF model [18].
The second QSS will be studied later, but we expect it to
become similar to the unique QSS in the HMF model [18].

Additionally, we show in Fig. 2 that the value obtained
from numerical data 2〈K〉eq/N = 0.951 coincides with 0.1%
precision with its corresponding canonical value, Teq = 0.950.

In Fig. 4 we show the stable values of the kinetic energy as a
function of U , which we identify as QSS. We chose the lowest
numerical result, the second QSS, to compare to equilibrium,
which we obtained from either the theoretical canonical
ensemble or the numerical microcanonical simulation. There is
disagreement between the molecular dynamics simulation and
the canonical ensemble treatment in the interval from 1.1 to
1.5. As anticipated, there is a point where the greatest disagree-
ment occurs at U = 1.38, which we used to characterize the
QSS. In Fig. 4 we superpose three curves of twice the kinetic
energy per particle 2〈K〉/N as a function of internal energy U .
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FIG. 5. Snapshots of the distribution function for the HMF model
with dipole-dipole interactions into phase space. (a) For t = 20, the
distribution weakly deviates from WBIC. (b) For t = 200, the system
is in the first time interval of QSS. (c) For t = 6 × 105, the system is
in the second time interval of QSS. (d) For t = 5 × 106, the system
reaches equilibrium, and ellipses characterize the trajectories into
phase space.

Triangles denote equilibrium data from the numerical simula-
tions that coincide exactly with the analytical solution from the
canonical ensemble. The circles correspond to the second QSS
to consider values produced by the QSS from the homogeneous
WBIC. As shown in Fig. 3(a), there is a time interval where
one set of values does not coincide with the other.

We observed the behavior in phase space to fully
understand the dynamics of the system. We can obtain
instantaneous images of the particle distribution in phase
space at several states of the evolution. Figure 5 presents
snapshots at different times to characterize the distribution
function in phase space at t = 20 close to WBIC; at t = 200,
where the first QSS occurs; at t = 6 × 105 for the second
QSS; and at t = 5 × 106, where equilibrium occurs for an
arbitrary sample of a system with N = 8000. At t = 0, the
system has inhomogeneous WBIC, where θ0 ≈ 0 according
to Eq. (12). However, the dynamics of the system seems to
move rapidly in a self-consistent way to satisfy the Vlasov
equation as shown in Fig. 5(a). The distribution function, in
Fig. 5(b), is extended to all phase space in an irregular form.
In Fig. 5(c), the distribution function takes enough paths that
it shows certain regularities, which we can see in phase space.
In addition, Fig. 5(d) shows trajectories that are defined by
elliptical shapes, which are represented by several colors.

D. Diffusion

We represent the diffusion of particles of the system by the
variance of the angular displacement defined as

σ 2
θ (t) = 1

N

∑
i

[θi(t) − θi(0)]2. (13)

As expected, the law σ 2
θ (t) ∝ t is valid at equilibrium only,

which means that after a long time, the variance of the

100 102 104 106
100

103

106

109

γ≈

γ≈

σ2 θ

t

γ≈

FIG. 6. The dynamics is illustrated by the evolution of the
variance. Anomalous diffusion is obtained in the two time intervals
that coincide with the two discussed QSS. Equilibrium is reached
when γ = 1.

angular displacement varies linearly with time. Before reach-
ing equilibrium, the law of diffusion σ 2

θ (t) ∝ tγ (where γ �= 1)
is anomalous. Particularly, the system is called subdiffusive if
0 < γ < 1 and superdiffusive if 1 < γ < 2.

As predicted in previous studies [5], the anomalous dif-
fusion is connected to QSS. We expect that two anomalous
diffusion laws with two different values of γ will be related to
each QSS observed in the present system.

We characterize the diffusion by using data obtained from
the molecular dynamics simulation. For the same previous
combination of parameters in Fig. 3, we progressively acquire
states with anomalous diffusion until equilibrium is reached.
Figure 6 two superdiffusive states where σ 2

θ ∝ tγ with γ > 1,
which are related to previously defined QSS. At the first QSS
γ ≈ 1.9; at the second QSS γ ≈ 1.4; and, as expected, at
equilibrium γ = 1.

IV. SUMMARY AND CONCLUDING REMARKS

The HMF model gives a good perspective for studying
systems with long-range interactions. Thus, we have proposed
the Hamiltonian d-HMF given by Eq. (1).

The problem was solved analytically in the canonical
ensemble using the real and complex Hubbard-Stratonovich
transformations to obtain the magnetization and temperature at
equilibrium by using Eqs. (10) and (11). The system becomes
an analytically solvable problem. Data for the equilibrium
magnetization M as a function of internal energy U are
represented by triangles that were obtained through molecular
dynamics, which were compared to the analytical solution
from Eq. (11). Both results are practically coincident in the
entire range of values, except for near T = 1.5. The minor dis-
crepancy is due to the finite size of the system. We also showed
that the analytical calculation of the temperature matches the
numerical results with 0.1% precision at equilibrium as shown
in Fig. 3(a). Again, molecular dynamics data coincide exactly
with the analytical result in Fig. 4, which depicts 2〈K〉/N as
a function of U. As expected, the diffusion is normal at equi-
librium, where the diffusion law is a linear function of time.
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It is generally accepted that two phases appear in the phase
diagram, as shown in Fig. 4, which depend on the energy
and thus the temperature. At low energy, a phase identified
by the presence of a single cluster of particles arises by
floating in a diluted homogeneous background. At high energy
a homogeneous phase is recovered; the cluster disappears and
the particles move (almost) freely. For a pertinent transition
region below Uc, as shown in Fig. 4, the system is characterized
by the microcanonical ensemble with negative specific heat
and the resulting instability is extremely relevant [4] because
of its strong implications on both experimental and theoretical
features. It is expected that the nonequilibrium distribution
related to the single cluster evolves into another nonequilib-
rium distribution, before reaching equilibrium. This behavior
corresponds to an apparent thermodynamical inconsistency as
explained by Hertel and Thirring [20], who proposed that the
canonical and microcanonical ensembles are not equivalent
near the transition region. We have successfully confirmed
this proposal at least in an interval of time.

To describe the evolution of the proposed model, we
performed molecular dynamics simulations to obtain the QSS
before arriving at equilibrium. Due to the nonequilibrium
states, we can define two different QSS, as shown in Fig. 3. We
characterized the QSS as a constant value of the average kinetic
energy. The first QSS is less than the value at equilibrium, but
the second QSS value is less than the first QSS. In addition,
we identified the two QSS as time intervals with anomalous
diffusion, as shown in Fig. 6.

The initial conditions and the size of the systems are two
relevant considerations in the present topic. Thermodynamic
and dynamic properties strongly depend on the system size N ,
which we partially characterized for the d-HMF model. We
focused on three possible initial distributions that correspond
to the homogeneous WBIC and two cases of inhomogeneous
WBIC. For the homogeneous WBIC, the results correspond
to the standard HMF model. After the process of violent
relaxation, the system remains trapped in a unique QSS before

reaching the equilibrium. However, with inhomogeneous
WBIC, the dynamics of the system shows two different
plateaus before arriving at equilibrium, as illustrated in Fig. 2
whenever the size of the system is finite. The difference
between the two plateaus tends to disappear as N → ∞.
Hence, the dynamics of the system is expected to have only
one plateau when the thermodynamics limit is reached. The
duration τ of the first QSS type depends on a power law of
N [typically τ (N ) ∝ N0.7], as shown in Fig. 3. As such, it
is unlikely to survive in a Vlasov picture. But, this question
constitutes another challenge to study.

Due to the cost of the computational time, good topics to
study in future works include description of the second QSS,
ergodicity breaking, and nonequilibrium phase transitions. The
results would aid in understanding the role of dipole-type
interactions in nature and the behavior of systems with more
than one QSS.

Additional energy terms can be considered to improve the
current model, such as the external field energy, the structural
energy including the dispersion interactions in the network,
and the thermal energy corresponding to a specific substrate
temperature [9]. This can be the challenge of upcoming
proposals to obtain a more realistic Hamiltonian that allows us
to compare with known results related to molecular systems.

Finally, this model appears to be consistent with other
models that involve multiple QSS, such as the low-frequency
variability in weather regimes [21,22], a graded autocatalysis
replication domain model that undergoes a physical separation
process [23], and the relaxation of turbulence in two dimen-
sions [24]. Thus it could be a useful approach to such systems
related to multiple QSS.
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