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We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC)
formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either
first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing
PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C11. This B2
model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field
results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin
the evolution of APBs.
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I. INTRODUCTION

A fundamental problem in science is understanding multi-
scale phenomena. As a result of decades of research, molecular
dynamics (MD) is now powerful enough to accurately predict
the structure of quickly folding proteins [1] and faceting at
asymmetrical grain boundaries [2] with atomic resolution.
However, MD is fundamentally constrained by the fastest
vibrational frequency of the system, so time scales beyond
a microsecond are normally inaccessible. Unfortunately, most
interesting phenomena in materials science occur over much
longer time scales.

On the other extreme, phase-field (PF) methods are able to
capture mesoscale phenomena. PF theory is based on a free
energy of the system that is a functional of the various order
parameters, statistically averaging short time and length scales,
and as a result permits simulation of much longer times and
distances [3]. However, this spatial averaging results in the
loss of atomic features such as grain boundary and dislocation
structure.

The phase-field-crystal (PFC) method operates in between
these two regimes. Like traditional PF models, PFC theory
involves a free energy functional, and it averages over rapid
fluctuations in time to give a time scale of evolution on the
order of diffusion rather than atomic vibration. However,
unlike traditional PF, the free energy does not average over
atomic distances, resulting in pattern formation at equilibrium.
The simplest such free energy was inspired by the Swift-
Hohenberg equation [4],

F =
∫

V

{
φ

2
[−ε + (1 + ∇2)2]φ + φ4

4

}
dr, (1)

where φ is interpreted as the nondimensional atomic density.
Although originally phenomenologically motivated, PFC can
be derived as a crude approximation of classical density
functional theory [5]. The simple PFC model in Eq. (1) gives
accurate descriptions of elasticity: it reproduces both Read and
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Shockley grain boundary energies and Matthews and Blakeslee
misfit dislocation behavior during epitaxy [4]. Further, this
model with minor modifications has been quantitatively fit to
bcc iron [6,7].

Unfortunately, Eq. (1) can only produce stripes, rods, and
bcc for small ε [8]. Consequently, there has been significant
effort to adapt the free energy to reproduce other types of
crystal symmetries including fcc, hcp, simple cubic, diamond
cubic, and honeycomb [9–13] and to model binary and ternary
alloys [5,14–17]. Models have also been created to include
vapor phases [18,19], and electromagnetic effects [20,21].

Current models, however, are unable to describe any
structures with sublattice ordering, even structures as simple as
the B2 CsCl structure, despite these structures making up a sig-
nificant fraction of actual compounds of experimental interest.
Interesting B2 compounds include the highly ductile rare earth
intermetallics (YAg, YCu, DyCu) [22] and metal aluminides
with high-temperature structural stability (FeAl, CoAl, NiAl)
[23]. The vast majority of so-called two-dimensional materials
beyond graphene such as BN and MoS2 also all fall under
the general category of ordered crystals [24]. In order to
study chemical vapor deposition growth, grain structure, grain
boundary mobility, and elastoplasticity for these compounds
under the PFC methodology, existing models do not suffice.

Further, because nearly all existing PFC models focus on
solid-liquid coexistence, the only example of a second-order
transition line in PFC theory is Seymour et al.’s paramagnetic
to ferromagnetic transition [21]. However, order-disorder
transitions can be both first order, for example Cu3Au (L12)
and DyCu (B2) [25], or second order, for example CuZn (B2)
and Fe3Al (D03) [26]. Second-order transitions are interesting
as not only do they exhibit their namesake discontinuity in
the second derivative of the free energy, but they also do not
form wetted domain boundaries, instead exhibiting correlation
lengths between antiphase boundaries (APBs) that diverge as
the phase boundary is approached [27].

This paper develops an equimolar binary PFC model that
allows for sublattice ordering and that can be used to model
a wide class of compounds. Section II derives the model
directly from classical density functional theory, describes the
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general procedure for modeling any compound of interest, and
implements a more appropriate temperature dependence of the
Debye-Waller factor than used in the original structural PFC
(XPFC) models [9,10]. Section III examines the analytical
behavior, elasticity, and numerical phase diagram for the
specific case of a B2 compound. Section IV applies this B2
model to the study of antiphase boundaries and their dynamical
interactions with grain boundaries.

II. ORDERED BINARY PFC MODEL

A. Derivation from CDFT

Classical density-functional theory (CDFT) postulates that
the free energy of a system is a functional of its density.
Following the method of derivation by Huang [28], if we
expand the Helmholtz free energy around a constant state (i.e.,
liquid) to second order, then

F [ρA(r)] � F [ρA0] +
∫

V

δF [ρA]

δρA(r)

∣∣∣∣
ρA=ρA0

�ρA(r)dr

+ 1

2!

∫
V

∫
V1

δ2F [ρA]

δρA(r)δρA(r1)

∣∣∣∣
ρA=ρA0

×�ρA(r)�ρA(r1)dr1dr, (2)

where ρA is the density, ρA0 is the reference density, and
�ρA = ρA − ρA0. In all the analysis that follows, constants
in energy will be ignored because they do not affect behavior.
The first variation in Eq. (2) does not depend on interactions
and is consequently just the entropic ideal free energy. The
second term has been identified with the isotropic two-particle
direct correlation function by the classical density functional
theory of freezing [29]. With these changes, the modified one-
component free energy is

F [ρA] =
∫

V

(
ρA ln

ρA

ρA0
− �ρA − 1

2
�ρAC

(2)
AA ∗ �ρA

)
dr,

(3)

where C
(2)
AA ∗ �ρA = ∫

V1
C

(2)
AA(|r1 − r|)�ρA(r1)dr1, and C

(2)
AA

is the two-particle correlation function. For the case of a two-
component system,

F = FA + FB − kT

∫
�ρAC

(2)
AB ∗ �ρBdr, (4)

since C
(2)
AB = C

(2)
BA, where C

(2)
AB is a partial correlation function

between A and B [5].
Performing the substitutions ρ = ρA + ρB , c = ρA/ρ, and

ρ0 = ρA0 + ρB0 results in

F = kT

∫ {
ρ ln

ρ

ρ0
− (ρ − ρ0)

− 1

2
ρ
[
cC

(2)
AAc + (1 − c)C(2)

BB(1 − c) + 2cC
(2)
AB (1 − c)

]
ρ

+ ρ[(1 − c) ln(1 − c) + c ln c] + ρc

×
[(

C
(2)
AA − C

(2)
AB

)
ρA0 + (

C
(2)
AB − C

(2)
BB

)
ρB0 + ln

ρB0

ρA0

]}
dr

(5)

as in [30], where
∫

φ1C
(2) ∗ φ2dr = ∫

φ2C
(2) ∗ φ1dr is written

as
∫

φ1C
(2)φ2dr for brevity. For an AB compound, using the

following substitutions [28]:
(i) ψ = 2c − 1 = ρA−ρB

ρA+ρB
,

(ii) n = ρ−ρ0

ρ0
,

(iii) �C = ρ0

4 (C(2)
AA + C

(2)
BB − 2C

(2)
AB),

(iv) δC = ρ0

4 (C(2)
AA − C

(2)
BB),

(v) C = ρ0

4 (C(2)
AA + C

(2)
BB + 2C

(2)
AB),

expanding n and ψ to fourth order, and ignoring linear terms
as is customary [5] results in

F = kTρ0

∫
V

{
n

2
[1 − (C + 2δCψ + ψ�Cψ)]n − 1

6
n3

+ 1

12
n4 + 1

2
ψ

[
ln

ρB0

ρA0
+ 2�C

ρ0
(ρA0 − ρB0)

]
(n + 1)

+ 1

2
ψ(1 − �C)ψ + 1

12
ψ4 − nδCψ − nψ�Cψ

+ 1

2
nψ2

}
dr. (6)

As is typical in PFC models, n is interpreted as the normal-
ized atomic density and ψ as the normalized difference in
composition. Because the ψ expansion is performed around
ψ = 0, this model is only appropriate for systems where
c � 1/2. Of course, a more general model could be derived
by expanding around a generic concentration, at the cost of
increased complexity. In the random binary alloy case, ψ is
assumed to vary on a length scale much larger than the atomic
unit cell. In this limit, Eq. (6) reduces to the free energy of
the binary alloy [30]. However, drawing inspiration from the
theory of concentration waves, our model regards ψ as a field
that specifies the chemical identity of atoms inside a unit cell
[31].

Two additional simplifying assumptions are now made in
order to make Eq. (6) more tractable. First, the fourth-order
convolution term, nψ�Cnψ , is neglected for numerical ease.
Second, it is assumed that C

(2)
AA = C

(2)
BB and ρA0 = ρB0. This

assumption treats pure A and B as equivalent and yields a phase
diagram that is symmetric about a 50-50 stoichiometry. Using
these two assumptions, Eq. (6) simplifies to

F = kTρ0

∫
V

[
1

2
n2 − 1

6
n3 + 1

12
n4 − 1

2
nCn + 1

2
ψ2

+ 1

12
ψ4 − 1

2
ψ�Cψ + 1

2
nψ2 − nψ�Cψ

]
dr. (7)

In a situation where the effect of the ordering on the free
energy is considered minor in comparison to the overall crystal
structure, we phenomenologically add a factor of ε to all terms
that involve ordering,

F̃ =
∫

V

[
1

2
n2 − 1

6
n3 + 1

12
n4 − 1

2
nCn

+ ε

(
1

2
ψ2 + 1

12
ψ4 − 1

2
ψ�Cψ + 1

2
nψ2

− nψ�Cψ

)]
dr, (8)
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where F̃ = F/(kTρ0). This ε factor will be further explained
in Sec. III.

As noted by others [28,30], although PFC equations are
derived from CDFT, the approximation is poor. Although
originally the isotropic correlation functions such as C

(2)
AA

were identified with the correlation functions for liquids at
their melting point (which are experimentally measurable),
it was soon realized that it was nearly impossible for these
correlation functions to stabilize crystal structures other than
bcc. This is because upon nondimensionalization, all liquid
correlation functions practically collapse to a single curve
[32]. Consequently, ansatz correlation functions were quickly
adopted [9], and the current method of interpreting equations
derived like Eq. (8) is that they are inspired by CDFT but are
ultimately phenomenological in origin.

B. Correlation function determination

In order to construct �C and C, we adapt a methodology
similar to Greenwood et al. by considering their form in
Fourier space [10]. In this section, we demonstrate a method
to determine where the peaks of the correlation function in
Fourier space should be for a given target structure.

In the case of a bulk crystal, we can exactly express the
density as a Fourier series over all the reciprocal lattice vectors,
namely,

ρA = ρ̄A +
∑

k

AA(k)eik·r. (9)

In the limit where ρA consists of δ functions weighted by fA

at each atomic position, orthogonality gives easily calculable
values for the amplitudes in terms of structure factors, namely,

AA(k) = fA

V

∑
j∈cell

e−ik·rj = 1

V
SA(k), (10)

where V is the volume of the unit cell, j indexes through all
atoms in the unit cell, and SA ≡ fA

∑
e−ik·rj is the structure

factor of A, consistent with the definition by Cullity and
Kittel [33,34] (this definition is not universal [35,36]). Fourier
expanding n and ψ using the same reciprocal lattice vectors
as A and B results in

An = 1

ρ0
(AA + AB) (11)

and

Aψ � 1

ρ0
(AA − AB), (12)

where the approximation ρA(r) + ρB(r) � ρ0 [equivalent to
assuming n(r) is small] is used for deriving the latter
expression.

Because the exact values calculated from Eqs. (11) and (12)
depend on the δ function assumption, these values will never
occur in the numerical model. What is more important than the
exact value calculated is whether the amplitude for a given k
value is zero or nonzero, since the free energy is only affected
by the value of the correlation function at k values when the
amplitude for that same k is nonzero. This is because, after

FIG. 1. Structure for a B2 crystal. The origin used for calculating
the structure factor is at the center of a dark blue (black) atom.

Fourier expanding n,∫
V

nCndr = V
∑

k

|An(k)|2Ĉ(|k|), (13)

where the hat denotes the Fourier transform. Since the
amplitude for each individual component is proportional to its
structure factor, we define Sn ≡ SA + SB and Sψ ≡ SA − SB ,
and we expect the underlying symmetries of these “structure
factors” to preserve the symmetries in the amplitudes as is
the case for experimental structure factors [33]. In order to
calculate Sn and Sψ , the simplifying assumption fA = fB = f

is employed, consistent with assuming ρA0 = ρB0.
As an example, let us calculate the peak locations for

the B2 system explicitly (Fig. 1). Practically, the relation
�φ(k) = k · x0 is helpful, where �φ(k) is the change in phase
in the structure factor as a result of moving the origin of
the coordinate system by x0. Denoting k = hb1 + kb2 + lb3,
where bi is the ith reciprocal lattice vector,

SA = f for all h,k,l, (14)

SB =
{
f if h + k + l = 2m

−f if h + k + l = 2m + 1,

and

Sn = 2f if h + k + l = 2m,

Sψ = 2f if h + k + l = 2m + 1, (15)

where m is an integer. Thus, the only k that are nonzero are

n :
2π

a
{110},2π

a
{200},2π

a
{211}, . . . , (16)

ψ :
2π

a
{100},2π

a
{111},2π

a
{210}, . . . , (17)

where {·} denotes a family of reciprocal lattice vectors created
by the permutation of the internal elements (for example,
{110} includes 12 vectors: x̂ + ŷ, x̂ − ŷ, x̂ + ẑ, . . .). The
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TABLE I. Table of peak locations |k|i ≡ ki for the n and ψ correlation functions in reciprocal space for various crystal structures. The
ki values for each structure were calculated using a square or cubic unit cell with side lengths of 2π , except p3m1 whose calculation was
performed using a rectangular unit cell with dimensions 2π × 2

√
3π . Because the calculations are performed on nonprimitive unit cells for

convenience, the total atoms per cell are listed in order to uniquely identify the unit cell geometry.

Space group Example Atoms per cell kn kψ

p4gm {100} plane of NaCl 4 2,
√

8, 4
√

2,
√

10,
√

18
p3m1 2d h-BN 4 2/

√
3, 2, 4/

√
3 2/

√
3, 4/

√
3,

√
28/3

Pm3̄m (B2) CuZn 2
√

2, 2,
√

6 1,
√

3,
√

5
Fd 3̄m (B32) NaTl 16

√
8, 4,

√
24

√
3,

√
11,

√
19

P 4/mmm (L10) CuAu 4
√

3, 2,
√

8 1,
√

2,
√

5

structure factor [Eq. (15)] for n is consistent with the missing
reflections for a bcc lattice. Because the first nonzero k for
n has magnitude 2π

√
2/a and the first nonzero k for ψ has

magnitude 2π/a, the ratio of the first peak in C in reciprocal
space to the first in �C must be

√
2. This same procedure

can be easily performed to construct correlation functions
for other 50-50 stoichiometry compounds, with the results
for the locations of the first three peaks for n and ψ for
various compounds listed in Table I. All compounds listed
in Table I can produce (at least) metastable structures using at
most three peaks. However, many, such as B2, can exist with
fewer, with the exact stability regimes depending on parameter
choices. The model can be extended to other compounds
without 50-50 stoichiometry through this same method, but as
explained in Sec. II A rigorously, the free energy should also
be derived with that additional complication—an extension
left for future work. Although the values of the correlation
function at specific |k| values are the only quantities that
determine equilibrium structure, the exact functional form of
the correlation function is important for properties such as
elastic constants, defect structures, and dynamics.

C. XPFC model

In this study, the XPFC formalism was employed [9,10]. In
the case of a single peak for n and ψ ,

Ĉ = Bxe
−T/Tne

− (k−kn )2

2α2
n and �Ĉ = Dxe

−T/Tψ e
− (k−kψ )2

2α2
ψ , (18)

where k ≡ |k|, Bx and Dx are phenomenological constants,
T is a temperaturelike parameter, Tn controls the solid-liquid
transition temperature, and Tψ controls the ordering tempera-
ture. The one-peak XPFC model has the advantage compared
to polynomial PFC models in that the former does not exhibit
significant changes in the equilibrium lattice constant with
changes in average density or temperature, simplifying phase
diagram construction. In polynomial PFC models, such as
Eq. (1), the equilibrium lattice constant is determined by a
competition between the energies of the primary frequency
and the higher order harmonics; the primary frequency energy
is minimized by a lattice constant that corresponds to the
extremum of the correlation function, while the higher fre-
quencies decrease in energy by increasing the lattice constant
[37]. However, the correlation function in XPFC quickly goes
to zero for large k. Consequently, changing the lattice constant
only negligibly affects the energetic contributions of higher
frequency modes, and so the lattice constant is chosen purely

so that the primary frequency of the structure coincides with
the correlation function’s maximum. Because the peak location
in the correlation function is independent of temperature and
composition, the lattice constant is not affected by these
parameters.

This particular computational advantage of XPFC comes at
the price of a less accurate one-mode approximation, however.
Because polynomial correlation functions diverge for large
k, their correlation functions strongly penalize higher order
harmonics, resulting in free energies dominated by only the
primary frequency [5,12,38]. In contrast, the XPFC correlation
function is 0 for large k, rather than negative, so higher order
harmonics play a larger role.

Unlike that shown in Eq. (18), previous XPFC models have
assumed that the temperature is proportional to σ , using a
temperature factor exp(σ 2/σ 2

M ), equivalent to treating
√

T as
the temperature in Eq. (18) [9,10,15,16,39]. However, this
relation is inconsistent with the usual temperature dependence
of the Debye-Waller factor observed in diffraction experi-
ments. When temperatures are much higher than the Debye
temperature of the crystal, which is the case for PFC models
[33], the atomic structure factor can be approximated as [34]

f = f0e
−T/T0 . (19)

Assuming Ĉ(k) ∝ f ν , meaning the correlation function peak
height scales with the atomic structure factor to some power,
then in the case T 	 T0, Ĉ(k) decreases linearly with T .
Note that this is exactly the temperature dependence of the
correlation function in PFC models with polynomial correla-
tion functions and is consistent with the linear temperature
dependence of the quadratic term in Landau models. For
example, in Eq. (1), ε is considered the variable proportional
to the temperature and it decreases the effective correlation
function linearly. Because the original XPFC model goes as
exp(σ 2/σ 2

M ), in the limit σ 	 σM the correlation function
decreases quadratically with σ . It should be understood that
although in the original XPFC terminology, the fact that σ 2 is
the temperature parameter rather than σ does not matter when
fitting data at a particular temperature, nor does it matter when
calculating the shape of phase diagrams qualitatively, it does
affect the values of critical exponents (see Sec. IV).

III. B2 ORDERING

In the remainder of this paper, three B2 models based on
Eq. (8) will be examined. The first model considers the limit
ε → 0 in Eq. (8). Namely, the density field is considered
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completely independent of the composition field, but the
composition field is dependent on the density field. This
assumption is analytically equivalent to separating the free
energy into two separate equations,

Fn =
∫

V

[
1

2
n2 − 1

6
n3 + 1

12
n4 − 1

2
nCn

]
dr (20)

and

Fψ =
∫

V

[
1

2
ψ2 + 1

12
ψ4 − 1

2
ψ�Cψ

+ 1

2
nψ2 − nψ�Cψ

]
dr,

with F̃ = Fn + εFψ . For dynamical behavior, evolution
follows the typical simplified conserved Cahn-Hilliard
equations [5],

∂n

∂t
= Mn∇2 δFn

δn
, (21)

∂ψ

∂t
= Mψ∇2 δFψ

δψ
. (22)

This approach, which we will call the “uncoupled” case, is
both computationally cheaper compared to the “coupled” case
(i.e., nonzero ε) and is also significantly simpler with respect to
phase diagram construction because the n field in isolation has
already been described by the original XPFC papers [9,10].

Similar to the uncoupled model is the “weakly coupled”
model, which uses a finite ε 	 1. For simplicity, the evolution
equations for the coupled case simply replaces Fn and Fψ

with F̃ rather than the rigorously derived evolution equations
described by Jugdutt [40], although both methods result in
the same equilibrium states. The assumption that ε 	 1 is
physically reasonable because the energy associated with
order-disorder transitions is significantly less than that for
atomic rearrangements. For example, in the FeAl system at
0 K, the free energies of ordered B2 and disordered A2
structures are within 0.001 eV/atom of each other [41,42].
In contrast, Bh, the FeAl ordered structure with the next
lowest energy, is 0.125 eV/atom higher in energy [41]. Both
the weakly coupled and uncoupled models result in phase
diagrams with a line of second-order transitions.

The last model, the “strongly coupled” case, considers
when ε = 1 or, equivalently, Eq. (7). In this case, there are
very different n fields in the B2 versus A2 (disordered)
phases, giving rise to first-order transitions. Further, because
this model strongly couples the n and ψ fields, a disordered
hexagonal rod phase is in competition with the B2 and A2
phases. For all parameter regimes tested with a single peak,
B2-hexagonal rod coexistence occurred rather than B2-A2
coexistence. Consequently, an additional k = 0 peak was
added to �C in order to preferentially stabilize the A2 phase
over the hexagonal rod phase. Namely,

�Ĉ = D0e
− k2

2α2
ψ + Dxe

−T/Tψ e
− (k−kψ )2

2α2
ψ , (23)

where D0 was phenomenologically chosen.

TABLE II. Table of parameter values for phase diagrams.

Quantity Value

Mn 1
Mψ 1
Tn 1
Tψ 0.2
kn 1
kψ 1/

√
2

Dx 0.8
D0 0.5 (strongly coupled)

0 (otherwise)
Bx 1
αn 0.08
αψ 0.08
a0 2π

√
2

mesh 16 / unit cell dimension
�t 0.015

A. Analytic phase diagram

Because the structure factors for n and ψ for the B2 system
[Eq. (15)] are real and only dependent on |k|, a one-mode
approximation for n and ψ is

n = n̄ + An

∑
j∈{110}

eikj ·r and ψ = ψ̄ + Aψ

∑
j∈{100}

eikj ·r,

(24)
where kj = 2π

a
(h,k,l), An and Aψ are constant real numbers,

and Aψ is the system’s order parameter. Substituting Eqs. (18)
and (24) into Eq. (20), and integrating with the equilibrium
lattice parameter, results in

Fn = 6n̄2A2
n + 16n̄A3

n − 6n̄A2
n + n̄4

12
− n̄3

6
+ n̄2

2

+ 6A2
n

(
1 − Bxe

− T
Tn

) + 45A4
n − 8A3

n, (25)

Fψ = − 6n̄A2
ψDxe

− T
Tψ +3n̄A2

ψ+3ψ̄2A2
ψ+1

2
n̄ψ̄2(1 − 2D0)

+ ψ̄4

12
+ ψ̄2

2
+ A2

ψ

[
12An(1 − 2Dxe

− T
Tψ )

− 3Dxe
− T

Tψ + 3
] + 15A4

ψ

2
− D0

2
ψ̄2. (26)

The phase diagram was constructed using four methods
using the parameters shown in Table II, which was also
used for the numerical phase diagram (Figs. 5 and 6). The
first and simplest method used the uncoupled free energy.
These calculations were performed at n̄ = 0 by both a com-
mon tangent construction and by solving ∂2Forder

ψ /∂A2
ψ = 0

(Fig. 2). Both techniques yielded the same result, implying
a second-order transition. The second method was similar,
except that it investigated the weakly coupled model with
ε = 0.05. Unsurprisingly, it gave a similar result. Although
constructing the phase diagram at n̄ = 0 is a common
approximation for a constant pressure phase diagram [14], it
is known to not be thermodynamically consistent [40,43]. For
the third method, the phase boundary was calculated for the
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FIG. 2. Phase diagram for analytical model. The uncoupled and
coupled models using a common tangent equilibrium condition are
compared to a constant pressure phase diagram. As all phase diagrams
are very similar, including constant pressure and weak coupling
complications appears to have little effect.

weakly coupled model using the true two-phase equilibrium
conditions,

μeq =
(

1

n̄ + 1

∂F̄

∂ψ̄

)∣∣∣∣
B2

=
(

1

n̄ + 1

∂F̄

∂ψ̄

)∣∣∣∣
A2

, (27)

(
∂F̄

∂n̄
− ψ̄μeq

)∣∣∣∣
B2

=
(

∂F̄

∂n̄
− ψ̄μeq

)∣∣∣∣
A2

, (28)

p =
[

(n̄ + 1)
∂F̄

∂n̄
− F̄

]∣∣∣∣
B2

=
[

(n̄ + 1)
∂F̄

∂n̄
− F̄

]∣∣∣∣
A2

, (29)

where n̄ and ψ̄ can differ between the two phases and F̄ ≡
F̃ /V [43]. Notice that using these equilibrium conditions, the
densities of the two phases can differ. However, for the weakly
coupled model, the solution within numerical resolution is
coexistence at the same densities and compositions, implying
a second-order transition. For a judicious choice of pressure
(p = −0.063), n̄ � 0 at all temperatures, and the phase
boundary is very similar to those calculated by the previous
techniques.

The last phase diagram construction was done for the strong
coupling case with p = −0.063, ε = 1, and D0 = 0.5 (Fig. 3).
Unlike weak coupling, this results in first-order transitions
with two-phase coexistence. Calculating the order parameter
of the B2 phase for increasing temperatures at ψ̄ = 0, where
n̄ is the B2 coexistence value, results in a discontinuity in the
order parameter at the point where the two phase boundaries
meet (Fig 4). Consequently, this point is a congruent point. In
contrast, the order parameter would go continuously to zero if
it was a critical point with a second-order transition.

In order to use Eqs. (25) and (26) to describe a real
compound such as FeCo [44], one can simply match properties
such as the temperature and second derivative of the phase
boundary at the critical point measured from an experimental
phase diagram to the corresponding values at the critical point
in the analytic (or numeric) model.

FIG. 3. Phase diagram for analytical model in strongly coupled
case, ε = 1, at pressure −0.063.

B. Elasticity

In order to use the traditional elastic constant calculation
procedure and not consider the effects of hydrostatic pressures
[45], only the case where n̄ = ψ̄ = 0 is considered. Since
ρA and ρB ought to undergo identical strains, the ψ field is
strained identically to the n field. Substituting Eq. (24) into
Eq. (8) and applying isotropic, biaxial, and simple shear strains
as described by Pisutha-Arnond [45] results in the elastic
constants,

C11 = A2
nBxe

− T
Tn

α2
n

+ ε(8An + 1)A2
ψDxe

− T
Tψ

2α2
1

, (30)

C12 = C44 = A2
nBxe

− T
Tn

2α2
n

. (31)

FIG. 4. Plot of the order parameter as a function of T for ψ̄ = 0.
Because of the discontinuity of the order parameter from nonzero to
zero, the transition is first order with a congruent point at T � 0.0134.
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Note that the strains only couple to the correlation terms
in the free energy and are not affected by the ideal entropy
of mixing terms. Spatschek and Karma ([46], Eq. (59)) make
two related predictions for a free energy consisting of a single
peak in the correlation function. First, they predict that

C11

2
= C12 = C44 = −1

2
C ′′(q0)q2

0A2
110, (32)

which, using Eq. (16), agrees with Eqs. (30) and (31) in the
limit ε = 0. Second, they predict that C12 and C44 depend on
neither {100} nor {200} amplitudes. This explains why only
C11 depends on the ordering amplitude, since the ordering
wave is a {100} mode.

Another way to help rationalize the lack of ordering
dependence of the C44 elastic constant is that C44 physically
represents shear on {100} planes. These planes are of a single
atom type, however, and thus are not really dependent on
ordering (to lowest order). The shear mode on the {110}
planes is proportional to C11 − C12, and as expected does
depend on Aψ .

Equations (30) and (31) also agree with the Monte Carlo
simulations of a B2 compound by Castan and Planes who
found that the shear modulus, (C11 − C12)/2, is linearly
proportional to the long-range order parameter squared [47].
However, Eqs. (30) and (31) are inconsistent with experimental
data for CuZn, as McManus found no anomalous behavior near
the critical temperature for C11, but an abrupt change in dC44

dT

shortly before the critical temperature [48].

C. Numerical phase diagram

To confirm the behavior of the one-mode model phase dia-
gram in the case where all frequencies were included, the phase
diagram was calculated numerically at n̄ = 0 for the uncoupled
(Fig. 5), weakly coupled (ε = 0.05, Fig. 5), and strongly
coupled (ε = 1,D0 = 0.5, Fig. 6) cases. Because the constant
pressure condition was unimportant when constructing the

FIG. 5. Numerical phase diagram for the B2 system, with the
uncoupled case (solid violet line) and weakly coupled case (dashed
pink line). Consistent with the analytic results, the weakly coupled
and uncoupled cases nearly overlap with second-order transitions.
The curves are parabolic fits through the numerically determined
points.

FIG. 6. Numerical phase diagram for the B2 system in the
strongly coupled case. Consistent with the analytic results, the
transition is always first order, and the region between the phase
boundaries is coexisting B2 and A2. The curves are parabolic fits
through the numerically determined points.

analytic phase diagrams, only the n̄ = 0 method was employed
for ease when constructing the numerical phase diagrams.
Numerical construction of the phase diagrams validated the
qualitative behavior of a curve of second-order and first-order
transitions seen previously. Quantitative disagreement with
analytical results is explained by the fact that the XPFC
model permits high frequency modes, so the one-mode
approximation provides poor quantitative estimates of free
energies (see Sec. II C).

The free energies for the phase diagram were calculated by
minimizing the free energy in a 2 × 2 × 2 set of unit cells using
the parameters found in Table II. Each system was initialized
by either a prior equilibrated structure for different parameters
or by a single-mode approximation. Each system was then
evolved using Eqs. (21) and (22) using the standard semi-
implicit integral spectral method [30]. Conditions near the
phase transition were tested carefully to ensure that the order
of the transition was determined correctly. The amplitude of
the {100} peak from the numerical Fourier transform of ψ

was treated as the order parameter in the numerical model
(Fig. 7). In the case of first-order transitions, the coexistence
region was determined by fitting a fourth-order polynomial
through a set of free energies for B2 and A2, and then finding
the convex hull. The phase transition in the simulations can
be understood as follows: At ψ̄ = 0, the ordered state for ψ

consists of only the ordering modes ({100}, {111}, . . .). For
ψ̄ �= 0, the disordering modes ({110}, {200}, . . .) appear and
gradually increase in magnitude while the ordered reflections
diminish (see Sec. II B). At the phase transitions, only the
disordered modes remain.

The first-order transition was also confirmed by equi-
librating a 2 × 2 × 128 simulation box of B2-A2 using
ψ̄ = 0.265 and T = 0.0144. As predicted, B2 and A2 were
found to coexist at equilibrium. Although the two phases
had different average densities as suspected, n̄B2 � 0.052
and n̄A2 � −0.027, both densities were still close to zero.
In order to speed up this large calculation, simple conserved
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FIG. 7. Plot of the order parameter for the uncoupled case as
a function of ψ̄ for T = 0.01 using parameters found in Table II.
The fit is to the function Aψ = A

√
ψ̄c − ψ̄ , i.e., the function for a

second-order mean-field transition as elaborated upon in Sec. IV.

global dynamics were used for both the n and ψ fields in this
calculation [40,49], namely,

∂n

∂t
= −δF̃

δn
+ 1

V

∫
V

δF̃

δn
dr, (33)

∂ψ

∂t
= − δF̃

δψ
+ 1

V

∫
V

δF̃

δψ
dr. (34)

IV. APPLICATIONS

A. Antiphase boundaries

As a test case for a system with a second-order transition,
antiphase boundaries (APBs) were investigated using the un-
coupled model. Experimental evidence and Landau-Ginsburg
theory predicts that the signed local order parameter η across
the APB is [26]

η(z; T ) = Aψ (T ) tanh

[
z − z0

2ξ (T )

]
, (35)

where Aψ is the unsigned bulk order parameter, ξ is the
correlation length, z is the coordinate perpendicular to the
APB, and z0 is the position of the interface. Aψ , the APB
energy γ , and ξ all exhibit critical exponents, meaning that
near the critical point, they are of the form ∼( Tc−T

Tc
)
νi for

some corresponding critical exponent νi . This result was
verified in the uncoupled B2 PFC model by initializing with
a single-mode approximation for two domains with opposite
order parameters in a single grain, and the free energy was
minimized using Eq. (21). The parameters in Table II were
used except αψ = 0.25 in order to reduce the width of the APB
so that the simulation could be performed in a smaller domain.
This change in αψ gave a new Tc � 0.01750. A box size of 2 ×
2 × 24 unit cells was used with periodic boundary conditions
(i.e., two identical APBs). A comparison of a typical numerical
result and a hyperbolic tangent profile fit is shown in Fig. 8.
Because the local order parameter η is a function of position
in this case, the amplitude of ψ along a unit cell edge was
used as a proxy for the order parameter. The measured critical

FIG. 8. Demonstration of a tanh profile across an APB. The
oscillating amplitude of ψ along the edge of the unit cell (violet)
and a tanh fit to Eq. (35) (pink) are plotted.

exponent for Aψ was 0.51 with R2 � 1.0 × 10−6. The critical
exponent for the APB energy calculated using the typical form,

γ = l⊥
2

(F̄ψ , APB − F̄ψ , eq), (36)

was 1.53 with R2 � 2.7 × 10−5 (Fig. 9), where l⊥ is the
length of the simulation box in the z direction, F̄ψ , APB is
the free energy per volume measured with the APB, and
F̄ψ , eq is the bulk free energy per volume. In order to ensure
that the domain was sufficiently large compared to the APB
correlation length, the critical exponents were also calculated
by relaxation in a larger 2 × 2 × 96 simulation domain, with
critical exponents for Aψ and γ only differing by 3.3 × 10−3

and 1.4 × 10−5, respectively, compared to the smaller domain.
Both of these exponents are consistent with the 1/2 and 3/2
exponents for Aψ and γ , respectively, for an APB resulting
from the simple Landau model,

F =
∫

V

(
r

2
η2 + u

4
η4 + K

2
|∇η|2

)
dr, (37)

FIG. 9. Scaling behavior of bulk order parameter Aψ and APB
boundary energy γ for temperatures near Tc.
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FIG. 10. Images for dynamic ordering of a B2 crystal, showing an
xy slice through the middle z coordinate. (a) The static n field for the
simulations with 3.8◦ misorientation between the two grains. After
initializing the ψ field with Gaussian noise, (b)–(e) show snapshots
of ψ at progressively later stages in the evolution: (b) spinodal
ordering, (c)–(e) coarsening. The green (white) disordered regions
down the middle of (b)–(g) correspond to the edge dislocation cores
in (a). Although much of the evolution can be understood through a
simple reduction of mean curvature, the arrows point to examples of
dislocation anchors that act to pin APB movement. The anchoring
phenomenon was confirmed by initializing another simulation with
the same conditions but a different set of random Gaussian noise to
start, and two sample time steps from this second simulation are show
in (f) and (g).

where r ∝ (Tc − T ), and u and K are independent of
temperature. This is not surprising, as the PFC method is
a mean-field model and has thus been shown to reduce to
simple Landau models in appropriate limits [50]. Although

comparison to this same Landau model would imply a critical
exponent of −0.5 for ξ , unfortunately this exponent is difficult
to determine. Because the critical exponent is highly sensitive
to the method of fitting the ψ profile, very small changes
to the fitting methodology that only result in a few percent
differences in the interface width give very different critical
exponents. Because of a lack of a clear criteria for determining
ξ , this critical exponent is left unreported.

As noted in Sec. II, all of these results are dependent on
the new definition of temperature. Using the original XPFC
temperature parameter, both the critical exponents change,
deviating more from mean-field theory, and R2 increases.

B. Grain boundaries

As a further demonstration of the applicability of this
method, ordering dynamics were investigated for symmetric
tilt boundaries using the uncoupled model. The simulations
were set up using the standard method for periodic grain
boundaries [49]. The equilibrium density was determined by
minimizing the energy with respect to n, and then initialized
with Gaussian noise for ψ at T = 0.01 using the parameters
in Table II, except with αψ = 0.25. The misorientation angle
between the grains was 3.8◦. The system first undergoes
spinodal ordering. Then, domains grow and shrink in order to
reduce the total APB energy. Interestingly, the model predicts
that dislocation cores act as natural pinning points for APBs
(Fig. 10). The dislocations pin the domain walls as excess
disordered regions are created when a domain wall breaks free
of the dislocation core.

V. SUMMARY

A two-component sublattice ordering model was derived
that was shown to be capable of modeling a diverse set of
ordered crystals. This model was then investigated in greater
depth for the simple B2 system, with first- and second-order
transitions found analytically and numerically. This model
correctly predicts that not all of the material’s elastic constants
are dependent on ordering. Finally, antiphase boundaries
were explored in isolation and shown to reproduce standard
mean-field results once the temperature parameter in XPFC
was reinterpreted. In the context of large small-angle grain
boundary simulations, these APBs were predicted to have
their evolution pinned by dislocation cores. In the future, the
model can be used to study the dynamics of ordering in a
wide range of crystals.
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