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1Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49, Hungary

2Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary
(Received 13 December 2016; published 7 February 2017)

We have studied the phase transition of the contact process near a multiple junction of M semi-infinite chains
by Monte Carlo simulations. As opposed to the continuous transitions of the translationally invariant (M = 2) and
semi-infinite (M = 1) system, the local order parameter is found to be discontinuous for M > 2. Furthermore, the
temporal correlation length diverges algebraically as the critical point is approached, but with different exponents
on the two sides of the transition. In the active phase, the estimate is compatible with the bulk value, while in the
inactive phase it exceeds the bulk value and increases with M . The unusual local critical behavior is explained
by a scaling theory with an irrelevant variable, which becomes dangerous in the inactive phase. Quenched spatial
disorder is found to make the transition continuous in agreement with earlier renormalization group results.
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I. INTRODUCTION

The contact process [1,2] is a stochastic lattice model,
which is interpreted most frequently as a simple model of
epidemic spreading or population dynamics. It consists of
two concurring processes: the activation of nearest-neighbor
inactive sites and spontaneous deactivation. Tuning the relative
rate of these two, the model undergoes a nonequilibrium phase
transition from an active, fluctuating phase to a nonfluctuating
(absorbing) one [3–5]. The transition is continuous in any
dimension and falls into the robust universality class of
directed percolation. Although the model is not exactly soluble
even on regular lattices, the critical exponents and the location
of the critical point is known at high precision by series
expansions [6,7].

The phase transition of the contact process, being a proto-
typical model of absorbing phase transitions, has been studied
in the past beyond translational invariant regular lattices
under various circumstances such as near surfaces [8–13] or
a single defect site [14] that break translational invariance,
with quenched spatial [15–17] or temporal disorder [18–20],
long-range interactions [21,22], on fractals [23] and different
kinds of complex networks [24,25], etc. In all the above cases,
the transition, although characterized by different critical
exponents from those of directed percolation, is observed to
remain continuous. In general, discontinuous phase transitions
in low-dimensional fluctuating systems are rare as fluctua-
tions, which destabilize the ordered state, are pronounced in
low dimensions. Particularly, in one-dimensional fluctuating
systems, first-order phase transitions are conjectured to be
impossible provided there are no long-range interactions,
additional conservation laws, macroscopic currents, or special
boundary conditions [5]. In this work, we shall demonstrate
by numerical simulations that a suitable topology of the
underlying network is able to induce a discontinuous local
transition even with a simple dynamics such as the contact
process, which does not display a first-order transition on
translationally invariant lattices in any high dimensions. To

*juhasz.robert@wigner.mta.hu
†igloi.ferenc@wigner.mta.hu

be concrete, we shall consider a multiple junction, which
consists of M semi-infinite one-dimensional lattices connected
to a common central site. This type of star-like geometry has
already been investigated for different types of problems: for
the classical and quantum Ising models [26–32], wetting [33],
self-avoiding random walks, percolation [32], etc. For the
Ising model, the limit M → 0 corresponds to the problem
of random boundary field [26,27,34]. The multiple junction
could be a simplified model for describing the behavior of
the contact process on complex networks composed of long,
one-dimensional segments and rarely located junction points,
in the vicinity of junctions. This model additionally with
quenched disorder has been studied earlier by one of us by
means of a renormalization group (RG) method suitable for
disordered systems [30]. Here, we will present numerical
results for the clean system, which shows a much different
critical behavior and also compare results of the RG method
with simulation results of the disordered model. The special
case M = 2 of the model is simply the translationally invariant
one-dimensional contact process, while M = 1 is a single
semi-infinite chain with an absorbing wall. In the latter case,
the surface order parameter P1 is reduced compared to the
bulk [8–10,12,13] and, approaching the critical point from
the active phase it vanishes with the control parameter � as
P1 ∼ �β1 , where β1 is greater than the corresponding bulk
exponent; see Table I. This kind of behavior is analogous to
the ordinary surface transition of equilibrium systems [35–38].
The exponent ν‖,1 describing the divergence of the temporal
correlation length near the surface through ξ‖,1 ∼ |�|−ν‖,1 ,
however, holds to be equal to the bulk value, ν‖,1 = ν‖. The
bulk and surface critical exponents of the one-dimensional
contact process are summarized in Table I.

This kind of surface critical behavior of the semi-infinite
system might suggest a similar scenario for M > 2,
i.e., a continuous surface transition, characterized by an
order-parameter exponent βM , which is now less than β2 ≡ β

due to the enhanced ordering tendency at the junction, and a
temporal correlation length exponent, which is independent
of M , ν‖,M = ν‖. Surprisingly, it turns out that, for M > 2,
the surface order parameter is finite in the bulk critical point
and thus displays a jump when the bulk critical point is
crossed. This means that the local order-parameter exponent
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TABLE I. The critical activation rate, as well as bulk and surface
critical exponents of the one-dimensional contact process.

λc 3.29785(2) [6]
β 0.276486(8) [7]
β1 0.73371(2) [11]
ν‖ = ν‖,1 1.733847(6) [7]
ν⊥ 1.096854(4) [7]

is formally βM = 0. Nonetheless, spatial and temporal
correlation lengths diverge like at continuous transitions. Such
kinds of transitions are termed as mixed-order transitions and
appear in various areas, such as in the classical Ising chain
with long-range interactions [39–45] and in other models,
too [46–66]. A further interesting point is that the temporal
correlation-length exponents on the two sides of the transition
point are found to be asymmetric; ν‖,M in the inactive phase
departs from ν‖ for M > 2, while the exponent ν ′

‖,M in the
active phase is found to be independent of M .

The rest of the paper is organized as follows. In Sec. II, the
model is defined and details of the simulation are given. In
Sec. III, the results of Monte Carlo simulations are presented,
which are explained in terms of a scaling theory in Sec. IV. The
effect of quenched disorder is considered in Sec. V. Finally,
results are discussed in Sec. VI.

II. THE MODEL

The star-like network we considered is composed of M

one-dimensional lattices of L sites, in such a way that one of
the end sites of each chain (arm) is connected to a central site;
see Fig. 1. The coordination number of the central site is thus
M , for the other end sites of the arms it is 1, while, for all other
sites it is 2. We note that a multiple junction can be defined
also in such a way that the endpoints of the chains at the
junction are connected to any other endpoints; nevertheless,
the local critical behavior in the two geometries are expected
to be identical.

In the contact process, a bimodal variable representing
active or inactive states is attached to each sites, and a
continuous-time Markov process is defined with two kinds
of independent transitions. Active sites either become sponta-
neously inactive with rate 1 or activate neighboring inactive
sites with a rate λ/n, where n is the coordination number of
the source site.

In the numerical simulations, time was discretized and
the process was implemented as follows. A site was chosen

. . .

2 3

M1

FIG. 1. A star-like network composed of M one-dimensional
chains sharing a common site.

randomly from a list of active sites and, with a probability
1/(1 + λ) it was made inactive, or, with a probability λ/(1 + λ)
one of its neighbors was chosen randomly (with equal
probabilities) and made active, provided it had been inactive. A
Monte Carlo time step consists of N (t) such moves, where N (t)
is the number of active sites at the beginning of the time step.
Note that, although the time elapsed is measured in a simplified
way with respect to an exact simulation of the continuous-time
process, it is asymptotically correct for long times.

We have performed seed simulations [67] in which, initially,
all but the central site were inactive. Performing typically 106

independent runs we measured the probability P (t) that the
system has not yet trapped in the absorbing state up to time t .
When studying the time-dependent behavior of P (t), the length
of the arms was chosen to be large enough so that the end sites
of arms have never been activated. The long time limit of the
survival probability (in the infinite system) P = limt→∞ P (t)
serves as a local order parameter of the phase transition, which
occurs at the bulk critical point λc = 3.29785(2) of the one-
dimensional model [6].

III. NUMERICAL RESULTS

First, we have measured the survival probability in the
bulk critical point as a function of time for M-fold junctions
with M = 1,2, . . . ,6. As can be seen in Fig. 2, for M = 1
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FIG. 2. (Top) Time-dependence of the survival probability mea-
sured in numerical simulations for different M-fold junctions with
M = 1,2, . . . ,6 (from bottom to top) in the bulk critical point λ = λc.
(Bottom) The logarithm of the same function.
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FIG. 3. The logarithm of the discrete time derivative of the
numerically obtained survival probability in the bulk critical point
plotted against ln t for M = 3, 4, 5, 6 (from top to bottom). The
straight lines are linear fits to the data, whose slope is −δ′

M − 1.

and M = 2, the survival probability tends to zero in the
long-time limit, in agreement with the well-known result that
the critical contact process is nonsurviving, i.e., the transition
is continuous. For M > 2, however, P (t) seems to tend to a
positive constant Pc(M), which is an increasing function of
M , signaling a discontinuous transition. The critical decay
exponent δM of the survival probability [3–5] defined for
continuous transitions as P (t) ∼ t−δM is thus formally zero
here. Inspecting the (discrete) time derivative of P (t) in a
double-logarithmic plot, as shown in Fig. 3, it turns out to
approach the limiting value according to a power law,

P (t) − Pc ∼ t−δ′
M , (1)

with some M-dependent exponents δ′
M , which have been

estimated from linear fits to the data in Fig. 3 and are listed in
Table II.

Next, we investigated the behavior of the temporal corre-
lation length as the critical point is approached in the inactive
phase. In order to do this, we measured the survival probability
for different distances � ≡ λ − λc < 0 from the critical point.
As can be seen in the inset of Fig. 4, a cutoff appears, which
is shifted toward longer times as |�| is decreased, signaling a
diverging temporal correlation length according to

ξ‖ ∼ |�|−ν‖,M . (2)

Close to the critical point and for long times, we assume the
usual scaling form of the survival probability,

P (t,�) = t−δM f (�t1/ν‖,M ), (3)

TABLE II. Local order parameter at the critical point and critical
exponents estimated by numerical simulations for different M-fold
junctions.

M Pc δ′
M ν‖,M

3 0.391(2) 0.34(1) 2.20(3)
4 0.507(2) 0.81(3) 3.00(10)
5 0.546(2) 1.25(10) 3.7(1)
6 0.564(2) 1.8(1) 4.5(1)
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FIG. 4. Scaling plot of the survival probability obtained by
numerical simulations for the triple junction (M = 3) for different
distances � ≡ λ − λc from the critical point, in the inactive phase
(� < 0). The optimal data collapse is achieved by the value ν‖ =
2.20. The unscaled data are shown in the inset.

where f (x) is some scaling function [3,5], to hold with δM = 0.
As it is illustrated for M = 3 in Fig. 4, a data collapse
can indeed be achieved using the scaling variable t |�|ν‖,M

with ν‖,3 = 2.20(3), which is significantly higher than the
corresponding bulk exponent ν‖, see in Table I. Estimates of
ν‖,M determined in this way for further M-fold junctions can
be found in Table II.

We measured the survival probability close to the critical
point in the active phase, as well. The data for the triple junction
are shown in Fig. 5.

Here, the deviation of P (t,�) from the constant Pc is
expected to have the scaling property

P (t,�) − Pc = t−δ′
M P̃ (�t1/ν ′

‖,M ), (4)

where the scaling function P̃ (y) behaves as P̃ (y) ∼ yβ ′
M for

y → ∞. The exponents appearing here are related as

δ′
M = β ′

M/ν ′
‖,M . (5)
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FIG. 5. The survival probability obtained by numerical simula-
tions for the triple junction (M = 3) for different values of � in
the active phase and at the critical point (from top to bottom for
decreasing �).
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FIG. 6. Scaling plot of the time-derivative of the survival prob-
ability obtained by numerical simulations for the triple junction
(M = 3) for different distances � ≡ λ − λc from the critical point
in the active phase (� > 0). The values δ = 0.34 and ν‖ = 1.733847
have been used. The unscaled data are shown in the inset.

As can be seen in Fig. 5, the local slope of the critical
curve deviates significantly from the asymptotic estimate for
moderate times, i.e., the corrections to scaling are expected
to be strong. Therefore, using the asymptotic δ′

M , the scaling
collapse according to Eq. (4) with the available data will be
poor. Another difficulty is that Eq. (4) contains one unknown
parameter (Pc) more than Eq. (3) does, and, in addition to this,
the quality of the scaling is very sensitive to the error of Pc

for small � and long times. Therefore, we tried an alternative
way for determining the critical exponent ν ′

‖,M and considered,
namely, the time-derivative of P (t,�), which scales as

∂P (t,�)

∂t
= t−δ′

M−1g(�t1/ν ′
‖,M ), (6)

where g(x) is another scaling function. As it is shown in
Fig. 6 for M = 3, a satisfactory scaling collapse is obtained by
using the previous estimate δ′

M = 0.34 and the bulk correlation
length exponent ν ′

‖,M = ν‖ in Table I. Although the optimal
scaling collapse of the data is realized with a somewhat
lower value ν ′

‖,M = 1.65(5), we conjecture that ν ′
‖,M is given

by the bulk value, and the deviation may be attributed to
corrections to scaling. In order to see a scaling collapse
of better quality, data with smaller � (and correspondingly
longer times) would be needed, which is beyond our present
computational possibilities.

The scaling form in Eq. (4) implies that the order parameter
in the active phase, i.e., the survival probability in the stationary
state, P (�) ≡ limt→∞ P (t,�), approaches the critical value in
a singular way as

P (�) − Pc ∼ �β ′
M . (7)

Owing to the strong corrections mentioned above, a direct
estimation of β ′

M according to Eq. (7) and using the numerical
data in hand would be considerably below the presumably
correct value. Instead, an indirect estimate from the data for δ′

M

using the relation in Eq. (5) is expected to be more reliable. A
schematic picture of the behavior of the local order parameter
is shown in Fig. 7.

λc

Pc

Δ> 0< 0Δ
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P

λ

FIG. 7. Illustration of the behavior of the local order parameter
close to the transition point, together with the definition of the
different singular quantities. We indicate by a red thick line the region
in which the local critical behavior is influenced by the presence of a
dangerous irrelevant scaling variable; see the text.

IV. SCALING CONSIDERATIONS

The properties of the phase transition of the contact process
at multiple junctions have unusual features: it is of mixed
order and there is a correlation-length exponent asymmetry at
the two sides of the transition point. Similar type of critical
behavior has already been observed for the Ising model in
the same geometry [26,27,32] and it has been explained in
terms of irrelevant scaling variables [28]. In the following,
we generalize this scaling theory for the dynamical critical
behavior of the contact process.

Here we use the well-known mapping [68], which relates
the dynamics of a d-dimensional system to the static behavior
of a (d + 1)-dimensional system, where scaling in the extra
dimension is anisotropic, characterized by an anisotropy
exponent z > 1. In the case of the d = 1 contact process, we
have a (1 + 1)-dimensional static problem, where coordinates
in the space direction will be denoted by x, the correlation
length by ξ⊥, while, in the extra (time) direction, we use the
notations t and ξ‖, respectively. In this static problem ξ⊥ ∼ ξz

‖
with z � 1, and we write the local free energy per degree
of freedom at the junction f (�,h1,�1,t) as the function
of the bulk and the junction control parameters, � and �1,
respectively, as well as of a local ordering field, h1. (We have
omitted here the bulk ordering field, h.) According to scaling
theory, when lengths are rescaled by a factor b > 1, so that
x → x/b, then the free-energy density satisfies the relation

f (�,h1,�1,t) = b−zf (�b1/ν⊥ ,h1b
yh1 ,�1b

y�1 ,t/bz), (8)

and, similarly, we have for the parallel correlation length

ξ‖(�,h1,�1,t) = bzξ‖(�b1/ν⊥ ,h1b
yh1 ,�1b

y�1 ,t/bz). (9)

(Note that, due to anisotropic scaling, one should define pairs
of scaling exponents: y⊥

h1
, y

‖
h1

and y⊥
�1

, y
‖
�1

. Here and in
the following, yh1 and y�1 will correspond to y⊥

h1
and y⊥

�1
,

respectively.)
The local order parameter, which is analogous to the

survival probability in the contact process, is related to the
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local free-energy density as P = ∂f/∂h1. This scales as

P (�,h1,�1,t) = b−z+yh1 f (�b1/ν⊥ ,h1b
yh1 ,�1b

y�1 ,t/bz),

(10)

and, due to ordering at the junction, P is scale-independent,
thus we have

yh1 = z. (11)

The local scaling field associated with the local control
parameter �1 is an irrelevant variable, thus y�1 < 0. In the
following, we assume, as in the isotropic case [28], that �1 is
a harmless irrelevant scaling variable for � � 0, whereas it is
dangerous irrelevant in the inactive phase, � < 0.

For � � 0, the scaling functions are analytic in �1 and can
be expanded in Taylor series. We obtain in leading order for
the local order parameter:

P (�,h1,�1,t) − Pc = by�1 P̃ (�b1/ν⊥ ,h1b
yh1 ,t/bz), (12)

which, using b = t1/z at the critical point � = h1 = 0, scales
as

P (t) − Pc ∼ ty�1 /z. (13)

Thus, comparing with Eq. (1), we obtain

δ′
M = −y�1/z. (14)

Similarly, with b = �−ν⊥ , we obtain the relation

β ′
M = −y�1ν⊥. (15)

For � < 0, when the scaling functions are nonanalytic in �1,
we generalize the functional form of the correlation length for
isotropic systems [28] as follows:

ξ‖(�,h1,�1,x) = �−ε
1 ξ̃‖(�,h1�

−ε
1 ,x), (16)

which has the scaling relation

ξ‖(�,h1,�1,x) = bz−εy�1 ξ̃‖(�b1/ν⊥ ,h1b
z−εy�1 ,x/b). (17)

Now taking b = x = ξ⊥, we obtain at the critical point ξ‖ ∼
ξ

zM

⊥ , with the anisotropy exponent at the junction in the inactive
phase: zM = z − εy�1 . Thus, the parallel correlation length
exponent can be expressed as

ν‖,M = ν‖ − εy�1ν⊥ = ν‖(1 + εδ′
M ), (18)

which constitutes a relation between the measured exponents,
ν‖,M and δ′

M , and the exponent in the irrelevant scaling
combination, ε.

For the Ising model (z = 1), where β1 = 1/2 and ν‖ = 1,
the critical exponents at the junction can be exactly expressed
in terms of β1/ν‖ and M as follows [28]:

ν‖,M = Mβ1,
(19)

δ′
M = (M − ν‖/β1)/2.

These imply, through Eq. (18), that ε is independent of M:

ε = 2β1/ν‖. (20)

Using Eq. (18) and the exponents measured for the contact
process and given in Table II, the calculated ε = (ν‖,M/ν‖ −
1)/δ′

M has only a weak variation with M . Furthermore, the
relations in Eqs. (19) seem to be satisfied by the numerical

values in Table II, at least for M > 3 within the error of the
estimation. For M = 3, the exponent δ′

3 is somewhat above
the value calculated from Eqs. (19). In spite of this slight
discrepancy with the numerical data for M = 3, we cannot
exclude the validity of relations in Eqs. (19) for the contact
process with certainty, as slow corrections may be present in
the numerical data, which are hard to detect on the time scales
available by the simulations. Having the conjectured values of
the scaling exponents, we can obtain the singular behavior of
other observables via Eq. (8) as well.

V. THE EFFECT OF QUENCHED DISORDER

In the presence of quenched random transition rates, the
one-dimensional contact process displays a continuous phase
transition. The scaling laws close to the critical point, which
can be determined by a strong-disorder renormalization group
(SDRG) method [16] and are believed to be valid at least
for strong disorder, are much different from those of the
homogeneous system. The striking difference compared to the
scaling laws of pure systems is that they contain the logarithm
of time rather than the time itself. For instance, the survival
probability follows the scaling form

P (ln t,�) = (ln t)−x2/ψ P̃ (�(ln t)1/(ψν⊥)), (21)

where the scaling function behaves as P̃ (y) ∼ yx2ν⊥ for y →
∞. The critical exponents appearing here are ψ = 1/2, ν⊥ =
2, and x2 = (1 + √

5)/4 [16]. In the semi-infinite system, a
similar scaling form as Eq. (21) is valid with the same ψ

and ν⊥ as in the bulk, but a different scaling dimension of
the local order parameter, x1 = 1/2. A recent SDRG study
of the model near an M-fold junction showed that the phase
transition remains continuous for any value of M [30]. Thus,
quenched disorder makes the originally discontinuous phase
transition of the clean system for M > 2 continuous, which
is not an uncommon phenomenon for systems with first-order
transitions. The scaling dimension xM of the order parameter
is a rapidly decreasing function of M and can be obtained
as the smallest eigenvalue of an M × M matrix [30]. The
numerical values for M = 3 and M = 4 are x3 = 0.06959 . . .

and x4 = 0.02198 . . . , respectively. These outcomes of the
SDRG method have not been confirmed by simulations so far,
so we aimed at performing Monte Carlo simulations of the
disordered system and study its critical scaling. Quenched
disorder was realized by using site-dependent deactivation
and activation rates, 1/(1 + λi) and λi/(1 + λi), respectively.
Here, λi ≡ riλ, where ri is a quenched i.i.d. random parameter
taking values 1 and 0.2 with probabilities 1/2. Performing seed
simulations in typically 105–106 random samples (with one
run per sample), the survival probability P (t) and the average
number of active sites N (t) have been measured. First, we
determined the location of the critical point by plotting ln N (t)
against ln P (t) and looking for a λ, for which the dependence
is asymptotically linear [69]; see Fig. 8.

This gives the estimate λc = 7.15(5). Next, we measured
the dependence of the survival probability on time in seed
simulations for triple and quadruple junctions at λ = λc. At
the critical point, P (t) decays according to Eq. (21) as

P (t) ∼ (ln t)−δM , (22)
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FIG. 8. The logarithm of the average number of active sites
plotted against the logarithm of the survival probability in the
disordered contact process in one dimension for different values of
the control parameter λ, from bottom to top for increasing λ. The
critical point is estimated to be at λc = 7.15.

where δM = xM/ψ . Using the numerical values of δM obtained
by the SDRG method, we plotted [P (t)]−1/δM against ln t . As
can be seen in Fig. 9, the dependence for M = 3 and M = 4 is
linear for long times, in agreement with Eq. (22), confirming
thus the correctness of the exponents obtained by the SDRG
method.

VI. DISCUSSION

We have studied in this paper the phase transition of
the contact process near M-fold junctions by numerical
simulations and scaling considerations. We have found that, for
M > 2, the local order parameter displays a discontinuity at the
critical point, as opposed to the translationally invariant (M =
2) and semi-infinite system (M = 1), where the transition is
continuous. The ordering of the system near the junction is a
remarkable feature, as a local supercritical creation rate in an
otherwise critical system is not able to induce ordering—not
even the local critical exponents are modified, only an additive
correction appears [14]. The temporal correlation length is
found to diverge algebraically with the distance from the
transition point. The corresponding exponents are, however,
different on the two sides of the transition; in the active phase
it is found to be close to the bulk value, while, in the inactive
phase, it exceeds the bulk value and increases roughly linearly
with M . The model thus provides an example for mixed-order
transitions and that, for the subclass where the correlation
length diverges as a power law. (An alternative is the Kosterlitz-
Thouless-type essential singularity.) A difference compared
to other models is that, here, a local order parameter of a
translationally noninvariant model is concerned. Nevertheless,
the critical behavior observed here is not restricted to the
immediate vicinity of the junction. The local order parameter
remains discontinuous in any large distance l from the junction
and its critical value decays asymptotically as Pc(l) ∼ l−β/ν⊥

[70]. Obviously, in a distance l from the junction, bulk scaling
laws can be observed within the crossover length scale l or,
in case of time-dependence, within the time scale lz, where
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FIG. 9. Time-dependence of the survival probability measured in
numerical simulations for the disordered contact process at a triple
(top) and a quadruple (bottom) junction at the bulk critical point
λc = 7.15. The exponents δ3 = 0.139194 and δ4 = 0.043967 have
been taken from Ref. [30]. According to Eq. (22), the dependence as
plotted in the figures must be linear if the correct exponents are used.

z = ν‖/ν⊥ is the bulk dynamical exponent. But beyond this
time scale, a crossover to scaling laws found at the junction
occurs. We have also demonstrated by numerical simulations
that quenched spatial disorder makes the transition continuous
confirming thereby earlier results obtained by the SDRG
method.

The behavior found for the contact process is analogous
to that of the phase transition of the two-dimensional Ising
model near M-fold junctions [26,27,32]. In that model, the
transition is continuous for M � 2 but, for M > 2, the local
magnetization is finite in the critical point. A further similarity
is that the temporal correlation length exponent is asymmetric.
In the ferromagnetic phase, it is identical to the bulk value
(ν ′

‖ = 1), but in the paramagnetic phase it is different and
given by ν‖,M = M/2 for M > 2. For that model and other
models showing a first-order local transition, a general scaling
theory has been developed, which explains the anisotropic
scaling behavior and the exponent asymmetry by that the local
control parameter is a dangerous irrelevant variable [28]. This
type of scaling theory has been generalized in this paper for
systems having an anisotropy exponent, z > 1. Applying this
scaling approach for the contact process, we could explain
the observed anomalous local critical behavior. Furthermore,
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we have given a conjecture for the values of the local scaling
exponents in terms of β1/ν‖ and M , in Eqs. (19). But, to judge
the validity of these conjectures with a larger certainty, more
accurate numerical data are needed.

Another well-known model that shows a discontinuous
surface transition at the continuous bulk transition point is the
Hilhorst-van Leeuwen model [71]. This is a two-dimensional
Ising model (or, equivalently, a one-dimensional transverse-
field Ising chain), where the local control parameter decays
with the distance l from a free surface as �l 
 Al−1/ν⊥ .
Depending on A, the surface transition can be continuous or
discontinuous (of mixed-order) with critical exponents varying
with A. The scaling theory of Ref. [28] applies also to this
model. Based on the close analogy between the Ising model
and contact process near multiple junctions, a similar scenario
is expected also for the contact process with a Hilhorst-van
Leeuwen-type extended defect. The numerical study of this
problem is in progress and the preliminary results indeed
confirm this expectation.

An interesting question is whether the phenomenon that
a multiple junction induces a discontinuity for models with
a continuous bulk transition is a general rule and, if not,
under which condition it occurs. A further direction in which
the findings of the present work could be generalized is the
increasing dimensionality. We considered the contact process
on chains connected to a common site, but one can also imagine
semi-infinite planes attached to each other at a common line,
just as for the classical formulation of the related problem
of the Ising model. In this case, we expect a discontinuous
phase transition near the common line, analogously to the one-
dimension lower problem. The study of the above questions is
deferred to future research.
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[37] F. Iglói, I. Peschel, and L. Turban, Adv. Phys. 42, 683 (1993).
[38] M. Pleimling, J. Phys. A 37, R79 (2004).
[39] P. W. Anderson and G. Yuval, Phys. Rev. Lett. 23, 89 (1969).
[40] D. Thouless, Phys. Rev. 187, 732 (1969).
[41] F. J. Dyson, Commun. Math. Phys. 21, 269 (1971).
[42] J. L. Cardy, J. Phys. A 14, 1407 (1981).
[43] M. Aizenman, J. Chayes, L. Chayes, and C. Newman, J. Stat.

Phys. 50, 1 (1988).

022109-7

https://doi.org/10.1214/aop/1176996493
https://doi.org/10.1214/aop/1176996493
https://doi.org/10.1214/aop/1176996493
https://doi.org/10.1214/aop/1176996493
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1007/BF01048090
https://doi.org/10.1007/BF01048090
https://doi.org/10.1007/BF01048090
https://doi.org/10.1007/BF01048090
https://doi.org/10.1088/0305-4470/29/22/007
https://doi.org/10.1088/0305-4470/29/22/007
https://doi.org/10.1088/0305-4470/29/22/007
https://doi.org/10.1088/0305-4470/29/22/007
https://doi.org/10.1088/0305-4470/32/28/304
https://doi.org/10.1088/0305-4470/32/28/304
https://doi.org/10.1088/0305-4470/32/28/304
https://doi.org/10.1007/BF01313117
https://doi.org/10.1007/BF01313117
https://doi.org/10.1007/BF01313117
https://doi.org/10.1007/BF01313117
https://doi.org/10.1088/0305-4470/29/8/010
https://doi.org/10.1088/0305-4470/29/8/010
https://doi.org/10.1088/0305-4470/29/8/010
https://doi.org/10.1088/0305-4470/29/8/010
https://doi.org/10.1103/PhysRevLett.81.2104
https://doi.org/10.1103/PhysRevLett.81.2104
https://doi.org/10.1103/PhysRevLett.81.2104
https://doi.org/10.1103/PhysRevLett.81.2104
https://doi.org/10.1088/0305-4470/32/33/304
https://doi.org/10.1088/0305-4470/32/33/304
https://doi.org/10.1088/0305-4470/32/33/304
https://doi.org/10.1088/0305-4470/32/33/304
https://doi.org/10.1088/0305-4470/31/10/008
https://doi.org/10.1088/0305-4470/31/10/008
https://doi.org/10.1088/0305-4470/31/10/008
https://doi.org/10.1088/0305-4470/31/10/008
https://doi.org/10.1142/S0217979201004526
https://doi.org/10.1142/S0217979201004526
https://doi.org/10.1142/S0217979201004526
https://doi.org/10.1142/S0217979201004526
https://doi.org/10.1103/PhysRevE.61.167
https://doi.org/10.1103/PhysRevE.61.167
https://doi.org/10.1103/PhysRevE.61.167
https://doi.org/10.1103/PhysRevE.61.167
https://doi.org/10.1088/1742-5468/2011/02/P02035
https://doi.org/10.1088/1742-5468/2011/02/P02035
https://doi.org/10.1088/1742-5468/2011/02/P02035
https://doi.org/10.1103/PhysRevE.54.R3090
https://doi.org/10.1103/PhysRevE.54.R3090
https://doi.org/10.1103/PhysRevE.54.R3090
https://doi.org/10.1103/PhysRevE.54.R3090
https://doi.org/10.1103/PhysRevLett.90.100601
https://doi.org/10.1103/PhysRevLett.90.100601
https://doi.org/10.1103/PhysRevLett.90.100601
https://doi.org/10.1103/PhysRevLett.90.100601
https://doi.org/10.1103/PhysRevE.69.066140
https://doi.org/10.1103/PhysRevE.69.066140
https://doi.org/10.1103/PhysRevE.69.066140
https://doi.org/10.1103/PhysRevE.69.066140
https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1103/PhysRevLett.77.4988
https://doi.org/10.1103/PhysRevLett.77.4988
https://doi.org/10.1103/PhysRevLett.77.4988
https://doi.org/10.1103/PhysRevLett.77.4988
https://doi.org/10.1088/0305-4470/38/7/003
https://doi.org/10.1088/0305-4470/38/7/003
https://doi.org/10.1088/0305-4470/38/7/003
https://doi.org/10.1088/0305-4470/38/7/003
https://doi.org/10.1103/PhysRevLett.106.235702
https://doi.org/10.1103/PhysRevLett.106.235702
https://doi.org/10.1103/PhysRevLett.106.235702
https://doi.org/10.1103/PhysRevLett.106.235702
https://doi.org/10.1209/0295-5075/112/30002
https://doi.org/10.1209/0295-5075/112/30002
https://doi.org/10.1209/0295-5075/112/30002
https://doi.org/10.1209/0295-5075/112/30002
https://doi.org/10.1007/s100510050596
https://doi.org/10.1007/s100510050596
https://doi.org/10.1007/s100510050596
https://doi.org/10.1007/s100510050596
https://doi.org/10.1007/s100510050656
https://doi.org/10.1007/s100510050656
https://doi.org/10.1007/s100510050656
https://doi.org/10.1007/s100510050656
https://doi.org/10.1088/1742-5468/2007/01/P01011
https://doi.org/10.1088/1742-5468/2007/01/P01011
https://doi.org/10.1088/1742-5468/2007/01/P01011
https://doi.org/10.1103/PhysRevLett.96.038701
https://doi.org/10.1103/PhysRevLett.96.038701
https://doi.org/10.1103/PhysRevLett.96.038701
https://doi.org/10.1103/PhysRevLett.96.038701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1088/0305-4470/24/17/012
https://doi.org/10.1088/0305-4470/24/17/012
https://doi.org/10.1088/0305-4470/24/17/012
https://doi.org/10.1088/0305-4470/24/17/012
https://doi.org/10.1088/0305-4470/24/22/003
https://doi.org/10.1088/0305-4470/24/22/003
https://doi.org/10.1088/0305-4470/24/22/003
https://doi.org/10.1088/0305-4470/24/22/003
https://doi.org/10.1103/PhysRevB.47.3404
https://doi.org/10.1103/PhysRevB.47.3404
https://doi.org/10.1103/PhysRevB.47.3404
https://doi.org/10.1103/PhysRevB.47.3404
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1088/1367-2630/16/3/033003
https://doi.org/10.1088/1367-2630/16/3/033003
https://doi.org/10.1088/1367-2630/16/3/033003
https://doi.org/10.1088/1367-2630/16/3/033003
https://doi.org/10.1088/1742-5468/2014/08/P08005
https://doi.org/10.1088/1742-5468/2014/08/P08005
https://doi.org/10.1088/1742-5468/2014/08/P08005
https://doi.org/10.1088/1742-5468/2015/06/P06036
https://doi.org/10.1088/1742-5468/2015/06/P06036
https://doi.org/10.1088/1742-5468/2015/06/P06036
https://doi.org/10.1103/PhysRevE.95.010102
https://doi.org/10.1103/PhysRevE.95.010102
https://doi.org/10.1103/PhysRevE.95.010102
https://doi.org/10.1103/PhysRevE.95.010102
https://doi.org/10.1016/0378-4371(91)90183-D
https://doi.org/10.1016/0378-4371(91)90183-D
https://doi.org/10.1016/0378-4371(91)90183-D
https://doi.org/10.1016/0378-4371(91)90183-D
https://doi.org/10.1088/0305-4470/37/37/003
https://doi.org/10.1088/0305-4470/37/37/003
https://doi.org/10.1088/0305-4470/37/37/003
https://doi.org/10.1088/0305-4470/37/37/003
https://doi.org/10.1142/S0217979297001751
https://doi.org/10.1142/S0217979297001751
https://doi.org/10.1142/S0217979297001751
https://doi.org/10.1142/S0217979297001751
https://doi.org/10.1103/PhysRevB.50.3894
https://doi.org/10.1103/PhysRevB.50.3894
https://doi.org/10.1103/PhysRevB.50.3894
https://doi.org/10.1103/PhysRevB.50.3894
https://doi.org/10.1080/00018739300101544
https://doi.org/10.1080/00018739300101544
https://doi.org/10.1080/00018739300101544
https://doi.org/10.1080/00018739300101544
https://doi.org/10.1088/0305-4470/37/19/R01
https://doi.org/10.1088/0305-4470/37/19/R01
https://doi.org/10.1088/0305-4470/37/19/R01
https://doi.org/10.1088/0305-4470/37/19/R01
https://doi.org/10.1103/PhysRevLett.23.89
https://doi.org/10.1103/PhysRevLett.23.89
https://doi.org/10.1103/PhysRevLett.23.89
https://doi.org/10.1103/PhysRevLett.23.89
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1103/PhysRev.187.732
https://doi.org/10.1007/BF01645749
https://doi.org/10.1007/BF01645749
https://doi.org/10.1007/BF01645749
https://doi.org/10.1007/BF01645749
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1088/0305-4470/14/6/017
https://doi.org/10.1007/BF01022985
https://doi.org/10.1007/BF01022985
https://doi.org/10.1007/BF01022985
https://doi.org/10.1007/BF01022985
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