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Reynolds number scaling of velocity increments in isotropic turbulence
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Using the largest database of isotropic turbulence available to date, generated by the direct numerical simulation
(DNS) of the Navier-Stokes equations on an 81923 periodic box, we show that the longitudinal and transverse
velocity increments scale identically in the inertial range. By examining the DNS data at several Reynolds
numbers, we infer that the contradictory results of the past on the inertial-range universality are artifacts of
low Reynolds number and residual anisotropy. We further show that both longitudinal and transverse velocity
increments scale on locally averaged dissipation rate, just as postulated by Kolmogorov’s refined similarity
hypothesis, and that, in isotropic turbulence, a single independent scaling adequately describes fluid turbulence
in the inertial range.

DOI: 10.1103/PhysRevE.95.021101

I. INTRODUCTION

This Rapid Communication resolves the previously contra-
dictory results on inertial-range universality, to be described
immediately below, of two orthogonal velocity increments in
isotropic turbulence. Velocity increments are differences of
velocities between two spatial positions separated by a fixed
distance, and are of fundamental importance in turbulence
research [1–3]. In isotropic turbulence, velocity increments
in parallel and perpendicular directions to the separation
distance r , known as the longitudinal (δur ) and transverse
(δvr ) increments, respectively, describe the velocity increment
statistics completely. These statistics are usually in the form
of moments of δur and δvr , and are known, respectively, as
the longitudinal and transverse structure functions. The order
of the structure function is the moment order of the velocity
increments. The power-law scaling of both the longitudinal
and transverse structure functions with respect to r should
be the same for inertial-range universality to hold, where
the inertial range is the range of separation distances r

which are small compared to the large scale of turbulence
but large compared to the viscous cut-off scale. The scaling
exponents for second-order structure functions of δur and δvr

are indeed the same, but higher-order quantities can scale
differently in principle [4], so there is no a priori assurance of
principle that universality holds. The majority of the empirical
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evidence available, both experimental and numerical, shows
that longitudinal and transverse structure functions indeed
scale differently at higher orders [5–13], though some studies
suggest otherwise [14,15]. Predicated on the consensus that
the longitudinal and transverse structure functions scale differ-
ently, it was argued in Ref. [8] that the longitudinal increments
are closely associated with the energy dissipation, while the
transverse increments are linked more closely to enstrophy
(squared turbulent vorticity). This argument seemed eminently
plausible at the time because the evidence then available
also suggested that, while the mean values of dissipation and
enstrophy were equal, they differed in higher-order moments.
Thus, theoretical arguments [16–18] which have advanced the
view that the two types of structure functions, on the one
hand, and energy dissipation and enstrophy, on the other, must
scale similarly have been without clear empirical support.
Here, we show, using the direct numerical simulation (DNS)
data at a variety of Reynolds numbers including the largest
simulations available to date, on a box of 81923 grid points
corresponding to a Taylor-scale Reynolds number Rλ of 1300
[19], that the theoretical arguments are essentially correct,
and that previously observed differences are artifacts of low
Reynolds number, remnant shear, etc. In conjunction, we show
that the so-called refined similarity hypothesis of Kolmogorov
[20], holds for both the longitudinal and transverse increments
in the inertial range. This hypothesis links the inertial range
dynamics with that of the dissipative range, which is where
the energy dissipation essentially occurs.

To be specific, we provide the following definitions before
proceeding further. Let ε = ν

2 (∂ui/∂xj + ∂uj/∂xi)2 denote
the turbulent energy dissipation rate per unit mass, where ν is
the kinematic viscosity of the fluid. The dissipation scale η =
(ν3/〈ε〉)1/4, where 〈·〉 denotes a suitable average. The longitu-
dinal velocity increment is defined as δur ≡ u(x + r) − u(x),
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where the velocity component u and the separation distance
r are both in the same direction, x. The transverse veloc-
ity increment, δvr ≡ v(x + r) − v(x), where the separation
distance r (still in the direction x) is normal to the velocity
component v. Denote the pth-order longitudinal and transverse
structure functions as S

p

L(r) ≡ 〈(δur )p〉 and S
p

T (r) ≡ 〈(δvr )p〉,
respectively. All odd moments of δvr vanish in isotropic
turbulence (but not those of δur ). Assume, following the spirit
of Kolmogorov [1], that S

p

L(r) ∼ rζ
p

L and S
p

T (r) ∼ rζ
p

T . Since
ζ 2
L = ζ 2

T under isotropy, we aim first to obtain ζ
p

T and ζ
p

L

for p � 4. We obtain scaling exponents of longitudinal and
transverse structure functions, ζ

p

L and ζ
p

T , respectively, from a
large DNS database of isotropic turbulence in a periodic box,
spanning a wide range of Reynolds numbers [21], the largest
of them being on a grid size of 81923, corresponding to a
Taylor-scale Reynolds number Rλ of 1300 [19]. A statistically
steady state is obtained by forcing the low Fourier modes.
For details see Refs. [19,22] and the references cited therein.
Averages over multiple large-eddy turnover times were used
in the analysis.

II. RESULTS AND DISCUSSION

In locally isotropic turbulence, the following relations must
hold at scale r:

〈
δv2

r

〉 = 〈
δu2

r

〉 + r

2

d

dr

〈
δu2

r

〉
, (1)

〈
δv3

r

〉 = 0. (2)

Figure 1 examines Eqs. (1) and (2) at Rλ = 140 and 1300,
as a function of scale separation. At a given grid resolution
the residual anisotropy, due to factors such as finite box size
and cubic grid geometry, increases with scale r . However, at
higher Rλ, there exists a wider range of intermediate scales,
η/L0 � r/L0 � 1, that is nearly devoid of such effects.
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FIG. 1. Isotropy tests at Rλ = 140 (dotted line) and Rλ = 1300
(solid line), as functions of scale separation r in a cubic box with
edge length 2L0. Panels (a) and (b) show g(r), the right-hand side of
Eq. (1) divided by the left-hand side of the same, against r/η and r/L0,
respectively. Horizontal line at unity is the isotropic value, g(r) = 1,
for reference. Panels (c) and (d) show the skewness of the transverse
structure function against r/η and r/L0, respectively [Eq. (2)]. The
reference line at zero shows the exact isotropic value.
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FIG. 2. Normalized third-order longitudinal velocity structure
function at 81923, Rλ = 1300. The dashed horizontal line corresponds
to the plateau at 4/5. Vertical lines demarcate inertial range 50 <

r/η < 400, considered as the range within 5% deviation from 4/5.
Error bars indicate 95% confidence intervals.

The normalized third-order longitudinal velocity structure
function S3

L(r)/r〈ε〉 is used to determine the extent of the
inertial range: it is the range of scales for which −S3

L(r)/r〈ε〉
is equal to the exact theoretical value of 4/5 [2]. This quantity
is plotted in Fig. 2 for the 81923 simulation (corresponding to
Rλ = 1300), as a function of the spatial separation, r . Denoting
the inertial range pragmatically as the scale range within which
the exact value of 4/5 is satisfied to better than an accuracy
of 5%, we can see from the figure that it corresponds to 50 <

r/η < 400, approximately a decade in extent.
Figure 3 shows the local slopes of the power-law scaling

relations, in the inertial range (and to either side of it),
computed from the 81923 simulation for orders p = 4, 6,
and 8. Slopes for both longitudinal and transverse structure
functions are shown. It is evident from the figure that they are
essentially the same in the inertial range, for each given p, at
least for p up to 8.

The longitudinal and transverse scaling exponents obtained
from least-squares fits at two different Reynolds numbers, in
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FIG. 3. Inertial range local slopes at Rλ = 1300 as a function of
spatial separation. Dashed and solid lines correspond to S

p

L(r) and
S

p

T (r), respectively. Colors red, blue, and green correspond to orders
p = 4, 6, and 8, respectively. Corresponding shaded regions denote
95% confidence intervals.
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TABLE I. Longitudinal (ςp

L ) and transverse (ςp

T ) inertial range
exponents from least-squares fits at Rλ = 1300 and 240. Error bars
indicate 95% confidence intervals. The exponents are computed in
the range r/η ∈ [50,400] (see Fig. 3).

Rλ = 1300 Rλ = 240

p ς
p

L ς
p

T ς
p

L ς
p

T

2 0.72 ± 0.002 0.72 ± 0.003 0.70 ± 0.012 0.69 ± 0.014
4 1.30 ± 0.005 1.30 ± 0.010 1.27 ± 0.024 1.22 ± 0.024
6 1.78 ± 0.010 1.76 ± 0.015 1.70 ± 0.038 1.61 ± 0.045
8 2.18 ± 0.021 2.12 ± 0.020 2.06 ± 0.072 1.83 ± 0.091

the respective inertial ranges, are given in Table I for orders
p = 2–8. The error bars have been obtained from the temporal
variations in the fitted slopes from independent stationary
state snapshots. The differences between ς

p

L and ς
p

T shrink
as we go to higher Reynolds numbers, indicating that the
mismatch between the exponents at lower Rλ is the result
of a superposition of leading and subleading power laws
with coinciding exponents between longitudinal and transverse
statistics, but with different prefactors.

To make this point even clearer, one can plot the quantity
〈(δvr )p〉 against 〈(δur )p〉, parametrized by various values of
r . If the slope of such graphs is unity in the inertial range,
we can say that the two families of structure functions scale
the same. The corresponding plots are shown in Fig. 4, for
p = 6 and p = 8, for two different Reynolds numbers. Inertial
ranges have been identified in the two graphs by the ( )
symbol. We find that at the low Reynolds number of Rλ = 240,
〈(δvr )6〉 ∼ 〈(δur )6〉0.87 and 〈(δvr )8〉 ∼ 〈(δur )8〉0.82, showing
that the transverse structure functions have smaller scaling
exponents than longitudinal ones. In contrast, for Rλ = 1300,
we have 〈(δvr )6〉 ∼ 〈(δur )6〉0.99 and 〈(δvr )8〉 ∼ 〈(δur )8〉0.97,
showing that the two exponents are almost identical. It
appears clear that the scaling exponents of the longitudinal
and transverse structure functions approach each other as the
Reynolds number increases.

To see how fast ζ
p

L and ζ
p

T approach each other with
increasing Reynolds number, we plot the ratio ζ

p

T /ζ
p

L against
Rλ in Fig. 5. The scaling exponents, ζ p

L and ζ
p

T , are determined
by least-square fits within the inertial range, as illustrated in
Fig. 4. These results demonstrate that ζ

p

L and ζ
p

T approach
each other as the Reynolds number increases, and that
the differences between them, observed previously, must be
attributed to the finite Reynolds number effect. This is the first
major conclusion of the Rapid Communication.

An additional supporting comment is useful. The use of
local slopes or the extended self-similarity (ESS) technique
[23] yields very similar results. In the ESS method, the
scaling exponents are determined by plotting various orders
of transverse and longitudinal structure functions against their
respective second-order moments and determining their slopes
in the inertial range.

We now turn to the so-called refined similarity hypothesis
(RSH) of Kolmogorov [20], which links statistically the
fluctuation of the velocity increments of a known scale, say
r , in the inertial range to the dissipation fluctuations averaged
over a volume of O(r3). That is, the vector velocity increment

FIG. 4. Relative scaling of transverse structure function against
longitudinal structure function at two different Reynolds numbers.
Plotted against 〈(δur )6〉 is 〈(δvr )6〉 at (a) Rλ = 240 and (b) Rλ = 1300.
The ( ) points are for r in the inertial range, while ( ) correspond to
r outside this range. The dashed line is for 〈(δvr )6〉 ∼ 〈(δur )6〉. The
insets show similar results for the eighth-order structure functions,
with the inertial range data highlighted by ( ).
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FIG. 5. Ratio of inertial range exponents of S
p

T (r) and S
p

L(r) as a
function of the Taylor-scale Reynolds number. Symbols ( ), ( ),
and ( ) correspond to orders p = 4, 6, and 8, respectively. The
horizontal line at unity is for reference. Solid vertical lines indicate
95% confidence intervals. The corresponding result of Ref. [8] for
p = 8 ( ) with error bars, shown by a dashed vertical line, is given
for comparison.
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[
u(r)] at separation vector r is statistically related to the
three-dimensional average of dissipation at scale |r| = r ,
εr ≡ ∫

V (r) εdV , with the “local” averaging performed over

the volume V (r) ∼ O(r3) [20,24], through the relation


u(r) ≡ V(r)(rεr )1/3, (3)

where the dimensionless velocity vector V(r) is independent
of εr as well as r in the inertial range, and hence universal [20].

It is convenient to rewrite Eq. (3) in terms of two scalar
functions VL and VT as

δur = VL(rεr )1/3, (4)

δvr = VT (rεr )1/3. (5)

When p is odd, isotropy stipulates that 〈V p

T 〉 = 0. However,
since 〈V p

L 〉 �= 0 for odd p (>1), in the inertial range, it neces-
sarily follows that the functions VL and VT will themselves be
different (δur is skewed and δvr is not) for any given r � L. So
the focus of universality is that VL and VT will both statistically
asymptote to independent functions, though different from one
another in the inertial range. The universality of V(r) is a direct
consequence of the fact that the longitudinal and transverse
structure functions have the same scaling in the inertial range.
It then follows naturally that a rigorous examination of the
universality of VL and VT serves as useful checks for the result
that ζ

p

L = ζ
p

T at all even p, in the inertial range.
There is a second point to be made. If we had followed

the ideas of Ref. [8] that the transverse velocity is closely
connected to enstrophy, the logical consequence would be to
replace the locally averaged energy dissipation in Eq. (5) by
the locally averaged enstrophy. However, it has been shown
in Ref. [19] that the probability density functions (PDFs) of
the energy dissipation and enstrophy are the same for large
amplitudes at high Reynolds numbers (while this is not true at
low Reynolds numbers considered in Ref. [8]). It thus appears
logical to believe that the locally averaged dissipation ought
to appear in both Eq. (4) and Eq. (5). Our results verify this
assertion as well.

Past verifications of RSH have focused, largely for rea-
sons of convenience, on longitudinal velocity increments
[22,25–30]. If 〈εr

p〉 ∼ rτp in the inertial range, it follows from
Eq. (4) that

ζ
p

L = p

3
+ τp/3. (6)

Now, because δur and δvr both scale the same way (i.e., ζ
p

L

and ζ
p

T are the same for even orders), the following relation
between ζ

p

T and τp/3 should also hold good for any even p in
the inertial range, so we can write

ζ
p

T = p

3
+ τp/3. (7)

We first address the universality of VL and VT . In Fig. 6,
we plot the PDF of VL and VT for r in the inertial range
at Rλ = 1300. The respective PDFs of VL and VT collapse
for all separations in the inertial range indicating that they
are independent of r and εr , as expected from arguments of
universality. The conclusion from Fig. 6 is that K62 holds
for both longitudinal and transverse increments in the inertial
range. As already mentioned, the main difference between the
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2〉1/2

FIG. 6. Normalized PDF of VL and VT at Rλ = 1300 for various
inertial range separations. Curves with filled symbols correspond
to VL for different values of r: ( ) r/η = 99, ( ) r/η = 118, ( )
r/η = 143, ( ) r/η = 170, ( ) r/η = 206. Corresponding curves
for VT given by open symbols. The dashed line shows the standard
Gaussian for reference.

PDFs of VL and VT is that the former is negatively skewed
with 〈V 3

L〉 = −4/5 [20], while the latter is symmetric around
the origin with zero skewness.

Figure 7(a) shows the joint probability density function
(JPDF) of VL and VT at an inertial range separation for Rλ =
1300; (b) and (c) of the figure show slivers of the JPDF to
reveal two distinct cross sections.

It is easily seen that the PDFs of VL and VT do not have
particularly extended tails, and are hence nonintermittent.
It is thus far easier to work with the normalized velocity
increments VL and VT statistically than with the velocity
increments themselves which are highly intermittent and
extremely sensitive to finite sampling effects [3,5].

Since it is now clear that VL and VT are both independent
of r and εr (and of each other), it follows from Eqs. (6) and

FIG. 7. Probability distribution of the dimensionless relative
velocity V(r) at inertial range separation r/η = 100, Rλ = 1300.
(a) Logarithm of the JPDF of VL and VT . Slivers of width δL and δT

of the JPDF along VL and VT (marked by vertical lines) are shown in
(b) and (c) to reveal the asymmetric and symmetric parts, respectively.
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FIG. 8. Verification of the RSH scaling relations [Eqs. (6) and (7)]
at Rλ = 1300. Symbols ( ) and ( ) correspond to the longitudinal
and transverse cases, respectively. If RSH is correct, the measured
differences between ζ

p

L and τp/3 and that between ζ
p

T and τp/3 for
various values of p must equal p/3, which is the dashed line. The
correspondence is very good. Vertical bars indicate the extent of 95%
confidence intervals (which are significant mainly at higher orders).

(7), that ζ
p

L − τp/3 and ζ
p

T − τp/3 must both be equal to p/3.
In Fig. 8 we verify this expectation from numerical results
for p up to 10. The exponents τp/3 of the three-dimensional
local averages of dissipation are obtained from least-squares
fits in the inertial range. With increasing p, both ζ

p

L − τp/3 and
ζ

p

T − τp/3 coincide with p/3, showing that Eqs. (6) and (7) are
valid.

A final comment is in order. In isotropic turbulence, the
incompressibility condition says that second-order statistics
are defined by a single scalar function. In fact, when we invoke
RSH in the inertial range, it is easy to show that 〈V 2

T 〉/〈V 2
L〉 =

4/3. We have indeed verified that this is quite accurately
the case in the inertial range. Such relationships between
higher-order moments of VL and VT are not straightforward,
but computations suggest that they too approach, in the inertial
range, constants whose numerical values increase with the
order of the moment.

III. CONCLUSION

We have used DNS data at high Reynolds numbers to
assess the past assertion that the longitudinal and transverse
velocity structure functions scale differently in the inertial
range. This difference was thought to be connected to the
notion that the longitudinal velocity increments are connected
to dissipation and the transverse velocity increments are
connected to enstrophy, while the dissipation and enstrophy

themselves have different PDFs. An implication is that the
Kolmogorov RSH would have to be postulated independently,
and differently, for the longitudinal and transverse velocity
increments.

In Ref. [19], it has been shown, using the highest Reynolds
numbers attained in the 81923 simulations, that dissipation and
enstrophy essentially scale the same and that any differences
seen in the past are due to lower finite Reynolds numbers of
the past simulations. It is then natural to revisit the previous
work in some detail.

Using the high Reynolds number simulations of [19],
we have shown that, in isotropic turbulence at high enough
Reynolds numbers, the longitudinal and transverse velocity
increments scale the same. Furthermore, a single RSH theory,
which connects the statistics of velocity increments to the
locally averaged dissipation rate, subsumes both longitudinal
and transverse cases. That is, a single scaling group, δur and
εr , with a single set of independent exponents, is enough to
describe intermittent physics in fluid turbulence in the inertial
range of isotropic turbulence.

These findings suggest the possibility of a deeper connec-
tion between the symmetric part of the strain rate, i.e., the
dissipation physics, and the antisymmetric part of the strain
rate, i.e., vortex dynamics, than previously portended. It is
possible, however, that this deeper connection is violated in
shear flows. We recall that, among the past data showing
differences between ζ

p

L and ζ
p

T was a very high Reynolds
number measurement in the atmospheric boundary layer [7].
We believe that it is the remnant shear effect in that flow that
may have introduced some nontrivial aspects that break the
deeper connection just mentioned.
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