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Complex-path prediction of resonance-assisted tunneling in mixed systems
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We present a semiclassical prediction of regular-to-chaotic tunneling in systems with a mixed phase space,
including the effect of a nonlinear resonance chain. We identify complex paths for direct and resonance-assisted
tunneling in the phase space of an integrable approximation with one nonlinear resonance chain. We evaluate the
resonance-assisted contribution analytically and give a prediction based on just a few properties of the classical
phase space. For the standard map excellent agreement with numerically determined tunneling rates is observed.
The results should similarly apply to ionization rates and quality factors.

DOI: 10.1103/PhysRevE.95.020202

Tunneling through energetic barriers is a textbook paradigm
of quantum mechanics. While classically motion is confined to
either side of the barrier, wave functions exhibit contributions
on both sides. In contrast, nature often exhibits confinement on
dynamically disjoint regions of regular and chaotic motion in
a mixed phase space [see Fig. 1(a)]. Here, a classical particle
follows a trajectory of regular motion while the corresponding
wave function admits an exponentially small contribution on
the chaotic region. This phenomenon is called dynamical
tunneling [1,2].

Over the years, dynamical tunneling has emerged in many
fields of physics. It determines the vibrational spectrum of
molecules [1], ionization rates of atoms in laser fields [3,4],
and chaos-assisted tunneling oscillations [5,6] in cold atom
systems [7,8]. In optics dynamical tunneling is experimentally
explored in microwave resonators [9–12] as well as micro-
lasers [13–20], where it determines the quality factor of lasing
modes. Here, a recent experimental breakthrough [12,17] is
the measured enhancement of dynamical tunneling due to
nonlinear resonance chains [21,22].

To reveal the universal features of dynamical tunneling,
it is extensively studied theoretically [10,13,23–43] mainly
in model systems. A central object is the tunneling rate
γm, which describes the transition from a state on the mth
quantizing torus of the regular region into the chaotic sea.
Qualitatively, γm can be understood from the theory of
resonance-assisted tunneling [21,22,27,44] [see the dashed
line in Fig. 1(b)]: On average, γm decreases exponentially
for decreasing wavelength or a decreasing effective Planck
constant, i.e., Planck’s constant scaled to some typical action
of the system. In addition, a drastic enhancement of γm is
observed for some values of h. This is due to the resonant
coupling of regular states, induced by a nonlinear resonance
chain [45] within the regular region [see Fig. 1(a)].

Despite extensive efforts, an intuitive, trajectory-based
picture of dynamical tunneling from regular to chaotic regions,
including the effect of nonlinear resonances, is not yet
available. Semiclassical theories exist only for time-domain
quantities [23,24], cases when resonances are irrelevant [39],
and near-integrable systems [22,46,47]. On the other hand,
quantitatively accurate predictions of γm [43,48] explicitly
require integrable approximations [31,37,38,49] which need
some numerical effort.

In this Rapid Communication we establish an intuitive,
semiclassical, trajectory-based picture of resonance-assisted
regular-to-chaotic tunneling in systems with a mixed phase
space. It results in a closed-form analytic formula for tunnel-
ing rates γm. Our approach gives excellent agreement with
numerical results for the standard map, which outperforms the
perturbative approach [see Fig. 1(b)]. Since our final formula
requires just a few properties of the classical phase space rather
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FIG. 1. (a) Phase space of the standard map for κ = 3.4 with
regular tori [thin (gray) lines], and chaotic orbits [(gray) dots]. The
shaded areas indicate a leaky region in the chaotic part (see text).
The real tori and complex paths of the integrable approximation
(thick, labeled lines and arrows) connect the regular and the chaotic
region. (b) Tunneling rate γ0 vs inverse effective Planck constant
1/h. Numerically obtained rates (dots) are in excellent agreement
with an analytic evaluation of the resonance-assisted contribution
A2

Tγrat. Also shown are γd and the perturbative result [44] (dashed
line).
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than the construction of a full integrable approximation, it
should also allow for estimating ionization rates and quality
factors and be helpful, e.g., for designing experimental setups.

Overview. Our method is based on a semiclassical eval-
uation of a recently developed nonperturbative prediction
of γm [43]. At its heart is an integrable approximation of
the regular region, which includes the relevant nonlinear
resonance chain [49]. In that, we justify and generalize the
use of semiclassical techniques developed for near-integrable
systems [22,46,47] in the wider class of generic systems with a
mixed phase space. In particular, the integrable approximation
overcomes the separation of regular and chaotic motion and
allows for connecting real tori to the chaotic region via
tunneling paths through complexified phase space. This gives
the tunneling rate

γm = γd + A2
Tγrat, (1)

which is composed of a direct contribution γd and a resonance-
assisted contribution A2

Tγrat [see (blue and red) lines in
Fig. 1(b)]. Figure 1(a) gives an illustration of the phase-space
structures contributing to Eq. (1).

(i) Quantizing torus Im and direct tunneling paths pd: The
quantizing torus Im, associated with the mth regular state,
gives rise to tunneling paths pd(q) with a complex momentum
emanating from the turning points of Im. See the (blue) inner
ring and arrows, respectively. They connect Im with the chaotic
sea and determine the direct tunneling rate γd [Eq. (7)].

(ii) Partner torus Irat and resonance-assisted tunneling paths
prat: A partner torus with action Irat on the opposite side of
the nonlinear resonance is connected with the chaotic sea by
complex tunneling paths prat(q) [see the (red) outer ring and
arrows]. They lead to the resonance-assisted tunneling rate γrat

[Eq. (7)].
(iii) Tunneling paths pT: The tori Im and Irat are connected

by complex paths pT(q) bridging the resonance [see the
(orange) arrows]. They determine the tunneling amplitude AT

[Eq. (6)].
Basic setting. We derive our results for kicked one-

dimensional Hamiltonians H (q,p,t) = T (p) + V (q)
∑

n

δ(t − n). For illustrations we use T (p) = p2/2 and
V (q) = κ cos (2πq)/(4π2), giving the paradigmatic standard
map [50], which is widely used to study tunneling
phenomena [27,31,38,43,44]. At κ = 3.4 the corresponding
stroboscobic Poincaré map exhibits a mixed phase space as
shown in Fig. 1(a) with regions of regular motion [thin (gray)
lines] and chaotic motion (dots). It is governed by a regular
island containing a prominent r:s = 6:2 nonlinear resonance
chain and a surrounding chaotic sea. Quantum mechanically,
the dynamics is given by the unitary time-evolution operator
Û = exp (−iV (q̂)/h̄) exp (−iT (p̂)/h̄). By introducing a
leaky region L [shaded areas in Fig. 1(a)] close to the
regular-chaotic border we compute the tunneling rates γm

numerically as discussed in Ref. [43]. We focus on the ground
state (m = 0) which localizes on the innermost quantizing
torus of the regular island. Its tunneling rate is shown in
Fig. 1(b) (dots). Note that higher excited states (m > 0) show
the same qualitative features.

Integrable approximation. The key tool for deriving our
analytic prediction is an integrable approximation. It is a
one degree of freedom time-independent Hamiltonian, which

resembles the regular dynamics of the original system [49].
It is based on the universal description of the classical
dynamics in the vicinity of a r:s resonance by the pendulum
Hamiltonian [21,22,46,49]

Hr:s(θ,I ) = H0(I ) + 2Vr:s

(
I

Ir:s

)r/2

cos (rθ ), (2)

using action-angle coordinates of H0(I ). It is determined
by the frequencies ω0(I ) of tori in the corotating frame of
the resonance, as ω0(I ) = ∂IH0(I ) [49], where H0(I ) ≈ (I −
Ir:s)2/(2Mr:s) close to the resonant torus Ir:s . The quantities
Ir:s , Vr:s , and Mr:s can be computed from the position and the
size of the resonance chain and the linearized dynamics of
its central orbit [27,49]. The phase space is depicted by thin
(gray) lines in Fig. 2. Via a canonical transformation T , the
Hamiltonian Eq. (2) is mapped onto the phase space of the
standard map, giving Hr:s(q,p) = Hr:s(T −1(q,p)) [49]. By
quantizing and diagonalizing Hr:s , its eigenstates ψm yield the
tunneling rate [43]

γm =
∫
L

|ψm(q)|2dq (3)

via the probability of ψm(q) on the leaky region L, which
we evaluate semiclassically in the following. As discussed in
Ref. [43], Eq. (3) provides a good prediction of the tunneling
rate γm because ψm(q) approximates the corresponding state of
the mixed system on the regular region and further provides a
sufficiently accurate extension into the regular-chaotic border
region, which dominates Eq. (3).

WKB construction. Using WKB techniques [51,52] we now
construct the state ψm within the integrable approximation
Hr:s(q,p). This extends the semiclassical methods developed
for integrable systems [47] to systems with a mixed phase
space. Note that the use of the integrable approximation solves
the problem of natural boundaries [53,54]. Thus the integrable
approximation is the key for connecting regular and chaotic
motion quantum mechanically.

Following Ref. [52], the wave function is constructed from
generalized plane waves with locally adapted momentum,
Eq. (5). This requires the solutions pα(q) of the equation
Em = Hr:s(q,pα(q)), as depicted in Fig. 1(a). Here, Em is the
energy of the wave function ψm(q) obtained from Einstein-
Brillouin-Keller (EBK) quantization. The position coordinate
q is real. The real solutions pα(q) describe the oscillatory
part of the wave function in classically allowed regions. The
complex solutions pα(q) describe the exponentially decreasing
tunneling tails of the wave function in classically forbidden
regions. In particular, they describe ψm(q) in the leaky region,
as required by Eq. (3).

Specifically, for resonances the geometry of paths gives the
semiclassical wave function as a superposition,

ψm(q) = ψd(q) + ATψrat(q). (4)

Here, (i) ψd(q) is the direct wave function, (ii) ψrat(q) is the
resonant wave function, and (iii)AT is the tunneling amplitude.
We now explain this in more detail.

(i) ψd(q) describes the wave function along the quantizing
torus Im in the classically allowed region of energy Em ≈
H0(Im), which is obtained from EBK quantization of the torus
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Im = h̄(m + 1/2). Using Airy-type connections [52] this wave
function is extended into the classically forbidden region along
the paths pα(q) (with α = d) [see Fig. 1(a)] as

ψα(q) =
∣∣∣∣ ω0(Im)

2π∂pHr:s(q,pα(q))

∣∣∣∣1/2

exp

(
i

h̄

∫ q

pα(q̃)dq̃

)
.

(5)

Here, ω0(Im)/(2π ) accounts for global normalization of the
wave function, while 1/|∂pHr:s(q,pα(q))| is the classical
probability along pα(q). The complex action

∫
pα(q)dq, for

which the lower limit is one of the turning points on the torus
Im, describes direct tunneling into the leaky region.

(ii) Due to the presence of the nonlinear resonance chain
there is an additional real solution Irat with energy Em on the
opposite side of the resonance chain. Along this torus Irat we
construct the wave function ψrat(q). In particular, the tunneling
tails associated with the solutions prat(q) emanating from Irat

and connecting to the chaotic part of phase space [see Fig. 1(a)]
also obey Eq. (5) with α = rat. Note that ω0(Im)/(2π ) in Eq. (5)
must be kept for normalization. The lower limit of the action
integral is one of the turning points on Irat.

(iii) Finally, the tunneling amplitude is given by [22]

AT =
∣∣∣2 sin

( π

rh̄
(Irat − Im)

)∣∣∣−1
exp

(
−σ

h̄

)
, (6)

where σ = Im
∫

pT(q)dq is the positive imaginary part of the
action of any path pT(q) connecting Im to Irat. In particular,
since there is no solution pα(q) connecting Im and Irat along
real positions, these paths are only sketched schematically in
Fig. 1(a). Note that this evaluation of AT based on paths with
complex positions is formally beyond the WKB construction
used here. It has been introduced and successfully applied for
near-integrable systems in Ref. [47]. Further note that complex
solutions which do not connect to a real torus are neglected.

To summarize our construction, the wave functions ψd(q)
and ψrat(q) [Eq. (5)], together with the tunneling amplitude
[Eq. (6)], give the wave function ψm(q) [Eq. (4)]. Inserting
ψm(q) into Eq. (3) and neglecting interference allows for
evaluating the integral in Eq. (3) independently for ψd(q) and
ψrat(q). For solving these integrals we linearize the action in-
tegral in Eq. (5) around the boundary of the leaky region at qL.
We further account for the symmetry of the standard map with
respect to the central fixed point. This gives (i) the direct (α =
d) and (ii) the resonance-assisted (α = rat) tunneling rate as

γα = h̄

Im pα(qL)
|ψα(qL)|2, (7)

i.e., each tunneling rate is given by the value of the normalized
WKB wave function at the boundary qL of the leaky region.

This construction constitutes our first main result. Nu-
merical evaluation of the semiclassically obtained tunnel-
ing rates shows excellent agreement with numerically ob-
tained tunneling rates (not shown). This generalizes previous
work [22,46,47] to the much larger class of mixed systems,
based on the powerful tool of integrable approximations. It
further provides a basis for a fully analytic prediction, which
no longer requires constructing integrable approximations
explicitly: Namely, we observe that for the standard map at κ =
3.4 (and other examples) the resonance-assisted contribution
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|Im θ|

0
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FIG. 2. Phase space of Hr:s [thin (gray) lines] and leaky region
L (shaded area). Real tori an complex paths (thick lines and arrows)
are labeled in the figure.

dominates the semiclassically predicted decay rates for all
values of the effective Planck constant. In general, one can
expect γm = A2

Tγrat, whenever the resonance is sufficiently
large, i.e., roughly speaking, when it is visible within the
regular region. The converse, that γm is dominated by the
direct tunneling rate γd, may occur for small values of 1/h or
if the resonance is extremely small.

Analytic result γm ≈ A2
Tγrat. In the following we derive an

analytic formula which evaluates the dominating term γm =
A2

Tγrat based on just a few properties of the classical phase
space. To this end we use the pendulum Hamiltonian Hr:s(θ,I )
[Eq. (2)] in action-angle coordinates of H0(I ) and the action
representation ψm(I ) of the WKB wave function, respectively.
This extends the WKB construction presented in Ref. [22] to
the Hamiltonian (2). In this context the main idea is to account
both for the action dependence of the resonance term propor-
tional to Vr:s and to obtain a closed-form expression for γrat.

As a first approximation we extend the leaky region to all
chaotic trajectories as I > IL (shaded area in Fig. 2). In order
to account for sticky motion, we choose IL such that 2πIL is
the area enclosing the regular region enlarged up to the most
relevant partial barrier [27,44]. While the basic features of γm

are preserved upon changing the leaky region, it is worth noting
that its details might change roughly up to two orders of mag-
nitude [43]. This constitutes the main error of our prediction.

To construct the WKB wave function the classical phase-
space structures θα(I ) fulfilling Hr:s(θα(I ),I ) = Em for real
actions are required. They are depicted in Fig. 2 and obey
cos (rθα(I )) = ϕ(I ), where

ϕ(I ) =
(

Ir:s

I

)r/2
Em − H0(I )

2Vr:s
. (8)

Real solutions correspond to the tori oscillating around Im

and Irat, i.e., the classically allowed regions [(blue and red)
thick lines] on opposite sides of the resonance chain at Ir:s .
We have Im = h̄(m + 1/2) and a reasonable approximation
of Irat is obtained from Irat ≈ 2Ir:s − Im + (Em − H0(2Ir:s −
Im))/ω0(2Ir:s − Im). The torus Im is accompanied by complex
paths θd(I ) [(blue) arrows] which emanate from turning points
with I < Im and diverge at I = 0. Furthermore, there are
tunneling paths θT(I ) [(orange) arrows] with an imaginary
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part Im θT(I ) = arccosh (|ϕ(I )|)/r attached to turning points
with I > Im bridging the resonance towards Irat. Finally,
there are complex paths θrat(I ) [(red) arrows] emanating from
turning points with I > Irat on the partner torus. They have
an imaginary part Im θrat(I ) = arccosh (|ϕ(I )|)/r as well and
connect Irat with the leaky region.

Using Eq. (5), with accordingly interchanged phase-space
coordinates, local WKB wave functions can be constructed
from these paths. Again a global construction of ψm(I ) is
obtained by using Airy-type connections at classical turning
points [22,52]. In action-angle coordinates the torus Im is not
directly connected with the leaky region. Thus, for ψm(I ) there
is neither a direct contribution to the WKB wave function
within L nor a direct tunneling rate γd involved in this con-
struction. Consequently, one has ψm(I ) = ATψrat(I ) within
L. As the tunneling amplitude AT [Eq. (6)] is canonically
invariant, it can be computed in action-angle coordinates as
well, requiring the evaluation of σ = Im

∫
θT(I )dI from Im

to Irat. By approximating Im θT(I ) ≈ ln (2|ϕ(I )|)/r , which is
justified if Vr:s � Em, and using only the quadratic part of
H0(I ), we find

σ = Irat − Im

r
ln

(
(Irat − Im)2

2e2Mr:sVr:s

)

+ Im

2
ln

(
Im

eIr:s

)
− Irat

2
ln

(
Irat

eIr:s

)
, (9)

which inserted in Eq. (6) constitutes the first part of our analytic
expression. Note that the first term coincides with the results
obtained for a simpler pendulum model in Ref. [22] while the
remaining terms are related to the action dependence of the
resonance term proportional to Vr:s in Eq. (2).

We proceed by computing γrat by Eq. (3) from the WKB
wave function ψrat(I ) and its probability inside the leaky
region. The WKB wave function ψrat(I ) is associated with
θrat(I ) and computed analogously to Eq. (5) using action-angle
coordinates. Linearizing the tunneling action occurring in the
exponential in Eq. (5) around IL then gives

γrat = rh̄

2 ln (2|ϕ(IL)|) |ψrat(IL)|2, (10)

which is in close analogy with Eq. (7). Again the resonance-
assisted tunneling rate is determined by the normalized WKB
wave function

|ψrat(IL)|2 =
∣∣∣∣ ω0(Im)

2rπ (Em − H0(IL))

∣∣∣∣ exp

(
−2

h̄
Srat

)
(11)

at the boundary of the leaky region. The tunneling actionSrat =
Im

∫
θrat(I )dI from Irat to IL is evaluated similarly as Eq. (9),

leading to

Srat = IL − Irat

r
ln

(
(IL − Irat)(IL − Im)

2e2Mr:sVr:s

)
+ Irat

2
ln

(
Irat

eIr:s

)
− IL

2
ln

(
IL

eIr:s

)
+ Irat − Im

r
ln

(
IL − Im

Irat − Im

)
, (12)

which concludes the computation of γrat.
Discussion. The evaluation of γm ≈ A2

Tγrat, based on the
analytic expressions, Eqs. (6) and (9) for AT and Eqs. (11)
and (12) for γrat, requires just a few classical quantities, namely,
Ir:s , Vr:s , and Mr:s as well as the frequencies ω0(Im). This
analytic prediction is in excellent agreement with numerically
obtained rates [see Fig. 1(b)]. The resonance peaks originate
from the divergence of the prefactor AT [Eq. (6)], i.e.,
they appear whenever Irat fulfills a quantization condition
Irat = h̄(m + lr + 1/2). In particular, at the resonance peak
a hybridization between states associated with the mth and
(m + lr)th quantizing torus occurs. This is the same resonance
condition as obtained from perturbation theory [21]. In
contrast, away from the resonance peak the tori Im and Irat

are still energetically degenerate. However, since Irat does not
fulfill a quantization condition there is no associated quantum
state. This is different from the perturbative framework, where
several quantizing tori of different energies contribute to the
final prediction. Finally, in contrast to perturbation theory, our
result is dominated by a single term for all values of the effec-
tive Planck constant. Its overall exponential decay is dominated
by the first term of the action σ [Eq. (9)]. Hence, the slope of the
exponential decay, as depicted in Fig. 1(b), is roughly propor-
tional to the width of the dynamical tunneling barrier Irat − Im.

Summary and outlook. We derive a trajectory-based
semiclassical prediction of resonance-assisted regular-to-

chaotic tunneling rates in systems with a mixed phase space.
To this end we generalize the semiclassical picture valid in
near-integrable systems to the larger class of systems with
a mixed phase space, based on integrable approximations
which include the relevant resonance chain. From this result
we find a direct and a resonance-assisted contribution. The
latter usually dominates the whole experimentally accessible
regime of large tunneling rates. For this resonance-assisted
contribution we derive a closed-form analytic expression
which depends on just a few properties of the classical
phase space. In particular, this expression does not require
the explicit construction of integrable approximations.
Testing our analytic result for the paradigmatic example
of the standard map, we find excellent agreement with
numerically determined tunneling rates. We expect that
our result should also apply to ionization rates and quality
factors.
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[31] A. Bäcker, R. Ketzmerick, S. Löck, and L. Schilling, Regular-to-
Chaotic Tunneling Rates Using a Fictitious Integrable System,
Phys. Rev. Lett. 100, 104101 (2008).

[32] A. Shudo and K. S. Ikeda, Stokes geometry for the quantum
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