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Traffic model with an absorbing-state phase transition
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We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is
smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in
speed occurs with probability p, independent of the headway, as long as the current speed is greater than zero.)
In the modified model the free-flow state (with all vehicles traveling at the maximum speed, vmax) is absorbing
for densities ρ smaller than a critical value ρc = 1/(vmax + 2). The phase diagram in the ρ-p plane is reentrant:
for densities in the range ρc,< < ρ < ρc, both small and large values of p favor free flow, while for intermediate
values, a nonzero fraction of vehicles have speeds <vmax. In addition to representing a more realistic description
of driving behavior, this change leads to a better understanding of the phase transition in the original model. Our
results suggest an unexpected connection between traffic models and stochastic sandpiles.
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I. INTRODUCTION

The Nagel-Schreckenberg (NS) model holds a central
position in traffic modeling via cellular automata, because
it reproduces features commonly found in real traffic, such
as the transition between free flow and a jammed state,
start-and-stop waves, and shocks (due to driver overreaction)
[1]. This simple model represents the effect of fluctuations
in driving behavior by incorporating a stochastic element: the
spontaneous reduction of velocity with probability p.

Although the NS model has been studied extensively,
the nature of the transition between free and jammed flow,
in particular, whether it corresponds to a critical point,
remains controversial [2–5]. A proposed definition of the
order parameter in the NS model [6], and a subsequent
comment [7,8] are pertinent to this issue. According to
the authors of Ref. [7], results for the lifetime distribution,
spatial correlations, and relaxation time provide evidence for
a “crossover type jamming transition” from free flow to the
jammed regime, but not for a well-defined phase transition.
Modifications in the update rules of the NS model have been
found to result in a phase transition [9,10]. Krauss et al. [11]
proposed a generalized version of the NS model and showed
numerically that free- and congested-flow phases may coexist.
While the NS model does not exhibit metastable states, which
are important in observed traffic flow, including a slow-to-start
rule, such that acceleration of stopped or slow vehicles is
delayed compared to that of moving or faster cars, can lead
to metastability [12–14]. Takayasu and Takayasu [12] were
the first to suggest a cellular automaton (CA) model with
a slow-to-start rule. Benjamin, Johnson, and Hui introduced
a different slow-to-start rule in Ref. [13], while Barlovic
et al. suggested a velocity-dependent randomization model
[14]. Other models with metastable states are discussed in
Refs. [15,16]. A review of CA traffic models is presented in
Ref. [17].
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In the original NS model, at each time step (specifically, in
the reduction substep), a driver with nonzero velocity reduces
her speed with probability p. Here we propose a simple yet
crucial modification, eliminating changes in speed in this
substep when the distance to the car ahead is greater than
the current speed. We believe that this rule reflects driver
behavior more faithfully than does the original reduction
step, in which drivers may decelerate for no apparent reason.
While one might argue that distractions such as cell phones
cause drivers to decelerate unnecessarily, we can expect that
highways will be increasingly populated by driverless vehicles
exhibiting more rational behavior. The modified model, which
we call the absorbing Nagel-Schreckenberg (ANS) model,
exhibits a line of absorbing-state phase transitions between
free and congested flow in the ρ-p plane. (Here ρ denotes the
density, i.e., the number of vehicles per site.) The modification
proposed here allows us to understand the nature of the phase
transition in the original model, and to identify a proper order
parameter. The ANS model exhibits a surprising reentrant
phase diagram. Some time ago, Wang studied a model with
the same modified reduction step, and found that free flow
is absorbing for all densities �1/7, regardless of p [10].
This model differs from ours in that acceleration to the
maximum allowed speed occurs in a single update, rather than
in increments.

Regarding the nature of the phase transition in the original
NS model, the key insight is that, for p = 0, it exhibits a
transition between an absorbing state (free flow) and an active
state (congested flow) at density ρ = 1/(vmax + 1), where
vmax denotes the maximum speed. Free flow is absorbing
because each car advances the same distance in each time
step, so that the configuration simply executes rigid-body
motion (in the co-moving frame it is frozen). We note that
for ρ < 1/(vmax + 1), many absorbing configurations exist;
which one is attained by the dynamics depends on the initial
condition. Congested flow, by contrast, is active in the sense
that the distances between vehicles change with time. Below
the critical density, activity (if present initially) dies out, and
an absorbing configuration is reached; for ρ > 1/(vmax + 2)
there must be activity, due to lack of sufficient space between
vehicles. Setting p > 0 in the original model is equivalent
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to including a source of spontaneous activity. Since such a
source eliminates the absorbing state [19], the original NS
model does not possess a phase transition for p > 0. (It
should nonetheless be possible to observe scaling phenomena
as p → 0.) A similar conclusion was reached by Souza and
Vilar [5], who drew an analogy between the phase transition at
p = 0 and a quantum phase transition at temperature T = 0.
In their analogy, p > 0 corresponds to T > 0, for which, sensu
stricto, there is again no phase transition.

The remainder of this paper is organized as follows. In the
next section we define the ANS model, pointing out how it
differs from the original NS model. In Sec. III we explain
qualitatively the nature of the phase diagram, and report
simulation results for the phase boundary. Section IV presents
results on critical behavior, followed in Sec. V by a summary
and discussion of our findings.

II. MODEL

The NS model and its absorbing counterpart (ANS) are
defined on a ring of L sites, each of which may be empty or
occupied by a vehicle with velocity v = 0,1, . . . ,vmax. (Unless
otherwise noted, we use vmax = 5, as is standard in studies of
the NS model.) The dynamics, which occurs in discrete time,
conserves the number N of vehicles; the associated intensive
control parameter is ρ = N/L. Denoting the position of the
ith vehicle by xi , we define the headway di = xi+1 − xi − 1
as the number of empty sites between vehicles i and i + 1.
Each time step consists of four substeps, as follows:

(i) Each vehicle with vi < vmax increases its velocity by
one unit: vi → vi + 1

(ii) Each vehicle with vi > di reduces its velocity to vi =
di .

(iii) NS model: each vehicle reduces its velocity by one
unit with probability p.

(iv) ANS model: each vehicle with vi =di reduces its
velocity by one unit with probability p.

(v) All vehicles advance their position in accord with their
velocity.

In practice, given the velocities vi and headways di , there is
no need to keep track of positions: the final substep is simply
di → di − vi + vi+1 for i = 1, . . . ,N − 1, and dN → dN −
vN + v1.

The modification of the third substep leads to several
notable changes in behavior, as reflected in the fundamental
diagram shown in Fig. 1, which contrasts the flux-density
relation in the NS and ANS models. In the ANS model the
flux exhibits a discontinuous first derivative at a certain density
ρc(p) (for any p between zero and one), while in the NS model
the flux and other observables are smooth functions of density
for p > 0. Thus the ANS model exhibits a phase transition for
general p, whereas the NS model has a phase transition only
for p = 0 [6,7]. The flux q generally takes its maximum value
at the transition. (For small p, however, maximum flux occurs
at a density above ρc = 1/(vmax + 2), approaching ρ = 1

vmax+1
for p = 0.) The low-density absorbing phase has vi = vmax

and di � vmax + 1, ∀i; in this phase all drivers advance in a
deterministic manner, with the flux given by j = ρvmax. In the
active state, by contrast, a nonzero fraction of vehicles have

FIG. 1. Flux j versus density in the NS and ANS models for
probabilities p = 0.1 (upper) and p = 0.5 (lower). System size L =
105; vehicles are distributed randomly at t = 0. Error bars are smaller
than symbols.

di � vmax. For such vehicles, changes in velocity are possible,
and the configuration is nonabsorbing. The stationary fluxes in
the NS and ANS models differ significantly over a considerable
interval of densities, especially for high values of p. Below the
critical density ρc, this difference is due the existence of an
absorbing phase in the ANS model. For densities slightly above
ρc, most vehicles have velocity vi = vmax and di = vmax + 1,
although there is no absorbing state. As the density approaches
unity, the differences between the fluxes in the ANS and NS
models become smaller.

For fixed deceleration probability p, the flux j = ρv first
grows, and then decreases as we increase the vehicle density
ρ. An intriguing feature is the dependence of the density at
maximum flux on the probability p: Fig. 2 shows that the
density at maximum flux decreases with increasing p until
reaching a minimum near p = 0.5, and subsequently increases
with increasing p. This reflects the reentrant nature of the phase
diagram, as discussed in Sec. III.

A. Special cases: p = 0 and p = 1

For the extreme values p = 0 and p = 1 the ANS model is
deterministic; these two cases deserve comment. For complete-
ness we mention the corresponding results pertaining to the NS
model given in Ref. [18], which also includes a discussion of
mean field theories. For p = 0, the NS and ANS models are
identical. The system reaches an absorbing state, vi = vmax,
∀i, for densities ρ � 1/(vmax + 1). For higher densities we
observe nonzero activity in the steady state. We note however
that there are special configurations, in which vi = di , ∀i,
with some vi < vmax, whose evolution corresponds to a rigid
rotation of the pattern. [A simple example is vi = di = n,
∀i, with n = 1, 2, 3, or 4, and density ρ = 1/(n + 1).] Since
our interest here is in the model with 0 < p < 1 we do not
comment further on such configurations.

For the NS model with p = 1, from one step to the next,
each velocity vi is nonincreasing. (Of course vi → vi + 1 at
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(a)

(b)

FIG. 2. Steady-state flux versus density in the ANS model for
(a) p = 0.1, 0.3, and 0.5, and (b) p = 0.5, 0.7, and 0.9. Note that
the density of maximum flux first decreases, and then increases, with
increasing p; the minimum occurs near p � 0.5. System size L =
105; vehicles are distributed randomly at t = 0. Error bars are smaller
than symbols.

the acceleration substep, but this is immediately undone in
the subsequent substeps.) Thus if the evolution leads to a
state in which even one vehicle has velocity zero, all vehicles
eventually stop. Such an event is inevitable for ρ > 1/3, since
in this case di � 1 for at least one vehicle, which is obliged
to have vi = 0 after one step. For ρ � 1

3 , steady states with
nonzero flux are possible, depending on the choice of initial
condition. Such configurations are metastable in the sense that
the stationary state depends on the initial distribution. In the
ANS model with p = 1 the mean velocity in steady state is
zero only for ρ � 1/2. For ρ � 1/(vmax + 2), we find that
the system always reaches an absorbing configuration with
v = vmax. In the remaining interval, 1/(vmax + 2) < ρ � 1/2,
we find v = 1 − 2ρ.

III. PHASE DIAGRAM

A. Initial condition dependence

In studies of traffic, states are called metastable if they can
be obtained from some, but not all initial conditions [12–16];
such states are an essential component of real traffic. Since
the NS model is not capable of reproducing this feature,
models with modified update rules have been investigated
by several authors [12–14]. In the ANS model, by contrast,
there is a region in the ρ-p plane in which, depending on
the initial condition, the system may evolve to an active state
or an absorbing one. Our results are consistent with the usual
scenario for absorbing-state phase transitions [19–21]: activity
in a finite system has a finite lifetime; in the active phase,
however, the mean lifetime diverges as the system size tends
to infinity. Properties of the active phase may be inferred from
simulations that probe the quasistationary regime of large but
finite systems [24].

To verify the existence of metastable states in the ANS
model, we study its evolution starting from two very different
classes of initial conditions (ICs): homogeneous and jammed.
In a homogeneous IC, the headways di are initially are uniform
as possible, given the density ρ = 1/(1 + d), where d denotes
the mean headway. In this case the initial velocity is vmax for
all vehicles. In a jammed IC, N vehicles occupy N contiguous
sites, while the remaining N (ρ−1 − 1) sites are vacant; in this
case di = 0 for i = 1, . . . ,N − 1, and only vehicle N has a
nonzero initial velocity (vN = vmax). Homogeneous ICs are
much closer to an absorbing configuration than are jammed
ICs. We note that random initial conditions lead to the same
steady state as jammed ICs.

Figure 3 shows the fundamental diagram obtained using
homogeneous and jammed ICs for p = 0.1; for this value of
p the stationary state is the same, regardless of the IC, except
near ρ = 1

7 where, for the homogeneous ICs, an absorbing
configuration is attained, having a greater steady-state flux
than obtained using jammed ICs. For higher probabilities p,
we find a larger interval of densities in which the stationary
behavior depends in the choice of IC. In Fig. 4, for p = 0.5,
this interval corresponds to 0.118 � ρ � 0.143; higher fluxes
(black points) are obtained using homogeneous ICs, and lower
fluxes (red) using jammed ICs. Homogeneous ICs rapidly
evolve to an absorbing configuration, while jammed ICs, which
feature a large initial activity, do not fall into an absorbing
configuration for the duration of the simulation (tmax = 107),
for the system size (L = 105) used here. In Fig. 4, the flux
obtained using jammed ICs (red stars) exhibits a discontinuous
first derivative, signaling a continuous phase transition. The
flux for homogeneous ICs (black circles), exhibits a downward
jump at ρ = 1/7. While the latter might be interpreted as
evidence of a discontinuous phase transition, we note that the
absorbing state, to which homogenous ICs evolve for smaller
densities, ceases to exist for ρ > 1/7. Thus ρ = 1/7 can be
seen as the terminal line of the absorbing phase. As in sandpile
models, the absorbing-state phase transition occurs at a smaller
density (in the ANS model, that marking the discontinuity in
the derivative of j ), at which a nonabsorbing (active) phase
first appears. For 0 < p < 1, the properties of the active phase
(obtained using either jammed or random ICs) are nonsingular
at ρ = 1/7.
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(a)

(b)

FIG. 3. Steady-state flux versus density for p = 0.1 and L =
105. Homogeneous (stars) and jammed (circles) ICs lead to identical
stationary states [panel (a)] except for a small interval of densities
near maximum flux highlighted in panel (b). Error bars are smaller
than symbols.

Systematic investigation of the steady-state flux obtained
using homogeneous and jammed ICs leads to the conclusion
that the ρ-p plane can be divided into three regions. To begin,
we recall that for ρ > 1/(vmax + 2) and p > 0, the mean
velocity v must be smaller than vmax. Thus the activity is
nonzero and the configuration (i.e., the set of values vi and di)
changes with time. In this region, homogeneous and jammed
ICs always lead to the same steady state.

For ρ � 1/(vmax + 2), absorbing configurations exist for
any value of p. There is nevertheless a region with ρ <

1/(vmax + 2) in which activity is long-lived. In this region,
which we call the active phase, the steady state depends on
whether the IC has little activity (homogeneous) or much
activity (jammed). For smaller densities, all ICs evolve to an
absorbing configuration; we call this the absorbing phase. The
boundary between the active and absorbing phases, determined
via the criterion of different steady states for homogeneous

(a)

(b)

FIG. 4. Steady-state flux versus density as in Fig. 3, but for
p = 0.5.

and jammed ICs, is shown in Fig. 5. We note that in Wang’s
model [10] there are only two regions: an absorbing phase for
ρ � 1/7 and an active one for ρ > 1/7.

Our results are consistent with the following scenario,
familiar from the study of phase transitions to an absorbing
state [19–21]: for finite systems, all ICs with ρ < 1/(vmax + 2)
and p > 0 eventually fall into an absorbing configuration.
Within the active phase, however, the mean lifetime of activity
grows exponentially with system size. The phase boundary
represents a line of critical points, on which the lifetime grows
as a power law of system size. (Further details on critical
behavior are discussed in Sec. IV.) A surprising feature of
the phase boundary is that it is reentrant: for a given density
in the range 0.116 < ρ < 1/(vmax + 2), the absorbing phase
is observed for both small and large p values, and the active
phase for intermediate values. The reason for this is discussed
in Sec. III C. We denote the upper and lower branches of the
phase boundary by p+(ρ) and p−(ρ), respectively; they meet
at ρc,< � 0.116.
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FIG. 5. Boundary between active and absorbing phases in the ρ-p
plane. Black points joined by lines: preliminary estimates from initial-
condition dependence as explained in text. Isolated red points: precise
estimates obtained via finite-size scaling as described in Sec. IV. The
open circle at ρ = 1/7, p = 0 is not part of the phase boundary: for
p = 0 the transition occurs at ρ = 1/6. The open circle ρ = 1/7,
p = 1 marks the other end of the phase boundary; we note however
that at this point, all initial conditions evolve to the absorbing state.

The phase boundary is singular at its small-p limit. As
p tends to zero from positive values, the critical density
approaches 1/7, but for p = 0 the transition occurs at ρ = 1/6.
The phase diagram of the ANS model for 0 < p < 1 is similar
to that of a stochastic sandpile [22,23]. In the sandpile, there are
no absorbing configurations for particle density ρ > zc − 1,
where zc denotes the toppling threshold; nevertheless, the
absorbing-state phase transition at a density strictly smaller
than this value. Similarly, in the ANS model there are no
absorbing configurations for ρ > 1/7, but the phase transition
occurs at some smaller density, depending on the deceleration
probability p. Further parallels between the ANS model and
stochastic sandpiles are noted below.

The phase boundary shown in Fig. 5 represents a prelim-
inary estimate, obtained using the following criterion. Points
along the lower critical line p−(ρ) correspond to the smallest p
value such that each of 200 arbitrary ICs remain active during a
time of 107 steps, in a system of L = 105 sites. Similarly, p+(ρ)
corresponds to the largest p value such that all 200 realizations
remain active. For selected points, a precise determination was
performed, as described in Sec. IV. We defer a more precise
mapping of the overall phase diagram to future work.

The phase transitions at p−(ρ) and p+(ρ) appear to be
continuous. Figure 6 shows the steady-state activity (defined
below) versus p for density ρ = 1/8. In the vicinity of the
transition, the curves become sharper with increasing system
size, as expected at a continuous phase transition to an
absorbing state.

B. Order parameter

Having identified a continuous absorbing-state phase transi-
tion in the ANS model, further analysis requires that we define
an appropriate order parameter or activity density. Since the

FIG. 6. Steady-state activity ρa versus p for vehicle density ρ =
1/8. System sizes (upper to lower curves) N = 1000, 2000, and 4000.
Error bars smaller than symbols.

absorbing state is characterized by vi = vmax,∀i, one might be
inclined to define the activity density simply as ρa = vmax − v.
The problem with this definition is that not all configurations
with vi = vmax,∀i are absorbing: a vehicle with di = vmax may
reduce its speed to vmax − 1, yielding activity in the first sense.
Since such a reduction occurs with probability p, it seems
reasonable to define the activity density as

ρa = vmax − v + pρa,2 ≡ ρa,1 + pρa,2, (1)

where ρa,2 denotes the fraction of vehicles with vi = di =
vmax. According to this definition, the activity density is
zero if and only if the configuration is absorbing, that is, if
vi = vmax and di > vmax, ∀i. Studies of large systems near the
critical point reveal that ρa,1 � ρa,2, so that the latter can be
neglected in scaling analyses. It is nonetheless essential to treat
configurations with ρa,2 > 0 as active, even if ρa,1 = 0.

C. Reentrance

In this subsection we discuss the reason for reentrance, that
is, why, for ρc,< < ρ < ρc, the system reaches the absorbing
state for large p as well as small p. Since deceleration is
associated with generation of activity (i.e., of speeds <vmax), a
reduction in activity as p tends to unity seems counterintuitive.
The following intuitive argument helps to understand why
this happens. For p � 0, vehicles rarely decelerate if they
have sufficient headway to avoid reaching the position of
the car in front. This tends to increase the headway of the
car behind, so that (for ρ < ρc), all headways attain values
�vmax + 1, which represents an absorbing configuration. For
p = 1, a car with speed vi = di always decelerates, which
tends to increase its own headway. In either case, p = 0 or
p = 1, as reduced headway (i.e., inter-vehicle intervals with
di < vmax + 1) is transferred down the line, vehicles may be
obliged to decelerate, until the reduced headway is transferred
to an interval with headway di large enough that no reduction
in velocity is required. [Intervals with di > vmax + 1, which we
call troughs, always exist for ρ < ρc = 1/(vmax + 2)]. When
all reduced headways are annihilated at troughs, the system
attains an absorbing configuration.
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FIG. 7. Vehicle positions relative to the first (lowest) vehicle
versus time t (horizontal) for t � 2, in a system with N = 20, vmax =
2, and vehicle density ρ = 2/9 < ρc = 0.25. Initially, all vehicles
have vi = vmax. The headways di initially alternate between three
and four, except for d19 = 0 and d20 = 7. Filled (open) circles denote
D (N ) events, i.e., events in which a vehicle with speed v(i) = d(i)
decelerates (does not decelerate). In an absorbing configuration all
velocities are equal, yielding a set of horizontal lines with spacings
�vmax + 1. Left panel: p = 0, system inactive for t > 4; right
panel: p = 1, system inactive for t > 7; center panel: example of
a realization with p = 0.6 in which activity persists until t = 56
(evolution for t > 30 not shown).

Call events in which a vehicle having vi = di decelerates D
events, and those in which such a vehicle does not decelerate
N events. For ρ < ρc, if only D events (or only N events)
are allowed, the system attains an absorbing configuration via
annihilation of reduced headways with troughs. Thus some
alternation between D and N events is required to maintain
activity, and the active phase corresponds to intermediate
values of p.

These observations are illustrated in Fig. 7, for a system of
twenty vehicles with vmax = 2 and density ρ = 2/9 < ρc =
0.25. Initially, all vehicles have vi = vmax. The headways
di initially alternate between three and four (the latter are
troughs), except for d19 = 0 and d20 = 7. In the left panel,
for p = 0, the system reaches an absorbing configuration after
four time steps. Similarly, in the right panel, for p = 1, an ab-
sorbing configuration is reached after seven steps. For p = 0.6
(middle panel), the evolution is stochastic. Most realizations
reach an absorbing configuration rapidly, but some remain ac-
tive longer, as in the example shown here. From the distribution
of D and N events, it appears that activity persists when vehi-
cles first suffer an N event, reducing their own headway, and
subsequently (one or two steps later) suffer a D event, reducing
the headway of the preceding vehicle. Such an alternation of
N and D events allows a region with reduced headways to
generate more activity before reaching a trough [25].

IV. CRITICAL BEHAVIOR

We turn now to characterizing the phase transition along the
lines p−(ρ) and p+(ρ). Since the transition is continuous, this
requires that we determine the associated critical exponents,
in order to identify the universality class of the ANS model.
The analysis turns out to be complicated by strong finite-
size effects: different from simple systems exhibiting an

absorbing-state phase transition, such as the contact process,
for which studies of systems with L � 1000 yield good
estimates for critical exponents [19], here we require systems
of up to 105 sites to obtain reliable results. We are nevertheless
able to report precise results at several points along the phase
boundary.

We use quasistationary (QS) simulations to probe the
behavior at long times conditioned on survival of activity [24].
Since the deceleration probability p is continuous while the
density ρ can only be varied in discrete steps, we keep the
latter fixed and vary the former in each series of studies.
As in other studies of QS behavior at absorbing-state phase
transitions, we focus on the finite-size scaling (FSS) of the
activity density, ρa , the lifetime, τ , and the moment ratio
m = 〈ρ2

a〉/ρ2
a , as functions of system size, N [19,24]. At a

critical point, these variables are expected to exhibit scale-free
(power-law) dependence on N , that is, ρa ∼ N−β/ν⊥ and
τ ∼ Nz, where β is the order-parameter exponent and ν⊥
the exponent that governs the divergence of the correlation
length as one approaches the critical point. In the active
phase, ρa approaches a nonzero constant value, while τ grows
exponentially as N → ∞. In the absorbing phase, ρa ∼ 1/N

while τ grows more slowly than a power law as N → ∞. At
the critical point, the moment ratio is expected to converge to
a nontrivial limiting value, m = m∞ + O(N−λ), with λ > 0.
In the active (inactive) phase, m curves sharply downward
(upward) when plotted versus 1/N . These are the criteria we
employ to determine the critical point, pc(ρ). The distance
from the critical point can be estimated from the curvature of
log-log plots of ρa and τ versus N .

As noted in Sec. III B, the order parameter is the sum
of two contributions: ρa = ρa,1 + pρa,2. In simulations, we
therefore determine ρa,1 and ρa,2 separately. In the vicinity
of the critical point we find ρa,1 ∼ N−0.5 and ρa,2 ∼ N−0.9,
showing that the fraction ρa,2 of vehicles with vi = di = vmax

decays more rapidly than ρa,1 = vmax − v, so that it makes
a negligible contribution to the activity density for large N .
We therefore adopt ρa,1 as the order parameter for purposes
of scaling analysis. Configurations ρa,1 = 0 and ρa,2 > 0 are
nevertheless considered to be active; only configurations with
vi = vmax and di > vmax, ∀i, are treated as absorbing.

We study rings of 1000, 2000, 5000, 10 000, 20 000, 50 000,
and 100 000 sites, calculating averages over a set of 20 to
160 realizations. Even for the largest systems studied, the
activity density reaches a stationary value within 106 time
steps. We perform averages over the subsequent 108 steps.
As detailed in Ref. [24], the QS simulation method probes
the quasistationary probability distribution by restarting the
evolution in a randomly chosen active configuration whenever
the absorbing state is reached. A list of Nc such configurations,
sampled from the evolution, is maintained; this list is renewed
by exchanging one of the saved configurations with the current
one at rate pr . Here we use Nc = 1000, and pr = 20/N .
During the relaxation phase, we use a value of pr that is
ten times greater, to eliminate the vestiges of the initial
configuration from the list. The lifetime τ is taken as the mean
time between attempts to visit an absorbing configuration, in
the QS regime.

Initial configurations are prepared by placing vehicles as
uniformly as possible (for example, for density ρ = 1/8, we
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FIG. 8. Activity density versus number of vehicles for density
1/8 and (lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and
0.2687. Error bars are smaller than symbols. Inset: scaled activity
density ρ∗

a = N 0.5ρa versus number of vehicles.

set di = 7, ∀i), and then exchanging distances randomly. In
such an exchange a site j is chosen at random and the
changes dj → dj − 1 and dj+1 → dj+1 + 1 are performed,
respecting the periodic boundary condition, dN+1 ≡ d1. The
random exchange is repeated Ne times (in practice we use
Ne = 2N ), avoiding, naturally, negative values of dj . Since
headways dj < vm are generated in this process, at the first
iteration of the dynamics, velocities vj < vmax arise, leading
to a relatively large, statistically uniform initial activity density.

We performed detailed studies for densities ρ = 1/8, on
both the upper and lower critical lines, and for density
17/144 = 0.11805, on the lower line. Figures 8–10 show,
respectively, the dependence of the order parameter, lifetime
and moment ratio m on system size for density 1/8 and p

values in the vicinity of the lower critical line. In the insets of
Figs. 8 and 9 the values of ρa and τ are divided by the overall
trend to yield ρ∗

a ≡ N0.5ρa and τ ∗ = τ/N . These plots make

FIG. 9. Lifetime versus number of vehicles for density 1/8 and
(lower to upper) p = 0.2679, 0.2681, 0.2683, 0.2685, and 0.2687.
Error bars are smaller than symbols. Inset: scaled lifetime τ ∗ =
N−1.0τ versus number of vehicles.

FIG. 10. Moment ratio m versus reciprocal system size for
density 1/8 and (upper to lower) p = 0.2679, 0.2681, 0.2683, 0.2685,
and 0.2687.

evident subtle curvatures hidden in the main graphs, leading
to the conclusion that pc(ρ = 1/8) is very near 0.2683.

A more systematic analysis involves the curvatures of these
quantities: we fit quadratic polynomials,

ln ρa = const + a ln N + b(ln N )2, (2)

and similarly for ln τ , to the data for the four largest system
sizes. The coefficient of the quadratic term, which should be
zero at the critical point, is plotted versus p in Fig. 11. Linear
interpolation to b = 0 yields the estimates pc = 0.26830(3)
(data for activity density) and pc = 0.26829(2) (data for
lifetime); we adopt pc = 0.26829(3) as our final estimate.
(Figures in parentheses denote statistical uncertainties.) The
data for m, although more scattered, are consistent with this
estimate: from Fig. 10 it is evident that pc lies between 0.2681
and 0.2683.

FIG. 11. Curvature of ln ρa (filled symbols) and ln τ (open
symbols) as functions of ln N , as measured by the coefficient b of the
quadratic term in least-squares quadratic fits to the data in Figs. 8 and
9. Straight lines are least-squares linear fits to b versus deceleration
probability p, for vehicle density ρ = 1/8. Intercepts with the line
b = 0 furnish estimates of pc.
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FIG. 12. Derivatives of (lower to upper) m, ln ρa and ln τ with
respect to p in the vicinity of pc, versus N for vehicle density ρ = 1/8.
Lines are least-squares linear fits to the data.

To estimate the critical exponents β/ν⊥ and z we perform
linear fits to the data for ln ρa and ln τ versus ln N (again
restricted to the four largest N values), and consider the slopes
as functions of p. Interpolation to pc yields the estimates:
β/ν⊥ = 0.500(3) and z = 1.006(8). A similar analysis yields
mc = 1.306(6). The principal source of uncertainty in these
estimates is the uncertainty in pc.

Using the data for ρa , τ , and m we also estimate the
critical exponent ν⊥. Finite-size scaling implies that the
derivatives |dm/dp|, d ln τ/dp, and d ln ρa/dp, evaluated at
the critical point, all grow ∝L1/ν⊥ . We estimate the derivatives
via least-squares linear fits to the data on an interval that
includes pc. (The intervals are small enough that the graphs
show no significant curvature.) Power-law dependence of the
derivatives on system size is verified in Fig. 12. Linear fits to
the data for the four largest sizes, for ln ρp, ln τ , and m yield
1/ν⊥ = 0.494(15), 0.495(15), and 0.516(29), respectively,
leading to the estimate ν⊥ = 2.00(5). Repeating the above
analysis for simulations at vehicle density ρ = 17/144, we find
p−(17/144) = 0.4096(1), β/ν⊥ = 0.503(6), z = 1.011(15),
m = 1.302(2), and ν⊥ = 2.02(2).

Thus, for the two points studied on the lower critical
line, the results are consistent with a simple set of exponent
values, namely, z = 1, ν⊥ = 2, and β = 1. The same set of
critical exponents appears in a system of activated random
walkers (ARW) on a ring, when the walkers hop in one
direction only [26]. The critical moment ratio for ARW is
mc = 1.298(4), quite near present estimates. We suggest that
these values characterize a universality class of absorbing-state
phase transitions in systems with a conserved density (of

walkers in ARW, and of vehicles in the present instance), and
anisotropic movement. The ARW with symmetric hopping is
known to belong to the universality class of conserved directed
percolation [27], which also includes conserved stochastic
sandpiles [22,23].

A study on the upper critical line for vehicle density
ρ = 1/8 yields results that are similar but slightly different.
Repeating the procedure described above, we find p+(1/8) =
0.89590(5), β/ν⊥ = 0.487(8), z = 1.021(15), ν⊥ = 1.98(6),
and mc = 1.315(5). The exponent values are sufficiently near
those obtained on the lower critical line that one might
attribute the differences to finite-size effects. We defer to future
work more detailed analyses, to determine whether scaling
properties along the upper and lower critical lines differ in any
respect.

V. SUMMARY

We consider a version of the Nagel-Schreckenberg model in
which probabilistic deceleration is possible only for vehicles
whose velocity is equal to the headway, vi = di . In the
resulting ANS model, a free-flow configuration, vi = vmax and
di > vmax, ∀i, is absorbing for any value of the deceleration
probability p. The phase transition in the original NS model at
deceleration probability p = 0 is identified with the absorbing-
state transition in the ANS model: the two models are identical
for p = 0. In the original model, a nonzero deceleration
probability corresponds to a spontaneous source of activity
which eliminates the absorbing state, and along with it, the
phase transition.

The ANS model, by contrast, exhibits a line of absorbing-
state phase transitions in the ρ-p plane; the phase diagram
is reentrant. We present preliminary estimates for the phase
boundary and several critical exponents. The latter appear to
be associated with a universality class of absorbing-state phase
transitions in systems with a conserved density and asymmetric
hopping, such as activated random walkers (ARWs) with
particle transfer only in one direction [26]. In this context
it is worth noting that in traffic models, as well as in sandpiles
and ARW, activity is associated with a local excess of density:
in sandpiles, activity requires sites with an above-threshold
number of particles; in ARW, it requires an active particle
jumping to a site occupied by an inactive one; and in the ANS
model, it requires headways d smaller than vmax + 1. One
may hope that the connection with stochastic sandpiles will
lead to a better understanding of traffic models, and perhaps
of observed traffic patterns.
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[20] G. Ódor, Universality in Nonequilibrium Lattice Systems:
Theoretical Foundations (World Scientific, Singapore, 2007).

[21] M. Henkel, H. Hinrichsen, and S. Lubeck, Non-Equilibrium
Phase Transitions Volume I: Absorbing Phase Transitions
(Springer-Verlag, The Netherlands, 2008).
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