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Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids
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According to the van der Waals picture, attractive and repulsive forces play distinct roles in the structure of
simple fluids. Here, we examine their roles in dynamics; specifically, in the degree of deterministic chaos using
the Kolmogorov-Sinai (KS) entropy rate and the spectra of Lyapunov exponents. With computer simulations of
three-dimensional Lennard-Jones and Weeks-Chandler-Andersen fluids, we find repulsive forces dictate these
dynamical properties, with attractive forces reducing the KS entropy at a given thermodynamic state. Regardless
of interparticle forces, the maximal Lyapunov exponent is intensive for systems ranging from 200 to 2000
particles. Our finite-size scaling analysis also shows that the KS entropy is both extensive (a linear function of
system-size) and additive. Both temperature and density control the “dynamical chemical potential,” the rate of
linear growth of the KS entropy with system size. At fixed system-size, both the KS entropy and the largest
exponent exhibit a maximum as a function of density. We attribute the maxima to the competition between two
effects: as particles are forced to be in closer proximity, there is an enhancement from the sharp curvature of the
repulsive potential and a suppression from the diminishing free volume and particle mobility. The extensivity and
additivity of the KS entropy and the intensivity of the largest Lyapunov exponent, however, hold over a range of
temperatures and densities across the liquid and liquid-vapor coexistence regimes.
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I. INTRODUCTION

Statistical mechanics predicts the emergent behavior of
systems both at and away from equilibrium. Though more
established at equilibrium than away from it [1], there are
promising results for nonequilibrium processes drawing from
dynamical systems theory [2,3]. The central quantities include
the Lyapunov exponents and Kolmogorov-Sinai entropy per
unit time (or simply KS entropy) [4,5]. Both quantities are
signatures of deterministic chaos [6,7]: the former measure
the exponential rate at which initially close trajectories
diverge, and the latter is the rate of phase-space mixing, with
applications in statistical mechanics dating back to Krylov [8].
In constructing a nonequilibrium statistical mechanical theory
from these dynamical observables, it would be ideal to have
equilibrium statistical mechanics as a limiting case. Thus, the
equilibrium properties of the KS entropy we study here are
relevant to its use away from equilibrium.

While the KS entropy is technically a rate, given its
name, it is tempting to look for similarities and quantitative
connections with the thermodynamic entropy, or the entropy
production (rate), a line of reasoning that has yielded important
results [9–11]. Two key features of the thermodynamic entropy
are its linear growth with system size, or extensivity, and
its additivity [12,13]. The KS entropy is extensive in time,
but surveying discrete dynamical systems (e.g., the tent and
logistic maps [14]) and models of physical systems (e.g.,
symmetric exclusion processes, random walks with absorbing
boundaries, and an infinite-range Ising model with spin-flip
dynamics [15]), there is no guarantee that the KS entropy
is extensive in system size. Furthermore, compared to its
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system-size extensivity, the additivity of the KS entropy seems
to have been addressed less frequently [16]. Here, we analyze
both the additivity and extensivity of the KS entropy for simple
fluids over a range of system sizes that avoids corruption from
finite-size effects.

Many aspects of Lyapunov exponents and the KS entropy
have been considered over the past few decades [16–47].
However, because of the computational expense, calculations
of the full Lyapunov spectra and the KS entropy are typically
limited to systems with few degrees of freedom or short
times scales [48]. This expense can be offset by simplifying
the model; for example, hard-disks and hard spheres are a
common choice, and they have the added advantage that
there are well-established equilibrium statistical mechanical
theories [28–33]. Models with soft interactions, though, such
as the Lennard-Jones (LJ) potential, are computationally more
demanding [34]. In this case, it is often necessary to instead
sacrifice the number of real spatial dimensions, working in
one or two dimensions instead of three [34–41]. For those
simulations calculating the complete Lyapunov spectrum in
three-dimensional systems, the largest number of particles
considered was on the order of hundreds [42–46], which the
present authors extended to over 1000 [48]. Part of the goal
in this work is to extend the largest system size (up to 2000)
for which the Lyapunov spectrum is available for simple fluids
and to test the extensivity and additivity of the KS entropy
through finite-size scaling.

In this work, we compute the KS entropy and the Lya-
punov spectrum from molecular dynamics simulations [49] of
Lennard-Jones and Weeks-Chandler-Andersen fluids [50,51].
We systematically analyze the temperature and density depen-
dence of these dynamical observables for three-dimensional
fluids, which is only currently known for two-dimensional
systems [37,39]. Our scaling analysis of the KS entropy
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and Lyapunov spectra with the number of particles in these
fluids adds to previous work on the scaling of the largest
Lyapunov exponent [16,42,44] and studies of small (less than
100 particles) three-dimensional systems [42,44]. Overcoming
the significant computational difficulty that has prevented
finite-size scaling over a wide range of system sizes raises
the question of whether the KS entropy is, in fact, extensive.
We address this question here, as well as how the nature of the
interparticle interactions, temperature, and density, affect this
scaling.

II. MODEL SYSTEMS AND COMPUTATIONAL METHODS

We consider classical, three-dimensional, periodic fluids
containing N particles with 3N positions and 3N momenta.
The Hamiltonian of the system is H (r̃ij ,p̃k) = ∑3N

k p̃2
k/2m +∑N

i<j V (r̃ij ,t̃), with the interaction potential V (r̃ij ) between
the particles i and j a distance, r̃ij , apart. One type of fluid we
consider consists of particles interacting pairwise through the
Lennard-Jones potential (LJ) [52],

VLJ(r̃ij ) = 4εij

[(
σ

r̃ij

)12

−
(

σ

r̃ij

)6
]
. (1)

The parameter ε corresponds to the strength of the interaction
between particles i and j . All interactions are identical so
that we model a single-component fluid. The first term of the
potential is a repulsive contribution to pairwise interactions,
which operates over short distances. The second term is an
attractive contribution acting over a comparatively longer
range. The parameter σ is the distance at which the attractive
and the repulsive contributions to the potential are equal and
is a measure of the particle size. To understand the influence
of the attractive and repulsive interactions on the KS entropy,
we also consider a fluid consisting of particles that interact
through the Weeks-Chandler-Andersen (WCA) potential [53].
The WCA potential is

VWCA(r̃ij ) =
{
VLJ(r̃ij ) + ε if r̃ij < 21/6σ

0 if r̃ij � 21/6σ.
(2)

Both interparticle interactions are shown in Fig. 1(a).
We simulate constant energy trajectories of the periodic LJ

and WCA fluids in three dimensions with molecular dynamics.
We work in LJ reduced units with distance r = r̃/σ , density
ρ = ρ̃σ 3, temperature T = kBT̃ /ε, time t = t̃/

√
mσ 2/ε, and

KS entropy hKS = h̃KS

√
mσ 2/ε. All particles have unit mass,
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FIG. 1. (a) Interaction potential between the ith and j th particle.
(b) Snapshots of 4 out of the 15 system sizes we simulate with NV E

molecular dynamics: N = 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1100, 1300, 1500, 1700, 1900, and 2000.

and, unless noted otherwise, ε and σ are also unity. All
results shown here are from constant energy trajectories.
The initial phase points for these trajectories, however, were
sampled from a canonical ensemble with temperature T using a
Berendsen thermostat with a time constant of 0.5. The constant
energy trajectories evolve in time according to the velocity
Verlet algorithm with time step �t = 10−3. We both shift and
truncate interparticle forces [54] for a Verlet list with a cutoff
and a “skin” of 0.1σ . The cutoff was 2.5σ for the LJ fluid and
21/6σ for the WCA fluid.

Together with each constant energy trajectory we simulate
the tangent space dynamics. These dynamics impose signif-
icant computational limitations on the largest system sizes
that are accessible. For each constant energy trajectory, the
Lyapunov exponents and the KS entropy, hKS, are calculated
from the set of orthogonal Lyapunov basis vectors (Gram-
Schmidt vectors) [55,56]. The mth vector elements are the
first variations in position and momentum (δqmn,δpmn)T with
m,n = 1, . . . ,6N . These vectors are evolved according to the
linearized Hamiltonian dynamics [55], along with the phase
point, using to the linearized velocity Verlet algorithm and
orthonormalization at every step [48,57–59]. During the evolu-
tion, the first vector orients parallel to the maximally changing
tangent space direction. Regular orthonormalization avoids
the collapse of the remaining vectors onto the maximally
changing direction. The linearized velocity Verlet form of
the tangent space propagator requires the second derivative
(Hessian) matrices at consecutive steps. We use forward
differences of the analytical gradients with a displacement
of 10−4. Initial basis sets are randomly filled, orthonormal
matrices. All calculations were in single precision.

During the simulation, the Lyapunov spectrum is calculated
from the set of orthogonal Lyapunov vectors at every time
step [17]. We calculate the full Lyapunov spectrum using
the metric |δxn|2 = ∑6N

m [δqmn(t)2 + δpmn(t)2]. The nth finite-
time Lyapunov exponent is

λn(t,t0) = |t − t0|−1 ln
|δxn(t)|
|δxn(t0)| . (3)

According to Pesin’s theorem [6], for closed dynamical
systems, the KS entropy, hKS, is the sum of the positive
Lyapunov exponents,

∑+
n λn, in the infinite-time limit. To

calculate statistical errors for hKS and λmax from long, but finite,
simulations, we neglect the initial transient of the Lyapunov
exponents and use the standard deviation of the remaining time
series.

III. RESULTS AND DISCUSSION

A. System-size scaling of the Lyapunov spectrum
and the KS entropy

From simulations of many-particle systems in one, two,
and three dimensions [16,20,39,40], there is accumulating
numerical evidence that the Lyapunov spectrum is well-
defined in the thermodynamic limit: N,V → ∞ such that
ρ = N/V is constant. Whether chaos persists with a well-
defined Lyapunov spectrum in scaling limits is also of interest
in generic dynamical systems [60]. If a thermodynamic limit
exists, the structure of the spectrum is a global property of the
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FIG. 2. (a) Representative data showing the KS entropy is linearly extensive in system size, N , for both Lennard-Jones (�) and Weeks-
Chandler-Andersen (◦) fluids. Data points with error bars are from simulations at fixed number density, ρ = 0.75, and a kinetic temperature of
approximately T = 0.9. Linear fits of the data (dashed lines) give hKS = 6.0276 N + 8.6698 with correlation coefficient 0.999992 for LJ and
hKS = 7.4104 N + 1.1900 with correlation coefficient 0.999943 for WCA. The quality of these fits supports the extensivity of the KS entropy
over an order of magnitude in N . The shallow slope of hKS(N ) for the LJ fluid compared to the purely repulsive WCA fluid is due to the
attractive forces. The associated Lyapunov spectra of the (b) LJ and (c) WCA fluids with N = 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1300, 1500, 1700, 1900, and 2000 particles at ρ = 0.75 and T = 0.9. The KS entropy is the area under the positive portion of the spectra.
For each spectrum, the symmetry about the horizontal axis is a consequence of the conjugate pairing rule.

dynamics at equilibrium. The spectral structure is important,
in part, because it determines the thermodynamic scaling
properties of the KS entropy.

To understand the scaling of the KS entropy with system
size, we simulate a set of 15 systems with the number of
particles varying from 200 to 2000 [Fig. 1(b)]. From our
NV E simulations, we find the KS entropy scales linearly
with the number of particles, N [Fig. 2(a)]. This result
spans a range of temperatures and densities that include pure
liquids and coexisting phases for both Lennard-Jones and
Weeks-Chandler-Andersen systems. The representative data
in Fig. 2 are finite-size scaling results where the number of
particles extends over an order of magnitude at fixed number,
ρ = N/V = 0.75, and energy density, E/N = −2.9304 for
the LJ fluid and E/N = 1.9714 for the WCA fluid. At this
energy density, the average kinetic temperature is 0.9 and
corresponds to the conditions of the pure liquid phase [61].
The (kinetic) temperature is calculated from the equipartition
theorem, T = 2〈Ekin〉/3NkB, with the average kinetic energy
per particle.

Trajectories of simple fluids disperse because of the con-
vexity of the interatomic interaction potential. This Lyapunov
instability of the dynamics also depends on the degree of
curvature of the potential, as is known, for example, from
studies of isolated molecules and clusters [62–64]. In the van
der Waals picture of fluids, one expects the short range of the
steep repulsive wall to contribute more to the dynamical insta-
bility than the slowly varying, long-ranged attractions between
particle pairs. These competing forces are manifest in the
dynamics through both the KS entropy shown in Fig. 2(a) and
the Lyapunov spectra shown in Figs. 2(b) and 2(c). Both the LJ
and WCA fluids have identical thermodynamic conditions, a
number density of ρ = 0.75, and a kinetic temperature around
T = 0.9, to isolate the effect of the attractive and repulsive
interactions. These data show that the scaling of hKS with N

is linear for both LJ and WCA fluids, despite “turning off”

attractive forces. Also apparent in these data is the higher hKS

for the WCA fluid over this range of system sizes. This finding
reflects the van der Waals picture and our intuition about
the steepness of the repulsive wall; roughly speaking, attractive
forces slow down the dispersion of trajectories, while repulsive
interactions hasten their divergence. More quantitatively, the
relative error of the KS entropy |hWCA

KS − hLJ
KS|/hWCA

KS × 100
is between 17 and 19% for all N . Ultimately, this behavior
of the exponents and hKS can be linked to their dependence
on the curvature of interaction potential through the Hessian
[17]. Building on these ideas, we expect the number of pairs
sampling the attractive and repulsive portions of the potential
to affect the global KS entropy. For example, in a 1000 particle
system, a given LJ particle experiences roughly 6 repulsive and
54 attractive interactions on average at ρ = 0.75 and T = 0.9.
Under the same conditions, a particular WCA particle has
roughly six repulsive neighbors.

The structure of the Lyapunov spectrum underlies the linear
growth of the KS entropy with system-size. Figures 2(b)
and 2(c) show the complete Lyapunov spectra for LJ and
WCA fluids, respectively. The spectra are symmetric as
expected from the conjugate pairing rule [65] and Liouville’s
theorem. However, comparing Figs. 2(b) and 2(c) shows that
the Lyapunov spectra of these fluids differ significantly in
their structure at this temperature and density. The spectrum
of the LJ fluid is nearly a linearly decreasing function,
λi ≈ λmax(1 − i/L), of the index, i = 0, . . . ,L = 3N − M .
The Lyapunov exponents are in descending order. For M

conserved quantities, 2M Lyapunov exponents are zero [39].
For a Lyapunov spectrum with a linear structure, there is a
geometrical relationship between the maximal exponent and
the KS entropy; when the spectrum decreases linearly with
the index, the positive half of the Lyapunov spectrum is a
right triangle with a base 3N , height λmax, and area hKS. The
area is then hKS = 3Nλmax/2, resembling the equipartition
theorem for energy 〈Ekin〉 = 3NkBT/2 with the role of kBT

022102-3



MOUPRIYA DAS, ANTHONY B. COSTA, AND JASON R. GREEN PHYSICAL REVIEW E 95, 022102 (2017)

being played by λmax. This analogy extends even further since
λmax and T are both intensive quantities.

The association of the KS entropy with the area of the
positive portion of the Lyapunov spectrum is valid regardless
of the spectral structure, but the relationship hKS = 3Nλmax/2
only strictly holds for the special case of a spectrum of the
form λi = λmax(1 − i/L). However, if the largest Lyapunov
exponent, λmax, is intensive then this simple geometrical
relation supports the linear extensivity of hKS. To see this
connection, if λmax is independent of N then hKS = c N with a
constant c = 3λmax/2. In other words, the base of the triangle
alone will linearly grow the area, KS entropy. While this
geometrical argument assumes an exactly linear spectrum, it
correctly describes the extensivity of the KS entropy in the
LJ fluid despite small nonlinearities seen in Fig. 2(b), and
the strong deviations from linearity in the WCA spectrum.
In fact, we find hKS scales linearly with N for both LJ and
WCA under all the conditions we have studied. We have
suppressed notation, but the form of the Lyapunov spectrum
and the rate of divergence of hKS with N depend on the
density and temperature. And, as we will show, the spectra do
deviate significantly from linear under some thermodynamic
conditions.

The extensivity of the KS entropy depends on the system-
size scaling of the largest Lyapunov exponent. Using the
geometrical argument above, if λmax is constant, as found
by Posch and Hoover [42,44] for three-dimensional systems,
then hKS is a linear function of N . But, if λmax instead
has a weak logarithmic divergence, ln N , as suggested by
Searles, Evans, Isbister [16] then hKS will scale as N ln N .
It is noteworthy that Searles et al. also observed deviations
from this logarithmic scaling O(1/N) for small system sizes.
We see neither finite-size effects nor any trend in the largest
exponent with system size. This finding is supported by the
data in Figs. 2(b) and 2(c) and a closer analysis where we
found no clear trends in the maximum Lyapunov exponent
with system size within our statistical errors. Our data, over
an order of magnitude of system sizes with high-quality linear
fits, are strong numerical evidence of the extensivity of hKS

and intensivity of λmax.
From the Lyapunov spectra in Fig. 2(b), we can infer

a thermodynamic limit for their structure. The modulus of
the linear slope of the spectra is λmax/3N ≈ 1/N , since the
magnitude of λmax is around 4. We confirmed this scaling of
the slope for the data shown. This result will likely hold for
sufficiently large N even if the largest exponent has a weak
logarithmic divergence as suggested by Searles et al. Since
λmax ≈ ln N diverges more slowly than 3N , the slope will
be λmax/3N ∼ N−1 ln N for N > 1. Assuming this relation
continues to hold in the large system limit, as N , hKS → ∞,
the slope will tend asymptotically to zero and the Lyapunov
spectrum will be uniform.

The KS entropy is clearly extensive, meaning it scales
linearly with the number of particles in the system such that
there is a finite density, hKS/N , in the thermodynamic limit.
These data also show that the KS entropy is additive. Loosely
speaking, the KS entropy will double upon doubling the system
size. More generally, KS entropy of each system with size N

is an additive function of the KS entropies for any (say, two)
subsystems with sizes NA and NB such that N = NA + NB .

Mathematically, hKS(N ) = hKS(NA) + hKS(NB). For example,
the KS entropy of a 600-particle composite system is the
sum of the KS entropies of a 200 particle and a 400 particle
system with less than 0.5% error in our data. We verified
this property for all possible composite systems and their
associated subsystem partitions with our data up to N = 2000
for both LJ and WCA fluids. The error is less than 0.5% in all
cases.

In sum, these data show that the KS entropy is additive and
extensive for simple fluids, like the thermodynamic entropy.
To justify the linear scaling of hKS against N from the thermo-
dynamic point of view, we can compare its behavior to that of
the thermodynamic entropy S. From the fundamental relation,
dS = dU/T + P dV/T − μdN/T , the chemical potential
determines the dependence of the thermodynamic entropy
on system size, (∂S/∂N )U,V = −μ/T in the microcanonical
ensemble, assuming the thermodynamic state is not on a
phase boundary or at a critical point. The negative value
of μ determines the rate of linear growth of S with N for
homogeneous, single component systems at fixed temperature.
From this perspective, the linear scaling of hKS against N

is consistent with thermodynamics. If we were to take this
analogy further, the slope of the KS entropy versus N would be
−μKS/T . In the next subsection, we will see how temperature
affects ∂hKS/∂N .

It is worth noting that while the KS entropy and the
thermodynamic entropy are not equivalent, given that their
dimensions differ, their common properties are of interest
to further establish links between the theories of dynamical
systems and liquids. Of course, the Lennard-Jones and Weeks-
Chandler-Andersen systems we study here are at equilibrium,
and their typical microscopic states will be those that maximize
entropy. A positive KS entropy rate for these many-particle
systems does not imply a positive macroscopic entropy
production rate. Rather, being the sum of only the positive
Lyapunov exponents, it measures the extent of dynamical
randomness at the microscopic level that is not apparent at
the macroscopic level. In contrast, the sum of all Lyapunov
exponents can be linked to the entropy production rate
of nonequilibrium thermodynamics [2]. But here, because
the systems are isolated, Liouville’s theorem ensures the
conservation of phase space volume and that this sum is strictly
zero [Fig. 2(b)], which is consistent with these systems being
at equilibrium, and, so, producing no entropy on a macroscopic
scale.

B. Temperature dependence of the Lyapunov
spectrum and the KS entropy

The structure of the Lyapunov spectrum and the rate of lin-
ear divergence of hKS with N depend on both temperature and
density. To understand their temperature dependence, we focus
on LJ and WCA fluids with 1000 particles. Again, in practice,
we sample initial phase points from the canonical ensemble, T ,
and show results from subsequent constant energy trajectories
with a kinetic temperature Tkin = T . In the latter, the total
energy is such that the kinetic temperature equilibrates around
the temperature in the preceding NV T simulation. The initial
configurations of the NV E trajectories were sampled after
complete thermal equilibration, as evidenced by stationary
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FIG. 3. (a) The largest Lyapunov exponent, λmax, and (b) the
KS entropy, hKS, as a function of temperature T for the LJ fluid
at ρ = 0.65, 0.75, and 0.85. (c) λmax and (d) hKS as a function of
temperature for the WCA fluid at the same number densities. The
number of particles is fixed N = 1000. Statistical errors are smaller
than the symbol size.

values of the temperature during the NV T simulations, and
the absence of visual signs of phase coexistence. The largest
Lyapunov exponent λmax as a function of temperature T is
shown in Figs. 3(a) and 3(c) for the LJ and WCA fluids,
respectively. In both cases, λmax increases monotonically with
the kinetic temperature T . The KS entropy shown in Figs. 3(b)
and 3(d) also increases monotonically.

For all densities studied, the temperature dependence of
both λmax and hKS is monotonic. Irregularities appear for
the LJ system at low temperatures, below T = 0.7, 0.6, and
0.4, for densities ρ = 0.65, 0.75, and 0.85, respectively. This
irregularity is apparent in both λmax and hKS as a function of
T , and is the result of crossing the liquid-vapor or solid-vapor
phase boundary [61]. We confirmed the presence of two phases
by visually inspecting the sampled configurations at these
conditions. Therefore, in Figs. 3(a) and 3(b) and throughout,
we only present λmax and hKS for the LJ systems over the
temperature range where we see no signs of phase coexistence
and the temperature dependence is smooth and monotonic.

At densities ρ = 0.75 and 0.85, the LJ fluid is mostly a
pure liquid (above T = 0.7) in the temperature range where
λmax and hKS vary regularly with temperature. For ρ = 0.65
the liquid regime begins at a higher temperature (T = 0.9).
These data suggest that the regular behavior of λmax and hKS

with T are a signature of the fluid phase of the LJ system. The
temperature dependence of λmax and hKS was reported to be√

T for two-dimensional WCA systems [37]. Our regression
analysis of the temperature dependence for three-dimensional
LJ fluids, however, was inconclusive. The linear correlation
coefficients of the data of λmax and hKS against T and

√
T are

greater than 0.995 in this higher band of temperature. As the LJ
system has extended coexistence regions, the liquid state only
exists over a narrow window of temperatures, which hinders a
full resolution of the temperature dependence of λmax and hKS.

By comparison, the trends of both λmax and hKS are more
regular functions of temperature for the WCA fluid. For
WCA, both the largest Lyapunov exponent and KS entropy
scale as

√
T for these three densities. The linear correlation

coefficients of the data λmax and hKS against
√

T have values
greater than 0.987. For λmax, this finding is in agreement
with previous simulations in two dimensions [37]. Physically,
the monotonic increase of these observables with temperature
agrees with the intuition that raising the temperature enhances
particle mobility and consequently expedites the divergence of
trajectories. There has been a discussion of how to make this
intuition quantitative [22–24].

The temperature dependence of the full Lyapunov spectrum
underlies the KS entropy. Lyapunov spectra, normalized by
λmax, are shown in Figs. 4(a)–4(f) for both LJ and WCA
fluids. There is a clear tendency of the spectra toward linearity
at higher densities. With increasing density, the temperature
dependence of the spectra is also suppressed—there is less
spread. Above temperature T = 0.7, for all densities, the
spectra do not vary significantly with temperature. A likely
cause of this loss of spectral structure at higher temperatures
is the emergence of the fluid phase (pure liquid or liquid-
vapor coexistence) for the LJ system. When the fluid phase,
especially the pure liquid phase, is present, the temperature
dependence is weak. Figures 5(a) and 5(b) show the tempera-
ture dependence of the ratio 2hKS/3Nλmax for the LJ and WCA
fluids. The ratio varies to a small extent above T = 0.7. Above
this temperature the KS entropy and Lyapunov spectra mostly
reflect the dynamics of the pure fluids.

An important technical consideration in the molecular
simulation of fluids is the cutoff range of the interaction
potential, rc. The choice of length scale can strongly affect
equilibrium properties, e.g., the location of phase boundaries
[61]. Truncating and shifting the potential affects the energy
scale. To examine the influence of a truncated and shifted
interaction potential on the KS entropy rate, we investigated
the scaling of hKS with the number of particles for different
cutoff. Changing the cutoff from rc = 2.5σ to rc = 5.0σ , but
keeping all other properties fixed (viz., number density and
kinetic temperature), we repeated our calculations of the KS
entropy for N = 800 to 2000 LJ particles. We found the KS
entropy versus N was identical, within statistical errors, to the
data in Fig. 2(a) with a cutoff distance of 2.5σ . To a certain
extent, we do not expect the cutoff to dramatically affect the KS
entropy, since this portion of the potential plays a small role in
the dynamics at these densities and temperatures. The average
interparticle separation varies between 3.3 to 2.4 within the
density range 0.4 to 0.9 in the temperature range we consider.

Upon increasing the temperature, we find the KS entropy
has a larger magnitude and diverges more rapidly with N , again
at fixed E/N and N/V . This finding is not surprising from
an analogy with the thermodynamics of single-component
systems, where the steeper slope of the hKS with N suggests
∂hKS/∂N = −μKS(T )/T is positive when μKS < 0. The linear
extensivity of the KS entropy enables us to interpret the

022102-5



MOUPRIYA DAS, ANTHONY B. COSTA, AND JASON R. GREEN PHYSICAL REVIEW E 95, 022102 (2017)

FIG. 4. Normalized Lyapunov spectra, λi/λmax, for the (a–c) LJ and (d–f) WCA fluid for a range of kinetic temperatures and densities
(a, d) ρ = 0.65, (b, e) ρ = 0.75, and (c, f) ρ = 0.85. The number of particles is fixed, N = 1000.

constant slope as an intensive chemical potential, μKS(T ). For
now, we simply point out this agreement with thermodynamics
and leave for future work whether the chemical potential
estimated from the KS entropy relates to the thermodynamic
chemical potential.

Temperature (and density) control the rate of divergence
of hKS with N . Evidence is shown in Fig. 6(a), showing the
KS entropy for the LJ fluid from N = 800 to 2000 particles
at ρ = 0.75 and three different temperatures. For all three
temperatures, the KS entropy scales linearly with N , with a
steeper slope at higher temperatures. We also examined the
effect of density on the variation of hKS against N for three
densities and at T = 0.9 for the LJ fluid [Fig. 6(b)]. From

FIG. 5. The function 2hKS/3Nλmax against temperature T at three
different number densities for (a) the LJ fluid and (b) the WCA fluid.
For both the cases, N = 1000.

the data in Figs. 3(a)–3(d), the temperature dependence of the
largest exponent and the KS entropy is also sensitive to density.
Figure 6(b) also suggests density affects the KS entropy scaling
with N . The slope of hKS with N for varying densities also
agrees with thermodynamic intuition (increasing density leads
to an increase in the chemical potential and lowering of rate of
divergence of hKS with N ) and physical intuition (increasing
density decreases particle mobility and the magnitude of hKS).
We now turn to the density dependence of λmax and the KS
entropy.

FIG. 6. (a) The KS entropy, hKS, as a function of the number of
particles, N , for the Lennard-Jones fluid at (a) three temperatures
(ρ = 0.75) and (b) three densities (T = 0.9). Data points with error
bars smaller than symbols are from simulations at fixed number
density. Dashed lines are linear fits. The function 6N (solid black
line) is shown for reference.
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FIG. 7. Normalized Lyapunov spectra, λi/λmax, for the (a–c) LJ and (d–f) WCA fluid at densities between 0.4 and 0.9 and between 0.4 and
1.0, respectively, and kinetic temperatures (a, d) T = 0.8, (b, e) T = 0.9, and (c, f) T = 1.0. The number of particles is fixed, N = 1000.

C. Density dependence of the Lyapunov spectrum
and the KS entropy

Density, like temperature, impacts the Lyapunov instability
of simple fluids. Again, the effect depends on the nature
of the interparticle interactions. Loosely speaking, density
determines the extent of interparticle interaction and particle
mobility in the system. Previous studies of simple fluids have
measured λmax as a function of density in both two and three
dimensions [37,39,43]. However, the KS entropy has been
given more attention in two dimensions, presumably because
of the challenge of computing the full Lyapunov spectra
for high-dimensional systems [37,39]. In these studies, the
systems were composed of a small number of particles; the
largest system being of the order of hundreds. For example,
the extensivity of the KS entropy does not seem to have been
fully demonstrated. Furthermore, the only three-dimensional
data available for λmax against density is for the LJ fluid. These
results, though important, are not exhaustive and motivated us
to examine the effect of density on the value of the maximum
Lyapunov exponent and the KS entropy for both the WCA
and LJ fluids in three-dimensions with a considerably larger
number of particles. In large part, this is enabled by our recent
work extending the length and time scales of Lyapunov vector
calculations [48].

For a fixed number of particles, N = 1000, we systemat-
ically varied the density of the LJ and WCA fluids in order
to analyze the effect on the Lyapunov spectrum and the KS
entropy. All initial configurations for the NV E trajectories
are samples from a NV T simulation at the appropriate

density for both the LJ and WCA systems. The Lyapunov
spectra, normalized by λmax, for a range of densities and
three temperatures are shown in Figs. 7(a)–7(c) for the LJ
fluid and Figs. 7(d)–7(f) for the WCA fluid. For both fluids,
the spectrum is concave at low densities and convex at high
densities, passing through a linear structure at an intermediate
density. Clearly, the spectra are highly sensitive to density: both
λmax and hKS exhibit a single maximum in the density range
of ρ = 0.4–1.1. The location of the maximum depends on
temperature for the LJ fluid. Data for three select temperatures
is shown in Figs. 8(a) and 8(b). Both dynamical observables
also have a maximum for the WCA fluid [Figs. 8(c) and 8(d)].
For a given temperature, though, the location of the maxima
for the LJ and WCA fluids differ. Similar trends have been
observed for two-dimensional fluids [37,39]. In both fluids,
raising the temperature speeds up the divergence of trajectories
and, concomitantly, λmax and hKS. These data also explain the
observed density dependence of the λmax and hKS against T

shown earlier (Fig. 3).
In thermodynamics, increasing density or decreasing vol-

ume will decrease the entropy of the system. Intuitively, a
smaller volume or higher density suppresses the freedom of
particles to collectively exhibit “randomness,” which lowers
the entropy. Dynamically, though, we observe that increasing
the density affects the “dynamical randomness,” as measured
by hKS, but not monotonically: the KS entropy has a maximum
as a function of density. Maxima were also observed in earlier
studies of two-dimensional systems [37,39]. For WCA, these
investigations suggested the maximum is approximately 20%
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FIG. 8. The dependence of (a) λmax and (b) hKS on the number
density ρ at three temperatures for the LJ fluid with N = 1000
particles. The dependence of (c) λmax and (d) hKS on ρ for the WCA
fluid at the same three temperatures and N = 1000.

below the liquid-line density marking the fluid-to-solid phase
transition. It is interesting that the most efficient phase-space
mixing occurs before, rather than at, the phase boundary [29].
For our data on the LJ fluid, for example, the maximum of
hKS appears at points on the phase diagram that are near
the liquid-vapor coexistence line. This finding, however, is
consistent with currently available data [37,39].

Reference [37] suggests that for the LJ system the maxi-
mum of KS entropy occurs at a density that is either in the crys-
talline solid-vapor coexistence regime (for lower temperature)
or above the critical point (for higher temperature) [61]. Here,
we observe the maxima in the hKS versus ρ at slightly lower ρ

values compared to those found previously for both the LJ and
WCA fluids. For the LJ fluid, the density corresponding to the
maximum of hKS lies in the liquid-vapor coexistence regime
for all three temperatures and this density does not maintain
the same difference with the liquid-line density at solid-liquid
phase transition for all three temperatures. We observe the
maxima in the λmax versus ρ at the same density value for the
LJ system but at a somewhat higher ρ value for the WCA fluid
than reported in previous studies involving two-dimensional
systems [37,39]. It has been suggested that the maximum of hKS

involving the onset of phase-transition is a dynamical signature
of a nearby phase boundary [37]. However, there is neither
an intuitive explanation for why phase space mixing is most
efficient prior to the phase boundary nor the initial rise of the
KS entropy with density. To confirm the maximum is not a
finite-size effect that shifts to the phase boundary in the limit
N → ∞, we ran a separate set of simulations for LJ and WCA
with N = 500. Neither the maxima of the largest exponent nor
the maxima of the KS entropy depend on N , which suggests
they are not simply a consequence of simulating finite systems.

The maxima in the Lyapunov exponent and KS entropy
seem to be a prescient dynamical signature of the nearby
phase boundary [61]. A simpler explanation, though, is the
competition between two factors: increasing density both
shrinks the free volume of the system and increases the
average repulsion between the constituent particles [53]. First,
the repulsive interaction between the particles makes initially
nearby trajectories diverge more rapidly than the attractive
interactions, leading to a higher value of λmax and the KS
entropy. Evidence of this point also comes from the scaling of
hKS with N for the WCA fluid, which shows the KS entropy has
a greater magnitude for the WCA fluid than the LJ fluid. The
difference between the KS entropies depends on the number
of particles, and, hence, the number of repelling pairs. Second,
increasing density lowers the free volume and the magnitude
of λmax and hKS. These two opposing effects on the value of
the maximum exponent and KS entropy could manifest as a
turnover in the λmax and hKS versus ρ plot. We hypothesize
these factors are the origin of the maxima.

To test our hypothesis, we varied σ for both the LJ and WCA
fluid with 1000 particles and examined the fixed-temperature
variation of λmax and KS entropy with density. Varying σ

also changed the cutoff (rc = 2.5σ for LJ and rc = 21/6σ

for WCA). The parameter σ is the distance between a pair
of particles where the attractive and repulsive forces exactly
cancel such that V (σ ) = 0. It is a measure of the size of the
particles in both the LJ and WCA fluid. Increasing particle
size through σ at fixed total volume decreases the free volume,
where the free volume is defined as the difference of the entire
volume of the simulation box and the volume occupied by
the total number of spherical particles. We confirmed through
an independent set of simulations that the cutoff does not
significantly affect the variation of λmax and hKS against ρ.
Therefore, their behavior is solely the effect of σ . As an aside,
there is an upper limit on the density we can simulate with
increasing σ . At sufficiently high density (high σ ), particles
cannot diffuse and the fluid becomes structurally arrested.
Thus, we concentrate on the density range up to which the
system is a fluid.

Both λmax and the KS entropy decrease with increasing
particle size at each density for the LJ fluid [Figs. 9(a) and
9(b)]. The maxima of λmax and hKS also shift to smaller
density values upon increasing σ . For σ values 1.0 and
1.1, the maximum of λmax occurs at ρ = 0.8 and ρ = 0.6,
respectively, and for σ = 1.25 the maximum is below ρ = 0.4.
The maximum of hKS is at ρ = 0.55 and ρ = 0.45, for
σ = 1.0 and 1.1, respectively, and for σ = 1.25 it is below
ρ = 0.4. These results suggest that upon increasing density,
the largest exponent and the KS entropy are dominated by the
excluded volume and inhibited particle mobility, rather than
the number of repulsive pairs, at lower densities and higher σ .
We confirmed that these data collapse upon converting these
quantities to reduced units (e.g., ρσ 3).

The effect of varying σ on the WCA fluid [Figs. 9(c) and
9(d)] differs from the LJ fluid. The difference is greatest at low
densities where λmax and hKS do not necessarily show clear
trends with σ . The effect on the LJ and WCA fluid is similar
at higher densities, however. Increasing σ lowers the available
volume, for a fixed total, but it also modifies the extent and
nature of repulsions as well. Increasing σ from 1.00 to 1.25
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FIG. 9. Dependence of (a) λmax and (b) hKS on the number density,
ρ, at σ = 1.00, 1.10, and 1.25 for the LJ fluid. Dependence of (c)
λmax and (d) hKS with ρ at the same σ for the WCA fluid. The number
of particles is fixed at N = 1000 and the temperature is T = 0.9.
The density range only includes simulations where the systems are in
the fluid phase. For σ values 1.1 and 1.25, the ρ values up to which
the system remains in the fluid phase are 0.75 and 0.55, respectively,
for both LJ and WCA fluids. In these data, the units of hKS and ρ are
not reduced.

makes the repulsive wall of the WCA potential steeper. As
only repulsive forces operate in the WCA fluid, repulsions
dominate when the influence of excluded volume on λmax and
hKS is minimal. For example, at lower densities, where the
excluded volume plays a smaller role, we see higher λmax and
hKS for higher σ for the WCA fluid. In the case of the WCA
fluid, the maxima of λmax and hKS shift toward lower density
upon increasing the size of the particles, which indicates that
the role of excluded volume starts to become more effective
in the low-density domain for higher values of σ . We find that
ρ = 0.9, 0.6, and 0.45 correspond to the maximum of λmax

for σ = 1.0, 1.1, and 1.25, respectively, and the maximum of
hKS appears at ρ = 0.6 and ρ = 0.45 for σ values 1.0 and 1.1,
respectively, whereas it is below ρ = 0.4 for σ = 1.25.

The maxima in λmax and hKS against ρ seem to reflect the
competition between free volume per particle and the mean
number of repulsive interactions per particle. We quantify
the extent of the repulsive forces by the average number
of particles, 〈Nr〉, within a cutoff distance of 21/6σ (where
the average is over all particles in the fluid). The distance
21/6σ corresponds to equilibrium distance between a pair of
LJ particles and the distance between WCA particles where
they no longer repel. In either case, up to this distance a
pair of particles will be repulsive. For a given particle, we
measure the number of its neighbors within a sphere of radius
21/6σ , and average over both the total number of particles (here
N = 1000) and the time during which the trajectory evolves
to calculate 〈Nr〉. We estimate the free volume per particle,

FIG. 10. (a) Average number of repelling particles 〈Nr〉 and the
free volume per particle Vfree/N as a function of ρ for the LJ fluid
at three different temperatures. (b) Variation of 〈Nr〉 and Vfree/N

against ρ for systems with WCA interaction potential at three different
temperatures. (c) Variation of average potential energy and Vfree/N

against ρ for WCA fluid at three different temperatures. The number
of particles has been kept fixed at N = 1000.

Vfree/N , from the total volume of the simulation box V and
the total excluded volume, using σ/2 as the radius of each
particle. Mathematically, Vfree is

Vfree = V − 2

3
Nπ

(σ

2

)3
. (4)

Both 〈Nr〉 and Vfree depend on density, the free volume
decreasing and the number of repulsions increasing with
increasing density as shown in Figs. 10(a) and 10(b) at three
different temperatures for both LJ and WCA fluids. In all
of these cases, we see this measure of repulsions and the
available volume per particle cross at an intermediate density.
This numerical evidence qualitatively explains the maxima in
the variation of λmax and hKS against ρ.

The mean number of repelling particles 〈Nr〉 only weakly
varies with temperature for intermediate to high-density values
for the LJ system and is almost invariant with respect to
temperature for the WCA fluid. We find that as a function
density 〈Nr〉 crosses Vfree/N at nearly the same density
at T = 0.8, 0.9, and 1.0 for the WCA fluid. The density
corresponding to this crossover agrees with the position of
the maxima of λmax and hKS against density, which is also not
strongly dependent on temperature for the LJ and WCA fluid.
Varying σ [Figs. 11(a) and 11(b)] also supports the trends
shown in Fig. 9. For LJ and WCA fluids, the crossover regions

FIG. 11. Average number of repelling particles 〈Nr〉 and the free
volume per particle Vfree/N as a function of ρ at σ = 1.00, 1.10, and
1.25 for the (a) LJ and (b) WCA fluid. The number of particles is
N = 1000 and the kinetic temperature is T = 0.9.
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for both the 〈Nr〉 with Vfree/N shift toward lower densities
upon increasing σ . This finding supports the similar shift in
the density values corresponding to the maxima of λmax and
hKS for greater values of σ in Fig. 9. Overall, these results
qualitatively support the turnover in λmax and hKS with ρ being
the competition of repulsions and free volume.

IV. CONCLUSIONS

The Lyapunov spectra and KS entropy from dynamical
systems theory have long been observables of interest for sta-
tistical mechanics. Leveraging recent computational progress,
we showed the KS entropy is linearly extensive in, and an
additive function of, the number of particles for atomistic
models of simple fluids. From our molecular dynamics
simulations, these properties hold for both three-dimensional
LJ and WCA fluids at several densities and temperatures.
At sufficiently high densities, the linear structure of the
Lyapunov spectrum gives a geometrical relation that justifies
the linear extensivity of the KS entropy. While the extensivity
is robust, the structure of the spectrum is not always linear, the
exact form being sensitively dependent on the temperature,
density, and the nature of the interparticle forces. Because
of the intensive nature of λmax, this structure vanishes in the
thermodynamic limit: macroscopic simple fluids will have an
effectively uniform Lyapunov exponent spectra at equilibrium.
Our simulations also showed that the properties of these
dynamical observables are a consequence of populations of
particles sampling the interaction potential, and that the role
of these interparticle forces in the chaotic dynamics agree
with the van der Waals picture of fluids—the divergence of
trajectories and the magnitude of the KS entropy are dominated

by repulsive forces, while attractive forces play a more minor
role suppressing the divergence of trajectories.

A more focused study of the effects of temperature on the
Lyapunov instability of these fluids shows that λmax and hKS

are monotonic functions of temperature. For the WCA fluid,
both quantities scale as

√
T , but the temperature range over

which Lennard-Jones systems are homogeneous is too narrow
to distinguish between T and

√
T scaling. The monotonic

increase with the temperature in these cases, however, agrees
qualitatively with the thermodynamic entropy. In contrast,
the variation of λmax and the KS entropy with density are
nonmonotonic, exhibiting maxima in agreement with previous
studies of two-dimensional fluids [37,39]. The appearance
of the maxima seems to be the result of the interplay of
two opposing factors: the enhancement from repulsive forces
and the reduction from the available volume with increasing
density. This characteristic variation of the KS entropy with
density is in contrast to the thermodynamic entropy for
simple fluids. Overall, these equilibrium properties of the KS
entropy suggest that it has some features in common with
the thermodynamic entropy and others that are unique to its
dynamical nature.
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