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In this paper we point out that the generalized statistics of Tsallis-Havrda-Charvát can be conveniently used as
a conceptual framework for statistical treatment of random chains. In particular, we use the path-integral approach
to show that the ensuing partition function can be identified with the partition function of a fluctuating oriented
random loop of arbitrary length and shape in a background scalar potential. To put some meat on the bare bones, we
illustrate this with two statistical systems: Schultz-Zimm polymer and relativistic particle. Further salient issues
such as the projective special linear group PSL(2,R) transformation properties of Tsallis’ inverse-temperature
parameter and a grand-canonical ensemble of fluctuating random loops related to the Tsallis-Havrda-Charvát
statistics are also briefly discussed.
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I. INTRODUCTION

Over the past two decades, Boltzmann-Gibbs (BG) statis-
tical mechanics has undergone an important conceptual shift.
While successful in describing stationary systems character-
ized by ergodicity or metric transitivity, it fails to reproduce
the statistical behavior of many real-world systems in biology,
astrophysics, geology, and the economic and social sciences.
It is symptomatic of such cases that one tries to find refuge in
a new paradigm known as “generalized statistics.” The notion
of generalized statistics refers to statistical systems that are
described with broad (or fat-tail) distributions for which the
usual central limit theorem (CLT) [1] is inapplicable. Ex-
amples include generalized hyperbolic distributions, Meixner
distributions, Weibull distributions, and various power-law tail
distributions (e.g., Zipf-Pareto, Lévy, Mandelbrot, or Student
t distributions). The underlying mathematical foundations
and terminology involved are, as a rule, provided by various
generalized central limit theorems (GCLTs); be it the CLT of
Lévy [1–4] and Gnedenko [5–8] for non-Gaussian stable dis-
tributions or diverse CLTs for correlated random variables [9].
In effect, GCLTs represent pertinent frameworks incorporating
such crucial theoretical concepts as Lévy stable distributions
and ensuing Lévy stochastic processes [3], information-
theoretic systems of Rényi [10,11], nonextensive systems
of Tsallis-Havrda-Charvát (THC) [12–16], and their various
generalizations [9,17,18]. Associated real-world phenomena
obeying generalized statistics account for a rich class of
statistical processes observed in complex systems ranging
from financial markets [3,19,20], physics [9,21], and biology
[22,23] to geoscience [24,25].

The aim of this paper is to point out that with the help of the
path integral (PI) one can identify interesting new playgrounds
for THC generalized statistics. In particular, the statistics in
question is represented by distributions that emerge when the
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maximal-entropy (MaxEnt) prescription is applied to Tsallis
and Havrda-Charvát information measures (or entropies). For
the sake of comparison, we discuss also the MaxEnt of (closely
related) Rényi’s entropy. Regardless how narrow this class
of distributions may seem, it constitutes an immense wealth
of real-world systems ranging from low-dimensional (at the
edge of chaos) [26] and high-dimensional (self-organized
criticality) [27] nonlinear dissipative systems through well-
developed turbulence [28] to long-range magnetic and fluidlike
systems [29]. Here we wish to shed yet more light on THC
generalized statistics by showing that it also represents a
pertinent framework for the statistical physics of random
chains.

Our paper is organized as follows: In Sec. II we present
some essentials for both Rényi and THC statistics that are
needed in the paper. In Sec. III, we reveal and discuss the
group structure of the THC “inverse temperature” parameter.
The group in question is the Möbius parabolic group, which
is a one-parametric subgroup of the projective special linear
group PSL(2,R). For the generalized statistics in question we
formulate the relevant PI representation for both the density
matrix and the partition function. This is done in Sec. IV
with the help of Schwinger’s trick. In Sec. V we show that the
representation of the density matrix obtained naturally arises in
the statistical theory of random chains. We illustrate our point
with the Schultz-Zimm polymer. Important representatives of
random chains are fluctuating particle histories as encountered,
for instance, in quantum mechanics or quantum field theory
(QFT). Remarkably, when we apply the generalized density
matrix obtained to a free nonrelativistic particle in D spatial
dimensions, we find that it is equivalent to the (canonical
Bloch) density matrix for a free relativistic particle in D

space-time dimensions provided we set q = 2 or q = 0.
This fact is proved in Sec. VI, where also a generalization
to a field-theoretical context is discussed. Finally, Sec. VII
summarizes our results and discusses possible extensions of
the present work. For the reader’s convenience the paper is
supplemented with two appendixes which clarify some finer
technical details. In Appendix A we derive the Schulz-Zimm
distribution of chain lengths for relevant parameter values and
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in Appendix B we show how the generalized density matrix
obtained can be seamlessly fitted into a computation of the
one-loop contribution to the Gibbs free energy in the case of
scalar quantum electrodynamics.

II. SOME FUNDAMENTALS OF RÉNYI’S
AND THC STATISTICS

A useful conceptual frame that allows us to generate impor-
tant classes of observed distributions is based on information
entropies. Information entropies generally represent measures
of uncertainty or ignorance inherent in a distribution describing
a given statistical or information-theoretical system. The
central role of information entropies is to serve as inference
functionals whose extremization subject to certain constraint
conditions (known as prior information) yields MaxEnt distri-
butions which often have direct phenomenological relevance.
The importance of information entropies as tools for inductive
inference (i.e., inference where new information is given in
terms of expected values) in statistical physics was emphasized
by many authors (see, e.g., references in [30]), and presently
MaxEnt approaches belong among the standard techniques
from the statistical physics toolkit [9].

Among the many possible information entropies we focus
our attention here on two specific cases: first, on Rényi’s
entropy [10], defined as

S (R)
q = 1

1 − q
ln

∑
i

p
q

i , q > 0; (1)

and second, on THC entropy [12,13], which has the form

S (THC)
q = 1

1 − q

(∑
i

p
q

i − 1

)
, q > 0. (2)

A discrete distribution P = {pi} is usually associated with a
discrete set of microstates in statistical physics or a set of
all transmittable source symbols in information theory. In the
limit q → 1, the two entropies coincide with each other, both
reducing to the Shannon (or Shannon-Gibbs) entropy

S = −
∑

i

pi ln pi. (3)

In this way the parameter q [or, better, (q − 1)] characterizes
the departure from the usual BG statistics or from Shannon’s
information theory.

Let us remember that in the context of Shannon’s in-
formation theory it is well known [31] that the laws of
equilibrium statistical mechanics can be viewed as inferences
based entirely on prior information that is given in terms of
expectation values of energy, energy and number of particles,
energy and volume, energy and angular momentum, etc. In
this case Shannon’s entropy quantifies the information on
the detailed microscopic state (microstate) of the system,
which remains “uncommunicated” by a description that is
stated solely in terms of thermodynamic state variables
(phrased in terms of expectation values). It should also be
stressed that the passage from Shannon-Gibbs to Clausius
(i.e., thermodynamic) entropy is established only when the
relevant MaxEnt distribution is inserted back into S. Only
when this MaxEnt prescription is utilized does S turn out to

be a thermodynamic state function and not a mere functional
in a probability space.

In the spirit of the MaxEnt strategy one can formally
repeat the aforementioned philosophy also forS (R)

q andS (THC)
q .

It is still an open question, however, to what extent the
inferences obtained can be identified with some genuine
statistical system. Here we do not wish to dispute the
usefulness of ensuing MaxEnt distributions, which clearly
serve as excellent fitting distributions in a number of contexts
in complex dynamical systems [9,20,21]. Instead, we wish
to point out that there are circumstances (discussed shortly)
where the ensuing generalized statistical systems (and not just
the MaxEnt distributions) can be clearly identified with the
real-world equilibrium statistical systems.

For the sake of simplicity we proceed here only with the
analog of canonical ensembles, where the prior information
is characterized by a fixed energy expectation value (i.e.,
the internal energy). The corresponding MaxEnt distributions
for S (R)

q and S (THC)
q can be obtained by extremization of the

associated inference function,

L(R;THC)
q (P) = S (R;THC)

q − α
∑

i

pi − β〈H 〉r , (4)

where α and β are the Lagrange multipliers, the latter being
the analog of the inverse temperature in natural units. The
subscript r denotes the expectation value with respect to the
weights Pi(r) ≡ pr

i /
∑

j pr
j so that

〈H 〉r =
∑

i

Pi(r)Ei. (5)

In practice it is common to choose only two values of r

that represent two different modes of application [32]. In
information theory one typically uses the linear mean 〈H 〉1 =∑

i piEi , which corresponds to r = 1, while in nonextensive
thermodynamics it is customary to utilize a nonlinear q mean
〈H 〉q which represents r = q. In the latter case Pi(q) is called
the escort or zooming distribution—terminology that has its
origin in chaotic dynamics [33].

In principle, we could keep the value of r general when
employing the MaxEnt procedure. If this is done, say for
Rényi’s entropy, then the MaxEnt distribution arises from
the condition δL(R)

q (P)/δpi = 0. For generic r this leads to
a higher-order trinomial equation for pk , namely,

aX
(q−1)/(r−1)
k − bkXk − 1 = 0, (6)

when r �= 1. In the special case where r = 1 we have

aXk − bk − 1 = 0. (7)

Here, Xk = pr−1
k in Eq. (6) and Xk = p

q−1
k in Eq. (7).

Parameters involved read

a = 1

Zq

≡ 1∑
l p

q

l

,

bk = β
r (1 − q)[Ek − 〈H 〉r ]

qZr

. (8)

Equations (6) are generally not suitable for physical consider-
ations because they do not provide unique and real solutions.
There are only two cases in which the equations obtained are
linear and thus yield a unique pk , namely, when r = 1 and
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r = q. We note in passing that for special values of r and q a
solution of (6) of the form

pk = pk(Zr,Zq,β,〈H 〉r ; Ek) (9)

can be found. With two constraints at hand we could eliminate
Zq or Zr and rewrite β in terms of 〈H 〉r (or, more physically,
〈H 〉r in terms of β). The resulting pk would be, however,
badly self-referential because either Zr or Zq would not
be eliminated. Again, cases r = 1 and r = q play a special
role here since only in these two cases will the vexing
self-referentiality be eliminated. This in turn provides a
mathematical (although not physical) backing for the two
aforementioned choices of r used in the literature. With this
proviso the associated MaxEnt distribution for Rényi’s entropy
reads

pR
k = Z−1

R

[
1 − βR

r (1 + q − 2r)�rEk

]1/(1+q−2r)
. (10)

Here �rEk = Ek − 〈H 〉r , and ZR is the normalization con-
stant (basically the partition function). The term βR

r = βr/q

is the inverse “temperature” of the system. By the same token
one obtains for the THC case

pTHC
k = Z−1

THC

[
1 − βTHC

r (1 + q − 2r)�rEk

]1/(1+q−2r)
, (11)

with the inverse temperature βTHC
r = βR

r /
∑

i(p
THC
i )q . Sim-

ilarly as before, this holds only when r = 1 or r = q. So,
in contrast to (10), the THC MaxEnt distributions are self-
referential, i.e., βTHC

r depends on the properties of the distri-
bution itself. See, e.g., Refs. [34–37] for related discussions.
Distributions of the form (10) and (12) are known as (2r − q)
Gaussian or Tsallis (thermostatistics) distributions and they
indeed appear in one form or another in numerous real-world
statistical systems [13]. For historical reasons the case r = 1
in Eq. (12) is also known as Bashkirov’s first version of
thermostatistics, while the case r = q is called Tsallis’ third
version of thermostatistics [38].

For future convenience we note that the MaxEnt distribu-
tions (10) and (12) can be viewed as q-deformed versions of the
usual Gibbs-Boltzmann statistical distributions. For instance,
using the Box-Cox q exponential [39], i.e.,

ex
{q} ≡ [1 + (1 − q)x]1/(1−q), (12)

the resulting (2r − q) Gaussian distributions can be expressed
in the succinct form

p(Ei) = Z−1e
−βEi

{2r−q}. (13)

Here β represents the corresponding inverse temperature and
Z is the normalization. Since ex

{1} = ex , it is clear that Tsallis’
thermostatistics distribution approaches in the limit q →2r−1
the standard Maxwell-Boltzmann distribution of equilibrium
statistical thermodynamics.

III. MORE ABOUT β R
r AND βTHC

r

Though distributions (10) and (12) have almost the same
form, the main difference is in the self-referentiality of βTHC

r .
We now illustrate that this subtle fact might have nontrivial
(in fact measurable) consequences. To this end we first recall
the notable fact from the Boltzmann-Gibbs statistics, namely,
that the MaxEnt distribution is invariant under a constant
energy shift, Ei → Ei + �. Actually, this result is not the

consequence of a particular form of the BG entropy as one
could think, but rather it directly results from a Legendre-
transform structure and linear form of constraints [40]. With
this proviso, the invariance under a constant energy shift is
independent of the specific form of entropy and is also valid
for q-escort constraints. This fact can also be directly observed
in distributions (10) and (12), where the shift factor � does not
appear in the spectrum-shifted distribution because the term
(Ei − 〈H 〉r ) is manifestly � independent:

(Ei − 〈H 〉r )
+�→ [(Ei + �) − 〈H + �〉r ] = (Ei − 〈H 〉r ).

(14)

Second, in the case of the BG distribution we can observe
yet another important property, namely, that it does not
depend on 〈H 〉 ≡ 〈H 〉1 explicitly. This follows from a simple
factorization property:

pBG
i = exp[−β(Ei − 〈H 〉)]∑

j exp[−β(Ej − 〈H 〉)] = exp(−βEi)∑
j exp(−βEj )

.

(15)

We recall that the dependence on 〈H 〉 is implicitly contained
in β, because the distribution still has to fulfill the original
constraint [41] ∑

Ei pBG
i (β,Ei) = 〈H 〉, (16)

which (in principle) allows us to resolve β in terms of 〈H 〉.
Let us remember that in the BG statistics it is important to
have the partition function without an explicit dependence on
〈H 〉. Explicit 〈H 〉 dependence would, for instance, obscure the
connection between the partition function and the Helmholtz
free energy. In addition, by combining the constant-energy
shift invariance of pBG

i with its lack of an explicit 〈H 〉
dependence, one easily obtains the experimentally supported
fact that the zero-point energy has no effect on the BG
statistical thermodynamics and thus can be safely set to 0.

The question arises, to what extent is the desired absence
of an explicit 〈H 〉 in pBG

i inherited by distributions (10) and
(12). Contrary to the case with the constant-energy shift Ei →
Ei + �, the factorization-like property for 〈H 〉r is less trivial
in Eqs. (10) and (12) and in fact it can be achieved only in
special circumstances.

To see what is involved, let us assume that the second
MaxEnt constraint, (5), is not yet enforced, so that both
the Lagrange multiplier β and 〈H 〉r are still independent.
Within this framework any 〈H 〉r appearing in the considered
distributions is explicit and the required lack of explicit
dependence on 〈H 〉r can be formulated as a form invariance of
the distribution under the shift of 〈H 〉r . The MaxEnt constraint
can then be safely imposed at the very end of our reasonings.

For pBG
i the form invariance under the shift

〈H 〉 → 〈̃H 〉 = 〈H 〉 + b (17)

(with b ∈ R) is a simple consequence of the identity

pBG
i = exp[−β(Ei − 〈H 〉)]∑

j exp[−β(Ej − 〈H 〉)]

= exp[−β(Ei − 〈̃H 〉)]∑
j exp[−β(Ej − 〈̃H 〉)] . (18)
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In this case β is manifestly invariant under the shift represented
by Eq. (17).

For THC MaxEnt distributions, (12), we might re-
call that βTHC

r = βR
r /ZTHC(β,q,r,〈H 〉r ) = βTHC

r (β,q,r,〈H 〉r ).
Since we ultimately consider what happens under 〈H 〉r
translations, we can write only βTHC

r = βTHC
r (〈H 〉r ). For

further convenience we denote the shifted mean value 〈̃H 〉r =
〈H 〉r + b simply as b. We also set βTHC

r = β and ZTHC = Z.
In the case of pTHC

k , the form invariance under arbitrary shift
in 〈H 〉r can be achieved by compensating for the shift by the
appropriately redefined/transformed form of βTHC

r . Although
this fact is known (cf., e.g., Ref. [34]), it deserves further
qualifications. Our subsequent derivation thus follows a route
less traveled but more suitable to our needs.

The aforementioned transformation properties of βTHC
r can

be read off from the identity

[1 − β (b1)(1 + q − 2r)(Ei + b1)]

= [1 − β (b2)(1 + q − 2r)(Ei + b2)]c(b1,b2; q,r), (19)

where c(b1,b2; q,r) is an energy-spectrum-independent con-
stant. From Eq. (19) c(b1,b2; q,r) must fulfill two simultaneous
equations:

c(b1,b2; q,r) = β (b1)/β (b2),

c(b1,b2; q,r) = 1 − β (b1)(1 + q − 2r)(b1 − b2). (20)

This implies that (19) is satisfied only when “inverse tem-
peratures” with different b values obey the linear fractional
transformations

β(b2) = β(b1)

1 − β(b1)(1 + q − 2r)(b1 − b2)
,

β(b1) = β(b2)

1 − β(b2)(1 + q − 2r)(b2 − b1)
. (21)

Equation (19) together with Eq. (21) implies that the THC
MaxEnt distribution is (form) invariant under the shift of 〈H 〉r ,
namely,

(1 − β (b1)(1 + q − 2r)(Ei + b1))1/(1+q−2r)

Z(β (b1))

= (1 − β (b2)(1 + q − 2r)(Ei + b2))1/(1+q−2r)

Z(β (b2))
. (22)

Within this framework we can choose to work directly with Ei

rather than with �Ei .
Let us remark that an analogous line of thoughts does

not hold for the Rényi MaxEnt distributions, (10). Indeed,
consider, for instance, the Rényian analog of Eq. (21) and set
b1 = 〈H 〉r . In this case we have

βR
r = βR

r (b2)

1 − βR
r (b2)(1 + q − 2r)(b2 − b1)

. (23)

By assuming that βR
r (b2) is b1 independent (otherwise pR

k

would be 〈H 〉r shift dependent) we can differentiate both sides
of (23) with respect to b1, which yields the identity

0 = [
βR

r (b2)
]2

(1 + q − 2r). (24)

Since b2 is by assumption arbitrary, this can be fulfilled only
when 1 + q = 2r . For the r’s at hand the latter is equivalent to

q = 1, which in turn sends pR
k back to the BG distribution. The

crux of course is that βR
r (unlike βTHC

r ) is not 〈H 〉r dependent
and thus it does not have means to compensate for the shift
in 〈H 〉r .

Let us now turn back to pTHC
k and observe that transfor-

mations (21) constitute the one-parameter subgroup of the
projective special linear group PSL(2,R). This can be seen by
realizing that PSL(2,R) is the quotient group SL(2,R)/Z2,
where Z2 = {±1} (1 stands for a 2 × 2 unit matrix). The
special linear group SL(2,R) is represented (in its fundamental
representation) by 2 × 2 real matrices with determinant 1 that
act on a two-dimensional vector space as(

u1

u2

)
�→

(
a b

c d

)(
u1

u2

)
, ad − cb = 1. (25)

If we now identify(
a b

c d

)
= ±

(
1 0

(2r − 1 − q)b 1

)
∈ SL(2,R) (26)

and set β(bi) = u1(bi)/u2(bi), we find that β(bi) transforms
as (21). The parameter b in (26) is the required value of the
shift between the initial and the final configuration.

Alternatively, we might identify(
a b

c d

)
= ±

(
1 (1 + q − 2r)b
0 1

)
∈ SL(2,R) (27)

and set β(bi) = u2(bi)/u1(bi). In this case we get the inverse
transformation in terms of the original parameter b. Both ensu-
ing linear fractional transformations are, of course, equivalent,
which is on the level of (26) and (27), reflected by the fact
that the respective matrices satisfy the equivalence relation
(similarity transformation), mediated by the matrices

S++ = S−− =
(

0 1
−1 0

)
,

S+− = S−+ =
(

0 i

−i 0

)
. (28)

For this reason it suffices to consider only one type of
transformations, say (26).

From (26) and the group of transformations (21) we see
that the relation is not one-to-one since any two matrices A
and −A from (26) correspond to the same transformation
in (21). Consequently, we have a homomorphism from a
subgroup, (26), of SL(2,R) [known as E(1)±] onto the group of
linear fractional transformations, (21), with kernel {±1} = Z2,
and thus E(1) = E(1)±/Z2 is isomorphic to the group of
transformations (21). E(1) is known as the parabolic subgroup
of the projective group PSL(2,R) or, equivalently, as the
(real) Möbius parabolic group. A crucial point in this context
is that

β(0) = β(b)

1 − β(b)(1 + q − 2r)b
for ∀b ∈ R (29)

represents an invariant under the above group of Möbius
parabolic transformations: the Casimir invariant. In the fol-
lowing we denote the invariant quantity [β(0)(2r − q − 1)]−1

as μ. This invariant quantity represents a natural candidate
for an observable or a state variable. In fact, in a number
of cases it seems reasonable to identify μ directly with the
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statistical temperature. This step is, however, conceptually
quite delicate because the thermodynamical temperature (i.e.,
the temperature obtained via the Clausius or Caratheodory type
of entropy-temperature duality) and statistical temperature
(i.e., the temperature that appears as the Lagrange multiplier
in MaxEnt distributions) are a priori not related in Rényi and
THC statistics (unlike in Shannon-entropy-based statistics).
In the context of the THC statistics above this issue has
been discussed by several authors [40,42–45]. The strategy
usually employed is to design (or engineer) the rules of
thermodynamics (e.g., the first law of thermodynamics or
Clausius theorem) or Jaynes’ MaxEnt reasoning so that both
temperatures coincide. In Secs. V and VI we discuss the role
of μ from a different point of view. In particular, we see that
it is often more natural and conceptually less controversial to
identify μ with observables other than the temperature.

The PSL(2,R) transformation properties of β(b) are also
nontrivially reflected in the scaling behavior of the partition
function Z(β(b)). In fact, from (19) and (20) we already know
that

[1 − β (b2)(1 + q − 2r)(b1 − b2)]1/(2r−q−1)Z(β (b2))

= Z(β (b1)). (30)

Comparing this with (21) we see that

Z(β (b1)) =
[
β(b1)

β(b2)

]1/(2r−q−1)

Z(β (b2)). (31)

This might be equivalently rewritten as

Z(λβ (b)) = λ1/(2r−q−1)Z(β (b)), (32)

which shows that Z(β (b)) is a homogeneous function of degree
1/(2r − q − 1) in β (b). The solution can be clearly written in
the form

Z(β (b)) = β (b)1/(2r−q−1)z(μ), (33)

where z(μ) is some function which depends on the invariant
quantity μ (other state variables and coefficients q and r

are suppressed). This type of a powerlike scaling law is
characteristic for ensembles of fluctuating lines [20,46]. In
this respect, PIs provide the most natural tool for studying the
statistical fluctuations of linelike statistical systems [47].

IV. PATH-INTEGRAL REPRESENTATION
OF THE THC DENSITY MATRIX

For our further reasonings it is convenient to consider a
quantum mechanical setting in which the probability distri-
bution is represented by the density operator. In this case,
the (unnormalized) density operator associated with the THC
MaxEnt distribution reads

ρ̂(β(b)) = [1 − β(b)(1 + q − 2r)(Ĥ + b)]1/(1+q−2r). (34)

Let us now assume that Ĥ is the first-quantized Hamiltonian
and that β(b) transforms according to the E(1) ⊂ PSL(2,R)
group, so that one can compensate for the change in b by
appropriately redefining β(b). For q < 2r − 1 one can rewrite
ρ̂(β(b)) with the help of Schwinger’s trick [20,48] as

ρ̂(β(b)) = 1

�(1/ε)

∫ ∞

0

dt

t
t1/εe−t e−εβ(b)t(Ĥ+b), (35)

with 0 < ε = 2r − q − 1. This allows us to phrase
the configuration-space density matrix ρ(xa,xb; β(b)) ≡
〈xb|ρ̂(β(b))|xa〉 in the PI form

ρ(xa,xb; β(b)) = 1

�(1/ε)

∫ ∞

0

dt

t
t1/εe−t[1+εβ(b)b]

×
∫ x(β(t))=xb

x(0)=xa

Dx

∫
Dpe

∫ β(t)
0 dτ (ipẋ−H ).

(36)

Here β(t) ≡ εβ(b)t . In the case where the potential-energy
term in H does not contain time derivatives of x, the momenta
can be integrated out, leaving behind the usual configuration-
space path integral with the Euclidean action. In particular,∫ β(t)

0
dτ (ipẋ − H ) �→ −Se = −

∫ β(t)

0
dτLe(ẋ,x). (37)

Here Se is the Euclidean action. For a Hamiltonian of the
standard form H (p,x) = p2/2m + V (x) we would get the
corresponding Euclidean Lagrangian in the form Le(ẋ,x) =
mẋ2/2 + V (x). Because of the plus sign in front of V (x), the
Le(ẋ,x) is often denoted H (ẋ,x).

By changing the variable β(t) �→ β so that β = εβ(b)t , we
can cast (36) in the form

ρ(xa,xb; β(b)) = 1

�(1/ε) [εβ(b)]1/ε

∫ ∞

0

dβ

β
β1/εe−βμ

×
∫ x(β)=xb

x(0)=xa

Dx

∫
Dpe

∫ β

0 dτ (ipẋ−H )

=
[

β(0)

β(b)

]1/ε ∫ ∞

0
dβfμ,1/ε(β)

×
∫ x(β)=xb

x(0)=xa

Dx

∫
Dpe

∫ β

0 dτ (ipẋ−H ). (38)

The smearing function,

fα,ν(x) = 1

�(ν)
ανxν−1e−αx ;

∫ ∞

0
dxfα,ν(x) = 1, (39)

is the gamma probability density function (PDF) [1]. So, save
for the multiplicative prefactor, the density matrix for the THC
MaxEnt distribution can be viewed as the Gibbsian density
matrix weighted (or smeared) with the gamma distribution. As
expected, the b dependence entirely disappeared from the PI
expression in (38) and it was replaced by the dependence on
the invariant quantity μ.

We note in passing that for large ν the following asymptot-
ical behavior holds:

fα,ν(x) ≈
√

α

2πx

(αx

ν

)ν−1/2
e−ν(αx/ν−1)

≈ δ
(
x − ν

α

)
. (40)

So for q → 2r − 1 the β integration disappears and the
position-space density matrix, (38), approaches the familiar
PI representation of the (nonrelativistic) Bloch density matrix
known from the BG statistics [47].
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From (38) it follows that the corresponding partition
function can be written as

Z(β (b)) =
∫ ∞

−∞
dxρ(x,x; β(b))

=
[

β(0)

β(b)

]1/ε ∫ ∞

0
dβfμ,1/ε(β)

∮
Dx

×
∫

Dpe
∫ β

0 dτ (ipẋ−H ), (41)

where the measure of integration is defined as∮
Dx · · · =

∫ ∞

−∞
dx(0)

∫
x(0)=x(β)

Dx · · · . (42)

Unfortunately, the partition function, (41), overcounts the
number of physical configurations. This is because the transla-
tions τ �→ τ + const. do not change the parametrization space,
which is now a circle. This extra freedom does not allow us to
fix the starting point x on a loop uniquely, and in fact all choices
are equivalent. The rules of statistical physics prescribe that
in the partition function all equivalent configurations must be
counted only once if the theory is to make sense. Since for a
loop of length β we have β possibilities for a choice of the
starting point we must insert the extra factor 1/β in Z to ensure
that loops with different starting points x(τ ) count as one loop.

So by defining

z(μ) ≡ 1

(εμ)1/ε

∫ ∞

0

dβ

β
fμ,1/ε(β)

×
∮

Dx

∫
Dpe

∫ β

0 dτ (ipẋ−H ), (43)

we may write the correct partition function as

Z(β (b)) = β (b)−1/εz(μ), (44)

which we can recognize as the partition function of a single,
fluctuating, oriented random loop of arbitrary length and shape
[46,49,50], and correspondingly, (38) represents the density
matrix of an open random chain with end points xa and xb em-
bedded in the loop. In agreement with (43), the loop lengths are
distributed according to the gamma PDF, (39), and the chain
interacts with a background scalar potential V (x(τ )). In this
connection we should also remark that the integration param-
eter β need not be related to the inverse temperature. Explicit
examples of this fact are illustrated in two subsequent sections.
As anticipated, the form (44) coincides with formula (33).

Frequently one is not interested in studying the behavior
of a single, fluctuating, closed random chain but wants to
consider grand-canonical ensembles of these. In this case one
can promote the above THC statistics into a grand-canonical
picture by exponentiating the single-closed-loop partition
function, (44), so that the grand-canonical partition function
reads

ZG = eZ = 1 + Z + 1

2!
Z2 + 1

3!
Z3 + · · · . (45)

This expansion comprises the no-loop, one-loop, two-loop,
etc., contributions of mutually noninteracting loops. The
combinatorial factor 1/N ! accounts for the indistinguishability
of loops. On account of (45), one may thus alternatively view
ZG as the partition function of a loop gas.

Similarly to the BG statistics, one should first multiply
the canonical partition function Z by an arbitrary parameter
M2(1/ε−1) with the dimension 2(1/ε − 1) in mass units to
make Z dimensionless before it is inserted into (45). (Here
and throughout, h̄ = c = 1.) With this proviso the partition
function ZG can be written as

ZG =
∞∑

N=0

1

N !

N∏
k=1

[∫ ∞

0

dβk

βk�(1/ε)
(M2βk)1/ε−1e−βkμ

∮
Dx(βk)

∫
Dp(βk)

]
exp

[
N∑

k=1

∫ βk

0
dτk(ip(τk)ẋ(τk) − H (τk))

]

= exp

[∫ ∞

0

dβ

β�(1/ε)
(M2β)1/ε−1e−βμ/M2

Tr(e−βĤ )

]
= exp

[M2s

s
ζ[H+μ](s)

]
= exp

[
ζ[(H+μ)/M2](s)

s

]
, (46)

where we have set s = (1/ε − 1), defined the ζ[H+μ] function
as

ζ[H+μ](s) = 1

�(s)

∫ ∞

0
dββs−1Tr(e−β(Ĥ+μ)), (47)

and used the scaling relation

ζ[(H+μ)/M2](s) = M2sζ[(H+μ)](s). (48)

Note, also, that the multiplicative factors [β(0)/β(b)]1/ε and
μ1/ε were assimilated into the parameter M.

With explicit representations, (46), at hand one can now
employ various techniques and methodologies used in the PI
calculus to evaluate ZG. This can be done either numerically
(e.g., via PI Monte Carlo or molecular dynamics simulations),
in the framework of approximative schemes (e.g., varia-
tional approaches or ergodic approximations [47,51]), or via

analytic perturbation schemes [20,46,52]. Apart from innate
PI methods one can also employ operatorial approaches, such
as Schwinger’s perturbation expansion [53] for Tr e−βĤ . We
do not dwell on these issues here, but instead we briefly
mention another important perturbation treatment, namely, the
(spectral) ζ -function expansion, which is particularly pertinent
in the framework of the THC statistics. The latter corresponds
to an expansion of ZG around ε = 1, or, equivalently, around
q = 0 (for r = 1) or q = 2 (for r = q), and has a close
connection with quantum field theory. In particular, from the
last identity in (46) we can easily write the expansion

ZG = e
[ 1

s
ζ[(H+μ)/M2](0)+ζ ′

[(H+μ)/M2]
(0)+ s

2 ζ ′′
[(H+μ)/M2]

(0)+··· ]

= e
[ζ ′

[H+μ](0)+ln(M2)ζ[H+μ](0)+ s
2 ζ ′′

[(H+μ)/M2]
(0)+··· ]

= det[M2(Ĥ + μ)−1]e
[ s

2e
ζ ′′

[(H+μ)/M2]
(0) +··· ]

. (49)
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Here we have introduced the dimensionful factor M2 =
M2e1/s and employed the identity

eζ ′
[H+μ](0)+ln(M2)ζ[H+μ](0) = det[M2(Ĥ + μ)−1] (50)

[cf. Eq. (B7) in Appendix B]. So, the leading contribution (in
s) to ZG is easily recognized as the partition function of the
complex scalar field theory [48], namely,

Z = det[M2(Ĥ + μ)−1] =
∫

Dφ∗Dφe−S[φ∗,φ],

S[φ∗,φ] =
∫

dD xφ∗(x)(Ĥ + μ)φ(x)

=
∫

dD xφ∗(x)

(
− 1

2m
∇2 + μ + V (x)

)
φ(x). (51)

The parameter M is related in QFT to a normalization constant
for Z . In higher perturbation orders in (49) it serves to absorb
infinities arising from the behavior of β integrals at small β.
As usual in QFT, such a short-distance behavior (originally
[β] = [kg−2] = [m2]) can be systematically dealt with via the
renormalization procedure.

By using the vector notation x we emphasize the validity of
our reasoning also beyond D = 1. The field-theoretic partition
functions, (51), typically appear in the framework of effective
field theories, in which case

V (x) = ∂2U (φ∗(x),φ(x))

∂φ∗x∂φ(x)

∣∣∣∣
φ(x)=φc(x),φ∗(x)=φ∗

c (x)

, (52)

where U is the original field potential and φc(x) together with
φ∗

c (x) is a classical solution of the inceptive (i.e, noneffective)
field theory. An example of this type of behavior is illustrated
in Appendix B.

From the aforementioned we see that the leading term
in (49) corresponds to the QFT representation of the loop
gas in a background potential V (x). It should be noted
that because d(βs−1/�(s))/ds = 1/β + O(s), the loop lengths
in this QFT representation are distributed according to the
exponential PDF (one-sided Laplace distribution) e−μβμ. The
subleading terms in ZG, which are characterized by higher-
order derivatives of ζ[(H+μ)/M2](s), describe corrections to the
exponential loop-length distribution in terms of powers of
s while keeping Tr e−βĤ untouched. The latter is nothing
but a variant of the Gram-Charlier expansion [54] of the
THC-statistics-related gamma PDF around the exponential
distribution.

V. EXAMPLE I: SCHULZ-ZIMM MODEL OF A POLYMER

As already mentioned, an important field of application of
the foregoing formulas, (38) and (44), lies in the theory of
random chains. A random chain of length N is a sequence
(x0, . . . ,xN ) of N + 1 points in a D-dimensional Euclidean
space. Each step �xn ≡ xn − xn−1 (n = 1, . . . ,N), i.e., bond
connecting points xn−1 and xn, is a random variable of fixed
length |�xn| = a. Random chains are used to describe linear
molecular chains (polymers) [55] as well as other linelike
objects including vortex and defect lines in condensed matter
systems [46,56], fluctuating price histories in financial markets
[20,57,58], and fluctuating particle histories in quantum

mechanics [20,51]. In this section, we confine ourself to
polymer chains.

Polymers are chemical compounds consisting of a large
number of monomer units that are linked together by chemical
bonds. Examples include DNA, proteins, cellulose, sugars, and
rubber. There is a natural framework for modeling polymers
in probability theory and statistical physics [20,46,55]: a
polymer chain is modeled by a random path with a probability
distribution that is Gibbsian; more specifically, one defines
an energy functional on polymer configurations such that
the higher the energy of the configuration, the less likely its
appearance.

Motivated by different physical phenomena, a variety of
polymer models have been proposed and studied in the
probability and statistical physics literature. A large class
of polymers behaves approximately as ideal random chains,
in which case the links �xn are independent, identically
distributed random variables, taking values uniformly over
a sphere of radius a. The parameter a is known as the bond
length of the random chain. The probability distribution of the
end-to-end vector R ≡ xN − x0 for an ideal chain of length
N can thus be written as [20]

PN (R) =
N∏

n=1

[∫
d�xn

1

SDaD−1
δ(|�xn| − a)

]

× δ(D)

(
R −

N∑
n=1

�xn

)
, (53)

with SD = 2πD/2/�(D/2) being the surface of a unit sphere
in D-dimensional space. In the limit of large N , PN (R) can be
approximated (as a consequence of the central limit theorem
[1,8,9]) by the Gaussian distribution

PN (R) ≈
(

D

2πaL

)D
2

exp

(
−DR2

2aL

)
≡ PL(R). (54)

In the following we use the actual polymer length L = Na

instead of diverging N . Relation (54) may be understood as the
propagator of a free nonrelativistic particle of mass m = D/a,
with time continued to an imaginary value −iL, i.e.,

PL(R) = 〈xN,tN |x0,t0〉|tN−t0=−iL. (55)

The corresponding PI representation of (54) is also known in
the polymer literature as Edwards’ integral [55] and reads

PL(R) =
∫ x(L)=R

x(0)=0
Dx exp

(
−

∫ L

0
H (ẋ(τ ))dτ

)
, (56)

where

H (ẋ) = D

2a
ẋ2 (57)

plays the role of the energy density of the polymer conforma-
tion x(τ ).

In real polymers, the bonds usually do not allow for an
equal probability of all spherical angles because the chains are
stiff. To account for stiffness, one may use the coarse-graining
trick and increase, for sufficiently long chains, the bond length
a in (57) to the effective bond length aeff, so that chain
segments of length aeff behave as freely rotating. Alternatively,
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one can include in the Lagrangian a bending energy, which
typically involves the square of the second derivative ẍ(τ )
(see, e.g., [59]).

So far we have considered polymers of a fixed length
L (or a fixed degree of polymerization N ). In real solu-
tions, however, various chain lengths are found, with their
distribution depending on the nature of the polymerization
reaction. For linear addition polymerization with termination,
where identical monomers are added one at a time to the
reactive end of a growing chain until the process is terminated,
the Schulz-Zimm (or Schulz) PDF is typically used [60–62]
(for further details see Appendix A). It has the form of the
gamma distribution, (39), where ν/α = 〈L〉 ≡ L̄n represents
the averaged polymer length (known as the number-average
molecular weight) and

ν + 1

α
= 〈L2〉

〈L〉 ≡ L̄w (58)

denotes the so-called weight-average molecular weight. The
relative fluctuation (variance)

Var(L)

〈L〉 = L̄w

L̄n

− 1 = 1

ν
(59)

provides an operational meaning to the parameter ν. The
fraction L̄w/L̄n is known as a polydispersity index (PDI) and it
quantifies the spread of the distribution of molecular lengths.
The Schulz-Zimm PDF is used primarily because it has a
simple functional form that allows us to interpolate between
two key chain formation mechanisms: disproportionation,
described by the distribution with PDI = 2; and combination,
described by the distribution with PDI = 3/2. For more details,
see Appendix A.

If the molecular chain can have any length with distribution
ω(L), the length distribution of the end-to-end vector of an
ideal polymer is then obtained via marginalization over the
nuisance parameter L, i.e.,

P (R) =
∫ ∞

0
dLω(L)

∫ x(L)=R

x(0)=0
Dx

× exp

(
−

∫ L

0
H (ẋ(τ ))dτ

)
. (60)

In the case of the Schulz-Zimm length-smearing distribution
fα,ν(L) the above marginal distribution P (R) coincides with
the Tsallis density matrix, (38). The multiplicative factor in
(38) is assimilated in the normalization of P (R). The role of
the smearing parameter β is then played by the chain length L,
the parameter ν = 1/ε, and α = μ = [εβ(0)]−1. With this we
have q = 2 − PDI (for r = 1) and q = PDI (for r = q). The
role of Tsallis’ E(1) ⊂ PSL(2,R) invariant β(0) is played by
the mean chain length L̄n (for both r = 1 and r = q), and the
ensuing μ can be identified, according to Appendix A, with
wT /a, where wT is the probability that a new monomer cannot
be added to a polymer chain (the chain is inactive).

Let us, finally, add a few comments. First, by modifying
the law of the random walk, (53) [or, alternatively, (56)], by
introducing an appropriate energy functional, more realistic
features can be introduced to account for the interaction
between different monomers and the interaction between the

polymer and the environment. Furthermore, randomness (i.e.,
disorder) can be incorporated into such interactions to model
impurities.

Second, by rewriting (60) in its phase-space representation
[cf. Eq. (36)] we obtain, after a simple time re-scaling, the
identity

P (R) =
∫ ∞

0
ω(L)

∫ x(1)=R

x(0)=0
DxD p

× exp

{∫ 1

0
dτ [i p · ẋ − LH (x, p)]

}

=
∫ x(1)=R

x(0)=0
DxD p exp

{
i

∫ 1

0
dτ p · ẋ

}
× exp

{
−

∫ 1

0
dτ [ν log(H (x, p)/μ + 1)]

}
≡ ℘(R,1|0,0). (61)

Here H is the relevant (time-independent) Hamiltonian and
the last PI is defined by time slicing in the postpoint form. The
middle identity in (61) was derived in Ref. [63].

With the representation, (61), at hand one can now employ
the Feynman-Kac formula (see, e.g., Refs. [20,47]), which
allows one to view the PI representation, (61), as a solution
of a diffusionlike equation—the so-called (forward) Kramers-
Moyal equation

∂τ℘(x,τ |0,0) = Lx ℘(x,τ |0,0), (62)

with the initial condition ℘(x,0|0,0) = δ(x). The Kramers-
Moyal operator Lx has the form [63]

Lx =
∞∑
n

(−1)n
∂n

∂xj1 . . . xjn

D
(n)
j1,...,jn

(x) (63)

(the summation over the indices j1, . . . ,jn is implicitly under-
stood). Coefficients D

(n)
j1,...,jn

(x,t) are the rescaled nth moments
of the short-time transition probabilities [63], namely,

D
(n)
j1,...,jn

(x)

= lim
τ→0

1

n!τ

∫
RD

d y
n∏

i=1

(yji
− xji

)℘( y − x,τ |0,0)

= lim
τ→0

1

n!τ

∫
RD

d y
n∏

i=1

(yji
− xji

)〈 y|e−τν log(Ĥ /μ+1)|x〉.

(64)

In the last identity we have employed Dirac’s bra-ket notation.
To calculate the short-time transitional probability in (65) one
can employ some of the standard PI perturbation approaches
[20]. When the Kramers-Moyal equation is truncated after the
second order, one obtains a conventional (forward) Fokker-
Planck equation for the transitional probability ℘(x,τ |0,0).
When H is identified with (57), then the ensuing Fokker-
Planck equation reduces to the Schultz-Zimm master equation.
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VI. EXAMPLE II: CONNECTION WITH
RELATIVISTIC PARTICLES

In a sense the simplest representative of the THC statistics-
based random chains is fluctuating relativistic particle orbits. In
particular, the density matrix, (38), together with the partition
function, (44), can be identified with the density matrix
and partition function for a free spinless relativistic particle,
respectively, provided we use a suitable Se and set q = 2r − 2.

The simplest place to start is the Polyakov-type action for
a free spinless particle, which reads [20,64–66]

S[x,η; τ1,τ2]

= − 1
2

∫ τ2

τ1

dτ
(
η−1(τ ) ẋμ(τ )ẋμ(τ ) + η(τ ) m2

0

)
. (65)

Here η represents the square root of the world-line metric
(i.e., einbein) and τ is a label time (be it the proper
time, affine parameter, etc.) parametrizing the world line.
We have chosen the Lorentz signature in D dimensions to
be (+, − , − , . . . ,−). The action, (65), is invariant under
reparametrizations of the label time, i.e.,

τ �→ τ̄ = f (τ ) ⇒ ẋμẋμ �→ ˙̄xμ ˙̄xμ = ẋμẋμ

ḟ 2
,

dτ �→ dτ̄ = dτ ḟ , η �→ η̄ = η

ḟ
, (66)

with f (τ ) fulfilling the conditions f (τ1) = τ1, f (τ2) = τ2, and
ḟ > 0. The result is S = S̄. The transition amplitude from
xμ(τ1) = x

μ

1 to xμ(τ2) = x
μ

2 can then be written as

〈x2,τ2|x1,τ1〉 =
∫ x(τ2)=x2

x(τ1)=x1

Dx

∫
DηeiS. (67)

This path integral is, however, not quite right. It contains an
enormous overcounting, because the configurations (η,x) and
(η̄,x̄), which are related to one another by the reparametrization
transformation, (66), represent the same physical configu-
ration. If we define the space of all einbeins η as � and
the D-dimensional Minkowski space as RD

M, then the true
space of physical configurations is not � × RD

M but rather
the factor space (� × RD

M)/G, with G representing the
reparametrization group. At least locally we can always write
that � × RD

M ∼ ((� × RD
M)/G) × G. Thus

DηDx = dμ
((

� × RD
M

)/
G

)
dμ(G). (68)

Here dμ(G) represents the measure on the reparametrization
group. It can be shown [56] that

DηDx = dLDx√
L

√
detR

(
− d2

dτ 2

)
dμ(G)

= N dLDx dμ(G). (69)

(The subscript R indicates the regularized determinant.) The
variable L corresponds to the actual length of the world line,
i.e.,

L =
∫ τ2

τ1

dτη(τ ). (70)

After factorizing out the volume of the reparametrization group
we obtain the true transition amplitude, (67), which now reads

〈x2,τ2|x1,τ1〉 =
∫

dμ
((

� × RD
M

)
/G

)
eiS

= N
∫ ∞

0
dLe−im2

0L/2
∫ x(τ2)=x2

x(τ1)=x1

DxeiS̃ ,

S̃[x; τ1,τ2] = −1

2

∫ τ2

τ1

dτ ẋμ(τ )ẋμ(τ ). (71)

Equation (71) is the so-called world-line representation of
Green’s function for the Klein-Gordon equation, and formally
it may be obtained also via the Feynman-Fock fifth parameter
approach [51]. Result (71) can be naturally related to the
density matrix by the substitution τ �→ −it and L �→ −iβ.
In this case we arrive at the density matrix

ρ(xa,xb; β) = N
∫ ∞

0
dβe−m2

0β/2
∫ x(β)=x2

x(0)=x1

Dxe−S̃e ,

S̃e[x,β] = 1

2

∫ β

0
dt(ẋ(t) · ẋ(t) + ẋ0(t)ẋ0(t)) , (72)

with S̃e representing the ensuing Euclidean action.
Comparing (72) with (36) we see that Tsallis’ density

matrix for a free nonrelativistic particle in D spatial
dimensions is equivalent to the (canonical) density
matrix for a free relativistic particle in D space-time
dimensions provided we identify 2r − q = 2 and m2

0/2 = μ.
Because PSL(2,R) � SO+(1,2) ⊂ SO+(1,D − 1) [here
SO+(1,D − 1) represents the restricted Lorentz group in
D dimensions], we have that μ is a Lorentz invariant in
D dimensions (since m2

0 is) and hence it is automatically
invariant also under subgroup PSL(2,R). This ensures that
(72) agrees with the THC density matrix.

With the density matrix at hand we can construct the
corresponding one-particle partition function Z. Once again,
we have to be careful and insert the extra factor 1/β in the
PI measure to avoid overcounting loops with different starting
points x(t) = (x0(t),x(t)).

The THC density matrix, (72), was constructed on the
premise that S (and the ensuing S̃e) describes a single particle.
Of course, the single-particle relativistic quantum theory is
logically untenable, since a multiparticle production is allowed
whenever a particle reaches the threshold energy for pair
production. So, strictly speaking, representation (72) holds
only when the energy-momentum involved is lower than the
particle’s resting mass. In addition, Leutwyler’s no-interaction
theorem [67] prohibits interaction for any finite number of
particles in the context of relativistic mechanics. To get around
the no-interaction theorem it is essential to have an infinite
number of degrees of freedom to describe interaction. The
latter is typically achieved via local quantum field theories.

Despite the aforesaid shortcomings, it should be stressed
that the PIs for a single relativistic particle, (71) and (72),
represent a key building block in QFT. In fact, QFT, in general,
can be viewed as a grand-canonical ensemble of fluctuating
particle histories (world lines) where a Feynman diagrammatic
representation of quantum fields depicts directly the pictures of
the world lines in a grand-canonical ensemble. In particular,
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the partition function for quantized relativistic fields can be
fully rephrased in terms of single-particle relativistic PIs. This,
the so-called “world-line quantization” of particle physics, is
epitomized, e.g., in Feynman’s world-line representation of the
one-loop effective action in quantum electrodynamics [68], in
the Strassler and Bern-Kosower “string-inspired” approaches
to QFT [69,70], and in disorder field theory [46].

Let us, finally, mention that the similar analysis we have
just done for a spinless relativistic particle can be straightfor-
wardly generalized to any spinning relativistic particle with
a nonzero resting mass (massive Rarita-Schwinger particle)
[65]. It is also trivial to extend our approach to account for
charged relativistic particles that are coupled to the external
electromagnetic field [65]. This can be done as usual by the
minimal substitution (via the covariant derivative). To put some
meat on the bare bones, we use in Appendix B the world-line
quantization to calculate the Gibbs free energy of the charged
scalar quantum field in the background electromagnetic po-
tential. At present, it seems that massless particles do not fit
easily into the outlined THC statistical scenario.

VII. CONCLUSIONS

In this article we have introduced a class of statistical
processes in which Tsallis’ thermostatistics finds its natu-
ral conceptual playground. The processes in question are
characterized by the position-space density matrix, which
is invariant under group E(1) ⊂ PSL(2,R) (i.e., the group
of Möbius parabolic transformations) of the THC “inverse-
temperature” parameter. We have seen that such behavior is
dictated by purely thermodynamic considerations (the first
law of thermodynamics alongside the Legendre structure)
and supported by the self-referentiality of the underlying
THC distribution, (12). In contrast with the THC MaxEnt
distribution, the closely related Rényi MaxEnt distribution,
(10), though of superficially identical form, is not self-
referential and consequently cannot compensate for the shift
in 〈H 〉r by consistently redefining β. In this connection we
should perhaps mention one terminological nuisance that is
sometimes used, namely, that Student’s t distribution (which
is key in a sampling theory) constitutes Tsallis’ statistics.
This is certainly not the case. The THC MaxEnt distribution
resembles Student’s t distribution only superficially. This is
because the THC entropy maximizer is badly self-referential
in a temperature parameter. On the other hand, Student’s t

distribution can be directly identified with Rényi’s MaxEnt
distribution where the temperature parameter is a constant.

We have shown that statistical systems that fit the above
pattern of behavior can be identified with certain types of
random chains in a background scalar potential. This can be
seen particularly clearly when the associated density matrices
are formulated in path-integral language. In this case the
ensuing partition function coincides with the partition function
of a fluctuating random loop of arbitrary length, while the
density matrix itself describes an open random chain with end
points embedded in the loop. A specific point of the THC
statistics [namely, its E(1) symmetry] is that the loop lengths
are distributed according to the gamma PDF. As an illustration
of the issues involved we have presented a treatment of two
simple statistical systems, namely, an ensemble of fluctuating

polymer chains in a Schulz-Zimm approximation and an
ensemble of relativistic particle orbits formulated in the
framework of relativistic quantum mechanics.

The PI representation of the THC density matrix also serves
as a convenient starting point for various generalizations. In
particular, it provides a natural passage from a single THC
statistics-based fluctuating random loop to grand-canonical
ensembles of these. We have discussed the basic inner
workings of this procedure and highlighted its connection
to the spectral ζ -function expansion and ensuing QFT
representation of the loop gas. A closely related computation
of the Gibbs free energy in scalar quantum electrodynamics
is presented in Appendix B. Particularly in the latter case we
observed yet another role of the THC parameter, namely, it can
be identified with a regulator in the ζ -function regularization
of functional determinants.
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V. Svoboda and M. Prokš for proofreading the manuscript.
P.J. and J.K. were supported by Czech Science Foundation
Grant No. 17-33812L, and V.Z. by DFG (Germany) Grant No.
256/54-1.

APPENDIX A

Here we provide a brief derivation of the Schulz-Zimm dis-
tribution of chain lengths for values of the parameter ν = 1,2.
We adopt the effective picture of Kamide and Dobashi [71], in
which there is a certain probability wP of adding a monomer to
the growing chain and a probability wT = 1 − wP that the ter-
mination reaction occurs such that monomers can no longer be
added, i.e., the chain is dead. The reader may find a detailed de-
scription of the chemical processes involved, e.g., in Ref. [72].
A chain composed of n monomers (n � 1) is thus formed
with the probability p(n) = wn−1

P wT . There are two common
processes of termination: disproportionation, where two grow-
ing chains meet to deactivate their reactive centers but do
not combine; and combination, where two growing chains of
lengths n and m combine to form a dead chain of length n + m.

In the case of termination by disproportionation, the
distribution of chain lengths is given simply by pD(n) =
p(n) = wn−1

P wT . In the continuum limit, L = na (a is the bond
length) and we use the approximation wP ≈ 1, i.e., wT � 1,
in which long chains are likely to be formed. The probability
density PD(L) of finding a chain of length L is determined
from the identity

pD(n) =
∫ na

(n−1)a
dLPD(L). (A1)

This yields the PDF in the form

PD(L) = wT

a
exp

(
−wT

a
L

)
. (A2)

In the case of termination by combination, a chain of n

monomers arises from the combination of two growing chains
with lengths m and n − m (1 � m � n − 1). The distribution
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of chain lengths is then given by

pC(n) =
n−1∑
m=1

p(m)p(n − m) = w2
T (n − 1)wn−2

P , (A3)

and the corresponding density function is given, in analogy
with (A1), as

PC(L) = L
w2

T

a2
exp

(
−wT

a
L

)
. (A4)

By comparing (A2) and (A4) with the gamma PDF, (39),
we can identify

PD(L) = fwT /a,1(L) (A5)

and

PC(L) = fwT /a,2(L). (A6)

The THC distribution parameters q and the Casimir
invariant β(0) of the end-to-end vector distribution, (60),
can thus be set as follows: termination by disproportionation
corresponds to qD = 2 (for r = q) and

βD(0) = a

wT

; (A7)

termination by combination, to qC = 3/2 (for r = q) and

βC(0) = 2a

wT

. (A8)

Combination and disproportionation are two competitive
processes which do not occur to the same extent for all
polymers [71,72].

APPENDIX B

The uses of the path-integral representations (38) and (44)
are not restricted to the calculation of probability densities
or partition functions. These formulas can also be directly
used to calculate the one-loop effective action, i.e., Gibbs free
energy, in QFT. The one-loop effective action �(1) is defined
as [48,49,73]

�(1) = −1

2
ln det

(
δ2Se

δφiδφj

)∣∣∣∣
φk=φk,c

. (B1)

Here Se denotes the Euclidean field-theory action, {φk}
represents the constituent multiplet of scalar fields, and φk,c

is a solution of the classical field equations of motion. For
instance, for a relativistic complex massive scalar field that
is minimally coupled to a background electromagnetic field
and self-interacts via potential U (φk), the Euclidean Lagrange
density reads [48]

Le = 1

2
(φ∗,φ)

[
(p̂μ + eAμ)2 + m2 + Uφ∗φ(φk,c) Uφ∗φ∗ (φk,c)

Uφφ(φk,c) (p̂μ − eAμ)2 + m2 + Uφφ∗ (φk,c)

] (
φ

φ∗

)
, (B2)

with p̂μ = −i∂μ and Uφ∗φ = ∂2U/∂φ∗∂φ = Uφφ∗ , etc. All
scalar products are understood with respect to the Euclidean
metric δμν . With the help of the Schur complement technique
for calculation of determinants of partitioned matrices [74],
the ensuing one-loop contribution to the Gibbs free energy
reads

�(1)[A] = − 1
2 ln det[(p̂ + eA)2 + m2 + Uφ∗φ]

− 1
2 ln det[(p̂ − eA)2 + m2 + Uφφ∗ − UφφGUφ∗φ∗ ],

(B3)

where G = [(p̂ + eA)2 + m2 + Uφ∗φ(φk,c)]
−1

denotes the cor-
responding Green’s function of the charged scalar particle in
the classical background fields Aμ and Uφ∗φ(φk,c).

To illustrate the connection with the THC statistics we
consider for simplicity the situation with U = 0. In this case
we have

�(1)[A] = − ln det[(p̂ + eA)2 + m2]. (B4)

Note that the global factor 1/2 has disappeared, because

det[(p̂ − eA)2 + m2] = det[C((p̂ − eA)2 + m2)C−1]

= det[(p̂ + eA)2 + m2], (B5)

where the unitary operator C represents the charge
conjugation operator, i.e., CφC−1 = φ∗,Cφ∗C−1 = φ and
CAμC−1 = −Aμ.

To calculate the functional determinant in (B4) we utilize
the method of the so-called ζ -function regularization [75]. The
strategy is as follows; we denote Â ≡ (p̂ + eA)2 + m2 and
define the (spectral) ζ function ζA(s) through the spectrum
{λn} of Â as

ζA(s) =
∑

n

1

λs
n

. (B6)

With this the determinant in (B3) can be calculated as

det Â = lim
s→0

e−ζ ′
A(s). (B7)

Since the spectrum is typically not known, we can utilize,
instead of the defining relation, (B6), the heat kernel method to
to compute ζA(s). The heat kernel GA(x,y,β) of the operator Â
is the fundamental solution of the heat-transfer-type equation,

ÂxGA(x,y,β) = − ∂

∂β
GA(x,y,t), (B8)

with the Cauchy condition GA(x,y,β = 0) = δ(x − y).
By writing the heat kernel in Dirac’s bra-ket notation,

GA(x,y,β) = θ (β)〈x| exp(−βÂ)|y〉, (B9)

and using the identity

1

λs
i

= 1

�(s)

∫ ∞

0
dββs−1e−βλi , (B10)
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valid for Re(s) > 0, we see that ζA(s) can be alternatively
written as the Mellin transform of the trace of the heat kernel
GA(x,y,β), namely,

ζA(s) = 1

�(s)

∫ ∞

0
dββs−1

∫ ∞

−∞
dxGA(x,x,β). (B11)

Here the parameter β is known as Schwinger’s proper time
parameter. By employing (B7) we obtain

ln det Â = − lim
s→0

d

ds

∫ ∞

0

dββs−1

�(s)

∫ ∞

−∞
dxGA(x,x,β)

(B12)

or, equivalently [cf. (B3)],

�(1)[A] = ln det Â/M2

= lim
s→0

d

ds

∫ ∞

0

dββs−1

�(s)
Tr[e−β((p̂+eA)2+m2)/M2

].

(B13)

Here we have introduced a factor M with the dimension of
mass to maintain the argument of ln(. . .) dimensionless. In
this case also β is dimensionless.

The path integral enters when the functional trace Tr(. . . )
is rewritten in the position-space representation, i.e.,

Tr(. . . ) =
∫ ∞

−∞
dx〈x| . . . |x〉, (B14)

and when the PI representation,

〈x|e−β(p̂+eA)2 |x〉

=
∫

q(0)=q(β)=x

Dq exp

[
−

∫ β

0
dτ (q̇2/4 + ieq̇A)

]
,

(B15)

is utilized. With this we can finally write

�(1)[A] = lim
s→0

d

ds

1

�(s)

∫ ∞

0

dβ

β
(M2β)se−βm2

×
∮

Dq exp [−Se[q,q̇]], (B16)

where Se = ∫ β

0 dτ (q̇2/4 + ieq̇A(q)) is the corresponding
quantum-mechanical Euclidean action. Again, the scalar prod-
ucts q̇μq̇μ and q̇μAμ(q) are with respect to the Euclidean
metric δμν .

Since the β integral is generally not absolutely convergent,
one cannot naively interchange derivation and limitation with
integration. So, strictly speaking, one must first evaluate the
integral with the regulator s > 0 and only at the end perform
the differentiation in s → 0. Fortunately, for many operators
Â one can analytically extend ζA(s) to a meromorphic function
which is regular at s = 0. This in turn allows us to analytically
continue the path integral with s > 0 to the path integral
with the would-be 1/β term [formally d(M2sβs−1/�(s))/ds =
1/β + O(s)]. In fact, the latter path integral typically leads
to the so-called Schwinger determinant, which is an un-
regularized (infinite) expression; thus it is necessary to
provide some regulation scheme to obtain a well-defined
result.

The form, (B16), in turn, allows us to pinpoint yet another
interesting rôle of the THC parameter, namely, 1/ε − 1 can be
identified with a regulator s in the ζ -function regularization,
which, as we have just seen, is used in regularization of
functional determinants [such as (B3)] in QFT.

In principle, one can proceed with the outlined THC
statistics even to higher-loop orders in QFT calculations
of the Gibbs free energy by using the so-called world-line
path-integral representation. We do not dwell on this approach
here. The interested reader may consult, e.g., Ref. [73].
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