
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 95, 020101(R) (2017)

Interplay of interfacial noise and curvature-driven dynamics in two dimensions
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We explore the effect of interplay of interfacial noise and curvature-driven dynamics in a binary spin system.
An appropriate model is the generalized two-dimensional voter model proposed earlier [M. J. de Oliveira,
J. F. F. Mendes, and M. A. Santos, J. Phys. A: Math. Gen. 26, 2317 (1993)], where the flipping probability of a
spin depends on the state of its neighbors and is given in terms of two parameters, x and y. x = 0.5 and y = 1
correspond to the conventional voter model which is purely interfacial noise driven, while x = 1 and y = 1
correspond to the Ising model, where coarsening is fully curvature driven. The coarsening phenomena for 0.5 <

x < 1 keeping y = 1 is studied in detail. The dynamical behavior of the relevant quantities show characteristic
differences from both x = 0.5 and 1. The most remarkable result is the existence of two time scales for x � xc

where xc ≈ 0.7. On the other hand, we have studied the exit probability which shows Ising-like behavior with
a universal exponent for any value of x > 0.5; the effect of x appears in altering the value of the parameter
occurring in the scaling function only.
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Nonequilibrium phenomena associated with the zero tem-
perature ordering process in classical Ising and voter models
[1–4] have been extensively studied in the recent past. Both
models are two state models and the states can be represented
by Ising spins. There is, however, a basic difference. The
Ising model (IM) is defined using an energy function (H =
−J

∑
σiσj , where σ = ±1 and the sum is usually over nearest

neighbors) and it has no intrinsic dynamics. However, starting
from a configuration far from equilibrium, one can study the
time dependent behavior of the so-called kinetic Ising model.
At zero temperature, the time evolution essentially corresponds
to an energy minimizing scheme [5] in the standard rules
such as single spin flip Glauber or Metropolis dynamics. The
voter model (VM), on the other hand, has no such energy
function associated—it is defined by the dynamical rule that
an agent follows the state of a randomly chosen neighbor
at each time step. The kinetic Ising and voter models are
known to be identical in one dimension, while in higher
dimensions the dynamical schemes are markedly different
[6]. While the coarsening is curvature driven in the Ising
model, it is interfacial noise driven in the voter model. This
results in different behavior of the relevant dynamical variables
such as density of active bonds n(t), persistence probability
P (t), and time scales. Active bonds are those which connect
neighboring spins with opposite signs. In one dimension, for
both the Ising and voter models, n(t) shows power law decay as
t−1/2. This behavior is true for the Ising model even in higher
dimensions. But for the voter model, n(t) asymptotically
vanishes as 1

ln t
in two dimensions and for dimensions d >

2, n(t) ∼ a − bt−d/2. The dynamics in VM is slower and the
consensus time (by consensus we mean the all up and all
down absorbing states of the system) typically behaves as
L2 log L in contrast to L2 for the IM in two dimensions (L is
the system size). The persistence probability P (t), defined as
the probability that a spin does not change sign until time t ,
shows algebraic decay as t−θ with θ = 0.375 in one dimension
[7–10] for the two models. For the IM, P (t) shows algebraic
decay even in higher dimensions; in two dimensions θ ≈ 0.2
[11–14]. However, for the two-dimensional VM, P (t) has
the behavior exp[−const(ln t)2] [15]. The spin autocorrelation

function is another dynamical quantity which again shows
different behavior for the VM and the IM in two dimensions
[15–19].

Another interesting feature of the Z2 models (models with
spin up and spin down symmetry) with two absorbing states
(which are either all spins up or down) is the exit probability
E(ρ). E(ρ) is defined as the probability that the final state
has all up spins starting with a density ρ of up spins. The exit
probability E(ρ) is also different in the two models for d > 1.
It can be easily argued that in all dimensions, E(ρ) = ρ for the
VM. With only nearest neighbor interaction, E(ρ) is obviously
linear for the IM also in one dimension. However, allowing
further neighbor interactions and other parameters governing
the dynamics, a nonlinear behavior can be observed even in
one dimension for both the Ising model and the voter model
[20–22]. This implies that there is a scope for phenomena like
“minority spreading” [23] always in one dimension. In the two-
dimensional Ising model E(ρ) shows nonlinear behavior [24]
which in the thermodynamic limit approaches a step function.
It may be mentioned here that in the zero temperature ordering
of Ising model, one encounters the problem of frozen states
[25,26]. Hence, the calculation of exit probability is made
using only those configurations which reach the all up or all
down states.

Since the interfacial noise and surface tension governed
dynamics definitely lead to highly different dynamical behav-
ior of several important quantities, it is worthwhile to study
models in which both are present in a tunable manner. One such
model had been proposed in [27], namely, the generalized voter
model. We have, therefore, considered this particular model to
study the interplay of the interfacial noise and curvature-driven
dynamics.

In the generalized voter model, the dynamical rule has been
parametrized so that one can recover a number of models
for specific values of the parameters. We have investigated
the behavior of the persistence probability, decay of active
bonds, exit probability, and time to reach consensus. These
quantities are not related in general and hence the effect of
changing the parameter values may be different for each of
them.
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FIG. 1. Typical snapshots at different times for x = 0.6 show that
coarsening is curvature driven.

Let us briefly review the generalized voter model (GVM
henceforth) proposed in [27]. Here, at each site of the square
lattice there is a spin variable σi = ±1. The configuration
evolves in time according to single spin flip stochastic
dynamics. The spin flip probability wi(σ ) for the ith spin
is given by

wi(σ ) = 1
2 [1 − σifi(σ )], (1)

where fi(σ ) = f (
∑

δ σi+δ), a function of the sum of the
nearest neighbor spin variables. The model is defined taking
f (0) = 0, f (2) = −f (−2) = x, and f (4) = −f (−4) = y,
where x and y are restricted to the conditions x � 1 and y � 1.
The original VM is recovered for x = 0.5 and y = 1, whereas
the IM corresponds to x = 1, y = 1. Along the line y = 1,
there are two absorbing states: all spins up and all spins down
for x � 0.5 (apart from possible frozen states). These states
are, however, unstable for x < 0.5. As the limiting values
x = 0.5 and x = 1.0 correspond to two different models, one
can expect either a sharp transition or a crossover behavior at
an intermediate value of x.

We have studied the nonequilibrium behavior and exit
probability E(ρ) of the GVM keeping y = 1 and varying x

using Monte Carlo simulations on L × L square lattices with
L � 80. Periodic boundary conditions have been used and at
least 2500 different initial configurations have been simulated.
Persistence probability, active bonds dynamics, and consensus
times are the quantities estimated. These quantities are
unrelated and therefore it is useful to study all of these to check
how each of them is affected by tuning of the parameter x.

Snapshots taken during the evolution help in understanding
the process quite well. We find that in general for x > 0.5,
the pictures look very similar to the curvature-driven case.
However, for x close to 1, certain configurations show the
existence of nearly striped patterns which do reach consensus
but very slowly as the interfaces take a long time to vanish.
In Figs. 1 and 2, we have shown snapshots for two values
of x: for x = 0.6, the curvature-driven coarsening is seen to
dominate, while for x = 0.9 a case is shown where coarsening
has led to domains with nearly straight edges prevailing over
large time durations. Snapshots for other values of x are given
in [28].

The variation of the density of active bonds n(t) against time
is plotted in Fig. 3 for different values of x. As x increases from
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FIG. 2. Certain configurations show very slow relaxation as x is
increased. Snapshots show such a configuration for different times
for x = 0.9.

0.5, we find that n(t) goes to zero involving larger time scales.
However, the variation is faster than the 1/ log t behavior
known for the voter model. It is found that for any 0.5 � x < 1
the system always reaches the equilibrium ground state since
n(t) vanishes, which implies the freezing probability is zero.
Only at x = 1 may a frozen state be reached. As x approaches
unity (but not equal to it), the initial decay of n(t) can be fitted
quite accurately by a power law, while there is a clear crossover
to a much slower evolution at later times as shown in the
inset of Fig. 3. This suggests that there are two different time
regimes. There is an initial time scale up to which the behavior
is similar to the Ising model, i.e., n(t) shows a power law decay
with exponent close to 1/2. Beyond this scale, a nonalgebraic
slow decay is observed. However, we have checked that the
behavior in the latter regime is not like 1/ log t as in the voter
model but may be even slower than that. For general values
of x, we conjecture that at initial times a power law behavior
occurs with some correction to scaling as indicated by the plots
in Fig. 3; such corrections become weaker as x deviates from
0.5. The second regime with the slower decay exists only for
x > xc, xc ≈ 0.7. For exactly x = 1, the power law behavior
is exact before n(t) saturates to a time independent nonzero
value due to the frozen stable states.

In order to gain more insight into the dynamical behavior,
we have estimated the time τ required to reach the consensus
state and its distribution D(τ ). In a detailed study made for
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FIG. 3. Plot of density of active bonds with time t for L = 80 for
x = 0.6,0.7,0.8,0.9,1. The inset shows the variation of active bonds
for x = 0.94,0.96,0.98.
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FIG. 4. Plot of distribution of consensus time for x = 0.5,0.8,1.

L = 32, we find that D(τ ) changes its nature remarkably as x

is increased (Fig. 4). For x = 0.5, D(τ ) shows a conventional
behavior; it increases for small τ , and has a broad peak and a
long exponential tail. This behavior continues until xc ≈ 0.70
beyond which we find that D(τ ) differs considerably for small
and large values of τ (see Fig. 8 in the Supplemental Material).
Apparently it is an overlap of a symmetric function of finite
width peaked about a small value of τ and a slow exponentially
decaying function extending to large values of τ (a magnified
figure is shown in Fig. 7 in the Supplemental Material). Exactly
at x = 1, the width of the symmetric function is minimum and
the exponential part exists over a much shorter range. We
conjecture that in the thermodynamic limit, the exponential
part of D(τ ) for x = 1 will vanish altogether; this is supported
by the data for L = 64 (shown in [28]). As the tail of the
distribution for any x may be fit by an exponential function
exp(−ωτ ), one can define a time scale τeff = 1/ω for each x.

In Fig. 5, we plot the three time scales: τeff, 〈τ 〉, and τmp

where τmp denotes the most probable value. In general, the
average values of τ are different from the most probable values.
The difference becomes considerable for x > xc due to the
long exponential tails. From Fig. 5 we can conclude that τmp is
very weakly dependent on x; in fact, for x � 0.55, it is almost
a constant. On the other hand, the two other time scales are
strongly dependent on x; τeff and 〈τ 〉 initially decrease and
then increase rapidly with x. Evidently, τmp denotes the time
to reach consensus in absence of any intermediate metastable
state and is presumably constant for any x > 0.5. On the other
hand, τeff corresponds to the time scale associated with the
configurations with nearly frozen intermediate states which
increase in number as x increases. 〈τ 〉 shows the increasing
trend simply because it is an overall average.
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FIG. 5. Plot of different time scales τeff, 〈τ 〉, and τmp as a function
of x.
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FIG. 6. Plot of persistence probability with time t for L = 80 for
x = 0.6,0.7,0.8,1. The inset shows the variation of P (t) as a function
of (ln t)2 for x = 0.5.

The existence of the two different time scales is clearly
shown by the above result. The nonmonotonicity in 〈τ 〉 and
τeff are to be noted; both time scales drop immediately as x

deviates from 0.5 and again at x = 1. This suggests there are
discontinuities at the two well known limiting points.

The average consensus times as a function of the different
system sizes apparently show a behavior faster than L2 log L

for x > 0.5. 〈τ 〉 for other values of L are shown in [28]. The
possibility of discontinuities existing at x = 0.5 and x = 1 is
more strongly supported by the data as system size increases.
A more conclusive statement about the scaling of the time
scales with the system sizes can only be made after a detailed
study of the other time scales, which is to be reported later.

We next discuss some other results in the context of
the nonequilibrium phenomena. The persistence probability
P (t) as a function of time t is plotted in Fig. 6. For x =
1, P (t) shows power law decay as t−θ with θ � 0.2 agreeing
with the known result [11–14]. For x = 0.5, persistence
decays to a very small fraction (≈0) following the behavior
exp[−0.31(ln t)2]. This behavior is obtained by fitting the data
and agrees very well with the form obtained numerically
in [15]. For 0.5 < x < 1, P (t) also approaches a nonzero
saturation value; however, there is no clear power law behavior.
The saturation value increases with an increase in x in a
nonlinear manner.

Lastly we discuss the results for the exit probability (see
Fig. 7). The plot of E(ρ) as a function of ρ shows that it
is nonlinear except for x = 0.5 having strong system size
dependence. Different curves intersect at a single point ρ =
ρc � 0.5 (ρc should be equal to 0.5 from symmetry argument).
The curve becomes steeper as the system size is increased.
Finite size scaling analysis as in [29] can be made using the
scaling form

E(ρ,L) = f

[
(ρ − ρc)

ρc

L1/ν

]
, (2)

where f (y) → 0 for y � 0 and equal to 1 for y 	 0, so
that the data for different system sizes L collapse when E(ρ)
is plotted against (ρ−ρc)

ρc
L1/ν . The data collapse takes place

with ν = 1.3 ± 0.01 (the unscaled data is shown in the bottom
inset) for all values of x > 0.5. We conclude that like the Ising
model, E(ρ) becomes a step function in the thermodynamic
limit. The scaling form given by Eq. (2) is found to fit very
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FIG. 7. Data collapse of E(ρ) is plotted against (ρ−ρc)
ρc

L1/ν for
system sizes L = 32,48,64,80 for x = 0.6. The bottom inset shows
the plot of unscaled data against ρ. The top inset shows the plot of λ

as a function of x.

well with a general form [29]

f (y) = 1 + tanh(λy)

2
, (3)

where λ depends on x. The dependence of λ on x is shown in
the top left inset of Fig. 7. λ which increases with x quantifies
the steepness of the E(ρ) curve. λ increases continuously as
x is increased from 0.5, consistent with the fact that the E(ρ)
should deviate from the linear behavior. However, exactly at
x = 1, λ increases abruptly to a comparatively larger value
indicating a discontinuity.

Let us now discuss the results obtained in this Rapid
Communication. First of all it appears that the curvature-driven
coarsening governs the dynamics for any x > 0.5 at least in
the initial stages. This is evident from Fig. 3, which shows that
at initial times the ordering becomes much faster compared
to the voter model as x is increased from 0.5 (see Fig. 5 in
[28]). At the same time, the interfacial noise driven coarsening
present in the system, however small, is crucial for leading
the system to consensus for larger values of x when the
dominant curvature-driven process tends to generate nearly
straight interfaces. It is only because of its presence that the
freezing probability is zero in the system for any x � 0.5

(but not equal to unity). Thus it is interesting to note that
while for smaller values of x the model is closer to the voter
model, the average consensus time increases as x approaches
unity, the Ising limit. This is apparently counterintuitive as it is
known that the evolution in the voter model is slower compared
to that in the Ising model in two dimensions. Actually the
metastable states increase in number as x is increased (which
is not surprising knowing the result for x = 1) enabling longer
time scales for the system. However, average consensus times
are still less than that at x = 0.5 up to a certain value of x.
Results for different system sizes indicate that this value is
very close to xc (shown in [28]) in the thermodynamic limit,
which is consistent with the other results.

The exit probability shows a nonlinear behavior for any
x > 0.5 with a universal exponent ν ≈ 1.3 and a nonuniversal
parameter λ entering the scaling function. Since we omit the
frozen states for x = 1 and the time scales are irrelevant for
this measure, it is not surprising that the behavior is Ising like.
However, the fact that λ shows a discontinuity at x = 1 again
shows that the x = 1 point has a distinctive feature with respect
to the exit probability as well.

In conclusion, quite a few interesting results due to the
interplay of the two types of dynamics are obtained in the
generalized voter model. The main result is the existence of
two time scales in the system for x > xc. One of them, τmp,
is nearly independent of x while τeff, the other time scale, is a
highly nonlinear function of x. Both x = 0.5 and x = 1 with
completely different kinds of dynamical rules have unique
features. At x = 0.5, P (t) and E(ρ) behave differently com-
pared to any other value of x > 0.5; 〈τ 〉 is discontinuous. On
the other hand, x = 1 is also unique in the sense that freezing
occurs only at this point; 〈τ 〉 and λ show discontinuity here
while well known power law behavior in the relevant quantities
exists. The intermediate region 0.5 < x < 1 does not show
any freezing phenomena. Although not algebraic, here P (t)
reaches saturation for 0.5 < x < 1 in contrast to that at
x = 0.5. No sharp transition is observed for any value of 0.5 <

x < 1, but a crossover behavior at x = xc ≈ 0.7 is seen to exist.
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