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Simple diffusion hopping model with convection
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We present results from a new variant of a diffusion hopping model, the convective diffusive lattice model,
to describe the behavior of a particulate flux around bluff obstacles. Particle interactions are constrained to an
underlying square lattice where particles are subject to excluded volume conditions. In an extension to previous
models, we impose a real continuous velocity field upon the lattice such that particles have an associated velocity
vector. We use this velocity field to mediate the position update of the particles through the use of a convective
update after which particles also undergo diffusion. We demonstrate the emergence of an expected wake behind
a square obstacle which increases in size with increasing object size. For larger objects we observe the presence
of recirculation zones marked by the presence of symmetric vortices in qualitative agreement with experiment
and previous simulations.
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I. INTRODUCTION

The transportation of active and passive matter in particulate
systems has been the subject of significant computational
investigation in recent years. An extensively used algorithm
for these studies is the particle hopping model where particles
can hop between discrete cells on a lattice subject to specific
movement rules or by diffusing to adjacent unoccupied cells
[1]. Particle hopping models have been applied to study a
variety of systems such as particle transport in disordered
media [2,3], diffusion at material interfaces [4,5], the diffusion
of large particles in unentangled polymer solids [6], water dif-
fusion in cell suspension systems [7], traffic flows [8–10], ion
transport through biological membranes [11,12], biological
systems involving the movement of animals, micro-organisms
or cells [13], and particle residency times in two-dimensional
vertical strips [14].

Although hopping models allow for full control over the
diffusive motion of particles, these models do not capture
convective particle motion. In this paper, we introduce a
variant of the lattice hopping model: the convective dif-
fusive lattice model (CDLM). The CDLM is an extension
of existing diffusion hopping models as it consists of a
decoupled description of both diffusive and convective particle
dynamics. Thus this model is suitable for the study of systems
where diffusive behavior dominates or for processes where
convective behavior is innate such as hydrodynamic flows.

In the CDLM, particle positions and dynamics are restricted
to district locations on a regular underlying lattice where
particles interact subject to excluded volume conditions as
in previous particle hopping models [3,4,14] and lattice gas
methods (LGMs) which can be used to describe convective mo-
tion [15,16]. The main difference between previous hopping
models and the CDLM is the inclusion of a continuous velocity
field to capture memory bias in particle displacement, a core
property of convection. In addition we describe momentum
transfer with the convective dynamics.

In the CDLM, the velocity vector of the ith particle vi(t)
does not necessarily represent the velocity of the particle itself,
but instead represents the average, temporally and spatially
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smoothed, velocity in the vicinity of particle i. This velocity
field smoothing is similar to the implementation of kernel
functions in smoothed particle hydrodynamics (SPH) [17–21]
used to calculate fluid properties. The velocity field allows
particles to effectively access an infinite number of particle
states as dictated by the local field. This is a significant depar-
ture from traditional hopping models, where particle velocities
are absent, and from the discretization of particle velocities in
LGMs [15,16]. The underlying velocity field is evolved using
an approximation of the compressible Navier-Stokes equation.
Added to this, the CDLM also allows for the easy construction
of complex geometries such as obstacles within flow channels.
Particle interactions with any rigid boundaries or obstacles can
be modeled as either no-slip or slip boundary interactions. In
the case of the former, a bounce back rule is implemented
preventing particles penetrating the boundaries, while for the
latter, particles specularly reflect at the boundary.

This paper is arranged as follows. In Sec. II, we describe
the CDLM in detail and outline the various model components
such as the update sequence for the particle velocity field and
positions. We also describe the implementation of boundary
conditions and the parameter scalings for the model. In
Sec. III A we calculate the diffusion coefficient for particles in
the absence of convection. We then estimate the kinematic vis-
cosity ν for a particle flow through a periodic flow channel and
show the emergence of a laminar response in steady state from
an initial plug velocity profile (Sec. III B). Next we compare
particle transport past a square obstacle for a simulation with
biased diffusion, which is the standard approach in particle
hopping models, and for a system with isotropic diffusion
and convective motion to demonstrate the effect of convection
on particle dynamics (Sec. III C). In Sec. III D we show the
emergence of recirculating vortex regions behind obstacles
in a flow channel. In addition we provide evidence for the
development of vortex shedding behind the obstacle at high
Reynolds number. Finally we discuss our findings and suggest
future explorations with the model.

II. MODEL

A. Overview

The CDLM is a d-dimensional representation of particle
flow where each particle is of mass m and restricted to move
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on a square lattice L consisting of lattice cells of side � and
volume �d . At time t , particle i is located at a set of discrete
coordinates denoted ri(t) = (r1i(t), . . . ,rdi(t)). Particles are
constrained to occupy discrete lattice volumes but move
subject to a local continuous coarse-grained velocity field
where the velocity for particle i is vi(t) = (v1i(t), . . . ,vdi(t)).
The positions and velocities of the particles are updated at
every time step τ . All distance measures are given in terms
of � which is set to unity. The density of particles is defined
as the lattice cell fraction φk , i.e., the fraction of lattice cells
occupied by particles. Further details of the scalings in the
model parameters are presented in Sec. II D.

B. Particle update

1. Velocity update

At each time step τ , the velocity and position of each
particle are updated. First, each particle is subject to a velocity
update. Given that vi(t) is associated with particle i, it must
convectively translate with the particle. To mimic the effects
that change the convective time derivative of the velocity field,
we turn to the compressible Navier-Stokes equation and adapt
the viscous and pressure gradient effects described in the
equation. To enable spatial smoothing similar to viscous and
pressure gradient effects in the Navier-Stokes expression for
a particle at ri(t), we consider the influence of all particles
at lattice positions ri(t) + eα provided |eα| � R where the
distance R is large enough to sample a statistically relevant
number of neighboring occupied lattice positions. Here eα

is the displacement vector. The relative influence of particle
located at a distance ri(t) + eα is controlled by a weight
function ωα . The weight function decreases monotonically
with distance to reflect the declining relative influence of
distant particles such that it approaches zero as |eα| → R.
For the simulation results presented in this study R = 5�.
Additionally, the function should be an even function to ensure
that inverse interactions are of the same strength. To meet these
criteria the weight function used is given as

ωα(eα) = C(|eα| − R)2, (1)

where C is a normalization constant such that
∫

ωα(eα)deα =
1. This integral expression is provided for convenience. More
precisely,

∑
α ωα(eα)�d could be set to unity when summed

over all cells within R. However, the difference will be a
factor of O(1), an effect that can be encapsulated in the
coefficients Aν and Ac associated with the velocity update.
This smoothing approach is similar to smoothed particle
hydrodynamics (SPH), where properties such as fluid density
are calculated by smoothing over a finite volume of the fluid
using kernels [17,18,20,21].

The velocity of each fluid particle is updated with the
expression

vi(t + τ ) − vi(t) = τAν

∑
α

′ ωα(eα)

R2
[vα(t) − vi(t)]

− τAc

∑
α

′ ωα(eα)

R

eα

|eα| + τAg, (2)

where the prime indicates that the sum is applied only for
occupied cells that are within a distance R of particle i, Aν is

a term related to the kinematic viscosity of the particle flow,
Ac is related to the compressibility of the fluid, Ag is related to
the external fields acting on a particle, and vα(t) is the velocity
of the neighboring particle at position ri(t) + eα at time t .

The first term on the right-hand side represents the viscous
averaging of the velocities of the neighboring particles. The
strength of this averaging effect is controlled by the viscosity
term Aν . Although velocities are averaged for each particle,
local momentum is conserved. The second term on the right-
hand side accounts for the finite compressibility of the fluid,
i.e., it attenuates density fluctuations in the system. A gradient
direction is approximated as the average direction to occupied
neighboring lattice positions, which like the viscous term is
weighted by ωα(eα). Thus, occupied positions closest to i will
contribute to a greater extent to the local gradient. As for the
first term on the right-hand side in Eq. (2), momentum is locally
conserved as it is pairwise additive. The final term on the
right-hand side, which includes Ag, accounts for any external
fields, such as gravity, acting on any particle in the system. Note
that we did not include a term related to thermal fluctuations.
Our aim here is to model the influence of convective flows on
scales much larger than the mean interparticle spacing. On such
large scales thermal fluctuations are relatively unimportant. On
the other hand, the effects of small-scale thermal fluctuations
are explicitly modelled through diffusive position updates, as
we will treat next.

2. Position update

The update of the particle positions consists of two distinct
components: a convective update and a diffusive update. First,
particles undergo convective translations based upon their
respective velocity vector vi . Consider a particle at position
ri with a velocity vector vi . In the system, particles occupy
rectangular cells upon a d-dimensional rectangular lattice L.
We propose that for a particle at ri and with vi = 0, the particle
completely occupies the cell and can in fact be depicted as a
”rectangular” particle. With ‖vi‖ > 0, however, the particle
will be displaced from the cell at ri according to vi as shown
in Fig. 1 for d = 2. Evidently, the particle no longer fully
occupies the cell at ri and for the instant shown in Fig. 1
overlaps with three neighboring cells. Given that the area of
each cell is �d and � is set to unity, we define Pi,α , the
probability of accepting a convective move to an adjacent
empty cell at eα , to be the area of overlap of the shifted
”rectangular” particle with the neighboring cell. In addition,
the degree of overlap between the displaced ”rectangular”
particle and the rectangular cell at ri represents the probability
of the particle remaining at ri and is denoted as Pi,0. Therefore,
the respective probabilities satisfy the condition

nα∑
α=0

Pi,α = 1 (3)

where nα is the number of possible destination cells including
the cell ri . This approach for the implementation of convective
motion does imply Galilean invariance. However, in the model
presented here, the maximum permitted velocity for a particle
i is vmax

i = 1. Therefore particles can move only to the nearest
and next-nearest neighbors at any time step. The convective
update can be adjusted to allow for vmax

i > 1 such that a particle
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FIG. 1. Example of convective motion for a particle at cell ri with
velocity vi on a two-dimensional grid. The dashed square represents
the displaced position of the particle subject to vi . The shaded regions
highlight the degree of overlap between the neighboring cells given
as ri + eα where ‖eα‖ > 0 and the dashed square. Here eα is the
displacement vector. The shaded areas are used to define displacement
probabilities to the neighboring cells.

can convectively move to more cells. This adjustment may be
explored with a future variant of the model.

During the convective update, it is possible that the
destination cell at ri + eα is occupied. As a result, the particle
cannot displace to the new position due to excluded volume
conditions on the lattice. Rather than ignoring this convec-
tive interaction, we allow for momentum exchange between
the particle moving from ri towards the particle at ri + eα

along the eα direction. This means that for d = 2 for horizontal
displacements, we need only exchange the velocity component
along the x direction, while for vertical displacements, the
velocity component along the y direction only needs to
be adjusted. In the case of diagonal displacements, the
components of the velocities along the diagonal are exchanged
after which the velocity components for the particle along the x

direction and y direction are updated. Due to the probabilistic
approach used in the convective position update, the particle
velocity at any position ri must not exceed unity. Hence
the parameters Aν , Ac, and Ag in the velocity field update
expression in Eq. (2) must be set accordingly.

During the diffusive update, a particle at ri may hop to any
of the four nearest neighboring cells with an equal probability
P D

i,1, provided that the destination cell is empty. By considering
only the four nearest neighbors, we ensure a fully isotropic
diffusion tensor. For the idealised case of a single particle at
ri , the diffusion coefficient D0 = P 0

i,1 �2/τ .

C. Boundary and initial conditions

In the velocity update for a kinetic particle at ri , the
influence of all other kinetic particles within a distance R

of ri are considered to enable smoothing similar to viscous
and pressure gradient effects. If ri is a cell close to a boundary
or obstacle, then the fraction of kinetic particles, and thus
interacting particles, in its proximity will on average be less
than φk . For no-slip boundary conditions, particle velocity

FIG. 2. Schematic of a two-dimensional system studied with
the CDLM. Particle flow takes place between two no-slip rigid
boundaries, each of width R and length L1. The distance between
the rigid boundaries d2 = L2 − 2R. A bluff obstacle such as a square
obstacle may be included in the flow channel. For the obstacle
depicted, each side is l lattice cells in length.

should approach zero close to the walls or obstacles. To include
this condition, we consider an average viscous effect for
boundary cells within a distance R of an occupied lattice cell
ri . First, we assume that all particles in the walls or obstacles
are stationary. We then calculate the viscous contribution for
the wall or obstacle cell at ri + eα using the viscous term on
the right-hand side of Eq. (2). We then scale this contribution
by φk thus approximating an average no-slip boundary effect at
the distance eα . Finally, we prohibit the penetration of particles
into the walls or obstacles. When a particle attempts to move to
a lattice cell that is a part of a wall or an obstacle, a bounce back
rule is implemented where the velocity vector of the particle
is reversed.

System boundaries and particle dynamics are confined to a
rectangular two-dimensional lattice L where each boundary is
L1 lattice cells in length, R lattice cells thick, and the distance
between the boundaries is L2 − 2R (see Fig. 2). The density of
kinetic particles is set by φk with particles initially distributed
randomly to empty lattice positions and the initial velocity
vector at position ri is vi(t = 0) = (U,0). Periodic boundary
conditions and an external field controlled by Ag are used to
sustain particle flow.

D. System units

In the model, the units of all measures are fixed by setting
the time step τ , the lattice cell size �, and the particle mass m

to unity. Therefore system lengths are measured in units of �,
particle velocities are measured in units of �/τ , the diffusion
coefficients and kinematic viscosities are measured in units
of �2/τ , system energies are measured in units of m�2/τ 2,
number density is measured in units of �−d , and pressure is
measured in units of m�2−d/τ 2.

III. RESULTS

A. Diffusion

For the first study with the CDLM we calculate the mean
square displacement (MSD) for particles on the underlying
lattice. In the absence of convection (‖vi‖ = 0), the MSD in
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FIG. 3. Variation of the mean square displacement of particles in
a fully periodic system in the absence of convective flow. Results for
three different values of D0 are shown accompanied by a straight line
fit (blue dashed line) given by Eq. (4) where D is a fitting parameter.

time for a particle on a d-dimensional lattice is given by

MSD(t) = 〈(ri(t) − ri(0))2〉 = 2dDt, (4)

where ri(0) is the initial lattice position of the particle and
ri(t) is the lattice position of the particle at time t . After each
time step the particle may occupy any one of nα destination
cells including ri . Over a time step τ , in the dilute limit, the
mean square displacement for the particle at ri to the set of nα

displacements eα is expected to be
nα∑

α=0

P D
i,α|eα|2 = 2dD0τ, (5)

where P D
i,0 is the probability of the particle remaining at

ri with e0 = 0, and the nearest neighbors are numbered
counterclockwise from 1 to nα such that the neighbor α = 1
has the coordinates (r1i + �,r2i). Using Eq. (5) and given that
for α > 0 |eα| = 1, and all P D

i,α are equal for 1 � α � 4, we
can write

4P D
i,1 = 4D0τ. (6)

Therefore, in the dilute limit, the diffusion coefficient D0 =
P D

i,1/τ . Figure 3 shows the variation of MSD(t) for three
different values of D0 in a fully periodic system of side
L1 = L2 = 1000 � where the density of kinetic particles
φk = 0.1. Each curve is fitted with a straight line given by
Eq. (4). In the case where the input D0 = 0.1 �2/τ , the
simulations yield a finite concentration diffusion coefficient
D = 0.086 �2/τ , a value that is in agreement with the
nonzero density of kinetic particles in the system. Given a
particle at the origin, the likelihood of jumping to a neighbor
is 4P D

i (1 − φk). Therefore the effective finite concentration
diffusion coefficient D = D0(1 − φk) = 0.09 �2/τ . A smaller
effective diffusion coefficient has also been measured with
lattice gas models [22,23].

B. Convection

In the CDLM the parameter Aν is related to the kinematic
viscosity ν of the fluid. In this section we estimate the
value of ν within the bulk of the particle field. For each
configuration the lattice cells between the rigid boundaries are
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FIG. 4. Spatiotemporally averaged velocity profile (black) calcu-
lated in steady state for a system with L1 = 500 � and L2 = 500 �.
The dashed line (red) is a fit given by Eq. (7) to the simulation data.

randomly occupied with kinetic particles such that φk = 0.1.
The initial velocity of each particle is vi(t = 0) = (U,0) where
U = 0.1 �/τ , thus representing a uniform plug flow over the
width of the flow channel. Upon initiation of the flow the
no-slip boundary conditions result in the dissipation of particle
energy due to the friction experienced by particles adjacent
to the boundary. This in turn leads to further dissipation for
particles in the adjacent layers and thus produces two boundary
layers associated with each of the rigid boundaries. By means
of an external field the particles are kept in motion. As a result a
maximum in the velocity flow field is expected in the center of
the flow channel such that a parabolic velocity profile typifying
a Hagen-Poiseuille or laminar flow emerges.

Figure 4 shows a spatiotemporally averaged velocity
profile for a square flow channel with L1 = L2 = 500 �.
For this simulation Aν = 1 �2/τ , Ac = 0.01 �2/τ 2, Ag,x =
1.54 × 10−7 �/τ 2, and D = 0.05 �2/τ . The velocity profile
is spatially averaged along the length of the flow channel once a
steady-state flow has developed and then temporally averaged
over a time of 5 × 104 τ in steady state. The velocity profile
has been fitted with an equation of the form

vx(y) = d2
2Ag,x

8ν

[
1 − 4

(
y

d2

)2
]
. (7)

From the fit to the velocity profile in Fig. 4 we find ν =
0.0462 �2/τ .

We have also explored the effect of system size on ν. The
main figure of Fig. 5 shows the variation of ν with L where
L = L1 = L2. With increasing L we observe that ν quickly
converges towards a value that is representative of an infinitely
large flow channel. The simulation data is accompanied by a fit
of the form ν(L) = ν∞[1 − exp(−αL)] where ν∞ = 0.0462 ±
0.0004, the kinematic viscosity expected for a flow channel of
infinite extent. We also plot the variation of Ag,x , the external
field needed to achieve Umax = 0.1 �/τ with L as shown in
the inset figure of Fig. 5. The simulation data can be fitted
with an expression of the form Ag,x(L) = CAgL

β where β =
−1.98 ± 0.01, which is expected given the form of Eq. (7).
Similar trends can be calculated with different values of U , D,
and Ac.
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FIG. 5. Variation of ν with L. The open circles are the simulation
data, while the solid black line is a fit given by ν(L) = ν∞[1 −
exp(−αL)] where ν∞ = 0.0462 ± 0.0004 and α = 0.0176 ± 0.0001.
(Inset) Variation of Ag,x with L, the external field required to achieve
a constant flow velocity Umax. The open squares are the simulation
data, while the dashed black line is a fit given by Ag,x(L) = CAgL

β

where CAg = 0.034 ± 0.001 and β = −1.98 ± 0.01. For both figures
L = L1 = L2.

In addition we have varied the diffusion coefficient to
ascertain its affect on ν. Figure 6 shows the variation of ν

with D for a system with L1 = L2 = 300 �. We note that ν

increases with increasing D due to the creation of additional
momentum transfer in the fluid by random displacements of
the particles. The increase in ν with D is best described by a fit
given by ν(D) = EνD

ε where ε = 0.582 ± 0.002. In addition
Fig. 6 indicates that the Schmidt number Sc = ν/D ≈ 1, for
all values of D. The relationship between ν and D is very
much dependent on the choice of the weight function or
smoothing kernel and the nature of the diffusive update. An
alternative form of the weight function [Eq. (1)], variation of R

or adjusting the the number of possible destination sites during
the diffusive update can all be used to adjust the resultant
kinematic viscosity and thus lead to Sc > 1.

C. Biased diffusion versus convective dynamics

To demonstrate the qualitative differences due to convective
dynamics on particle flow, we compare CDLM simulations for
cases with and without convective dynamics. While CDLM
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FIG. 6. Variation of ν with D for a flow channel with L1 = L2 =
300 �. The solid black line is a power law fit to the data such that
ν(D) = EνD

ε . Here Eν = 0.269 ± 0.001 and ε = 0.582 ± 0.002.

convective dynamics ensures particle motion using an external
body force, the net transport of particles from the inlet to outlet
region in traditional diffusion hopping systems is sustained by
implementing a biased diffusion where the probability for a
particle to diffuse to the right P D

i,1 = D1 and the probability
for all other destination cells is D0. This approach is similar
to that used in studies of residency time on vertical strips [14]
and in driven diffusive systems [24] where particles can be
argued to move from an inlet region to an outlet region subject
to an external potential field.

For the simulations with convective dynamics, we set
U = 0.1 �/τ , Aν = 1 �2/τ , Ac = 0.01 �2/τ 2, and Ag,x =
8νU/d2

2 �/τ 2. In the previous section we calculated ν =
0.0462 �2/τ for these parameters. In addition we restore
isotropic diffusion such that D0 = 0.05 �2/τ . For both model
cases, φk = 0.1.

To allow for the direct quantitative comparison of simula-
tions with and without convective dynamics, we study particle
transport for simulations at the same Peclet number (Pe) as
calculated in terms of the obstacle size l with

Pe = vl

D0
, (8)

where v is the average velocity at the center of the flow
channel and D0 is the diffusion coefficient. For the simulations
including convective motion, we denote the Peclet number
as Pec and set v = U , the average particle velocity at the
center of an empty flow channel. The dimensions of the flow
channel are L1 = 1000 � and L2 = 500 �. Hence for a system
containing a square obstacle of side l = 200 �, from Eq. (8),
Pec = 320. To ensure that the Peclet number for the biased
diffusion simulations Peb is equal to the Peclet number for
simulations including convective motion, we calculated vb, the
average diffusive particle velocity at the center of an empty
flow channel for varying values of D1 such that D1 > D0.
Best correspondence was found for D1 = 0.11 �2/τ such that
vb = 0.1 �2/τ and, as a result Peb = Pec.

Figure 7 shows color maps for the particle occupancy in
steady state for a system with biased diffusion and a system
with convective dynamics in combination with isotropic
diffusion. For a lattice cell with coordinate center ri(t), the
average particle occupancy ψri

is the fraction of times that a
particle occupied the cell over a time window τw such that

ψri
= 1

τw

τw∑
t=1

�(t)ri
, (9)

where �(t)ri
= 1 if a cell is occupied and �(t)ri

= 0 if a cell
is unoccupied at time t .

In Figs. 7(a) and 7(b) the average particle occupancy at each
cell is normalized by the maximum particle occupancy ψmax

over a time window τw = 5 × 104 τ such that ψn
ri

= ψri
/ψmax

where ψmax = τw. The limits for the gradient scale for the
map are such that a cell with ψn

ri
= 0 is black and a cell

with ψn
ri

= 1 is white. For the system with biased diffusion
the color map shows particle build up on the left side of the
obstacle. Although particles can diffuse around the object, the
color map reveals that particles rarely enter, if at all, the region
directly behind the obstacle. In comparison, the simulation
with convective dynamics [Fig. 7(b)] shows a moderate
buildup of particles on the left side of the obstacle where
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FIG. 7. Color maps for average particle occupancy during steady-
state flow in a flow channel containing a square obstacle of side
l = 200 � with τw = 5 × 104 τ . (a) Biased diffusion where L1 =
1500 � and L2 = 500 �. (b) Convective motion where L1 = 1000 �

and L2 = 500 �. (c) Convective motion where L1 = 1000 � and
L2 = 500 � (alternative scaling for color map). For this particle flow
the Reynolds number Re ≈ 650 as calculated using Eq. (10).

ψn
ri

≈ 0.2. Beyond the obstacle we note a nonzero particle
occupancy such that ψn

ri
< 0.2. To better resolve the color

map for the simulation with convective dynamics, we have
replotted the color map from Fig. 7(b) without normalization
of the particle occupancy with ψmax. The revised color map is
shown in Fig. 7(c). This figure clearly demonstrates a build up
of particles on the left side of the obstacle where ψn

ri
> φk and

a wake region to the right of the obstacle where ψn
ri

< φk .
These color maps highlight the influence of convective

dynamics on particle distribution in the vicinity of bluff
obstacles. In addition, this comparison shows that the CDLM
can be applied to model varying particle transport phenomena:
ranging from purely diffusive random hopping to particulate
transports including appreciable convective dynamics.

D. Flow around an obstacle

For the case where convective dynamics are actively
considered in the CDLM, the response shown in Fig. 7(c) is
representative of the hydrodynamical flow behavior observed
for a disturbed fluid around a bluff obstacle in a flow
channel [25,26]. Such flows are conventionally studied numer-
ically with finite volume methods [27–31], cellular automata
methods such as lattice gas methods (LGMs) [16,32–37]
or lattice-Boltzmann methods (LBMs) [38–42], dissipative-
particle dynamics (DPD) [43–46], and multiparticle collision
dynamics (MPCD) [47,48]. In the case of LGMs, LBMs, DPD,
MPCD, and the CDLM presented in this study, fluid response
is described on a mesoscopic length scale by coarse-graining
microscopic details and retaining only those details deemed to
be critical for describing fluid response.

As a case study, we now apply the CDLM to study the
evolution of a particle flux beyond a bluff obstacle in a flow
channel. For this configuration a wake region is expected to
develop beyond the obstacle. The emergent flow patterns and
their stability depends on the Reynolds number Re. When a
particle flux with a maximum velocity at the center of the flow
profile U interacts with an obstacle with a projected width in
the streamwise direction of l lattice cells, Re is given by

Re = Ul

ν
. (10)

For low Re, viscous forces dominate and no flow separation
around the obstacle is observed. For higher Re fluid flows,
wake formation is expected behind the obstacle develops
[49–51]. The wake region is typified by the presence of a
recirculation flow consisting of vortex flow patterns. Similar
vortices have also been observed for particle flux around wall-
mounted cubic obstacles in flow channels [52–56], around
geographical mountains or hills [57], around islands in shallow
water [58,59], and airflows around buildings [60,61].

In this case study we examine the effect of a particle
flux with varying Re on the velocity field in the vicinity
of a square obstacle of side l placed at the center of a
flow channel. To simulate flows with differing values of Re
we vary the maximum velocity in the flow U by suitably
adjusting the external field Ag,x . Figure 8 shows a closeup of a
spatiotemporally averaged velocity field during steady state in
a flow channel containing a square obstacle of side l = 300 �,
particle density φk = 0.1, and a maximum velocity in the flow
direction of U = 0.01 �/τ . Therefore from Eq. (10) Re ≈ 65.
The velocity field has been spatiotemporally averaged over
an ensemble of velocity fields in steady state. The purpose
of the coarse-grained velocity field is to provide a clearer
representation of the macroscopic evolving flow conditions.
To coarse grain the velocity field, all particles are placed in
square grid blocks of side n�, where n is the number of lattice
cells, according to their position vector ri . The average particle
velocity 〈vj 〉 in the j th square block is then calculated using

〈vj 〉 = 1

Nj

Nj∑
k=1

vk, (11)

where Nj is the number of particles located in the j th block.
The velocity field in Fig. 8 shows the development of a

recirculation zone behind the square obstacle. To highlight
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FIG. 8. Spatiotemporally averaged velocity field in a flow channel
with a square obstacle of side l = 300 � with U = 0.01 �/τ so that
Re ≈ 65. To emphasize the recirculation zones behind the object,
the arrows representing the velocity field where |〈vj 〉| � 0.003 �/τ

have been multiplied by a factor of two. The full dimensions of the
flow channel are L1 = 2000 � and L2 = 1000 �. This velocity field
is averaged over 1.25 × 105 τ . For the spatial coarse graining of the
lattice the cells are of size n� × n� where n = 10.

the recirculation zone, velocity vectors behind the obstacle
are colored in red and multiplied by a factor of two relative
to the bulk velocity field if |〈vj 〉| � 0.003 �/τ Within the
recirculation zone we note the development of two vortices.
The observation of the recirculation zones at this Reynolds
number is consistent with observations from both experiments
[50,51] and previous numerical simulations [39,47,48,62].
Figure 9 shows the corresponding color map of the average
particle occupancy for the spatiotemporally averaged velocity
field in Fig. 8. For the most part the particle density remains
close to φk , which is consistent with a smooth flux of particles
through the flow channel. However, there is evidence of a
slight particle build-up on the left side of the obstacle where
the average local density is approximately 0.12. It should
be noted that the size of the recirculation zones in Fig. 8
are significantly larger than n where n is an order of magnitude
larger than the maximum permitted particle move in both the
convective and diffusive updates.
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FIG. 9. Color map for average particle occupancy for a particle
flow in a flow channel with a square obstacle of side l = 300 �

with U = 0.01 �/τ such that Re ≈ 65. The full dimensions of the
flow channel are L1 = 2000 � and L2 = 1000 �. The color map is
averaged over 1.25 × 105 τ .
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FIG. 10. Spatiotemporally averaged velocity field in a flow
channel with a square obstacle of side l = 300 � with U = 0.1 �/τ

such that Re ≈ 650. Starting time for the velocity field is 2 × 105 τ ,
and the velocity field is averaged over a time scale of 2.5 × 104 τ . To
emphasize the recirculation zones behind the object in each image,
the arrows representing the velocity field where |〈vj 〉| � 0.02 �/τ

have been multiplied by a factor of two. The full dimensions of the
flow channel are L1 = 2000 � and L2 = 1000 �.

We now consider particle flows where the maximum
velocity in the flow U = 0.1 �/τ such that the Reynolds
numbers are an order of magnitude larger. Spatiotemporally
averaged velocity fields around an obstacle of side l = 300 �

with φk = 0.1 are presented in Figs. 10 and 11. Thus from
Eq. (10), Re ≈ 650. As the maximum velocity is an order
of magnitude larger than for the velocity field in Fig. 8, the
velocity field behind the obstacle can be resolved over a shorter
averaging time scale. Figures 10 and 11 show velocity fields
spatiotemporally averaged over consecutive time windows of
2.5 × 104 τ where the first interval starts at 2 × 105 τ (Fig. 10).
Similar to the results at Re ≈ 65 presented in Fig. 8, we observe
the development of recirculation zones with vortices behind the
object. Significantly, the size and position of the vortices, and
the associated recirculation zone, are shown to evolve in time.
For example, in Fig. 10, two distinct recirculation zones can be
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FIG. 11. Spatiotemporally averaged velocity field for the same
flow channel presented in Fig. 10. Starting time for this velocity field is
2.25 × 105 τ , which is just after the velocity field presented in Fig. 10.
To emphasize the recirculation zones behind the object in each image,
the arrows representing the velocity field where |〈vj 〉| � 0.02 �/τ

have been multiplied by a factor of two. The full dimensions of the
flow channel are L1 = 2000 � and L2 = 1000 �.
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FIG. 12. Color maps for average particle occupancy in a flow channel with a square obstacle of side l = 300 � with U = 0.1 �/τ such
that Re ≈ 650. Each color map is averaged over a time scale of 2.5 × 104 τ . The starting time for each of the images is (a) 2 × 105 τ , (b)
2.25 × 105 τ , (c) 2.5 × 105 τ , (d) 2.75 × 105 τ . The full dimensions of the flow channel are L1 = 2000 � and L2 = 1000 �.

seen adjacent to the rear of the obstacle with the centers of the
recirculation zones at x ≈ 1220 �. However, for the next time
window (Fig. 11), we note the absence of vortices adjacent
to the obstacle and the appearance of vortices with centers at
x ≈ 1450 �. This observation is indicative of the development
of vortex shedding or the von Kármán vortex street [63,64],
where the vortices move off the back of the obstacle due to the
unsteady separation of the fluid flow around the obstacle.

Figure 12 shows color maps for the average particle occu-
pancy averaged over consecutive time windows of 2.5 × 104 τ .
To enable direct comparison between color maps, all maps are
subject to the same scaling. Each map shows the development
of a wake region beyond the obstacle as well as a wake region
above and below the obstacle. We also find an increase in the
average particle density to the left of the obstacle in comparison
to that observed for lower Re (Fig. 9). The color maps in
Fig. 12 demonstrate an evolving wake region, and hence an
evolving density field close to the obstacle. In Fig. 12(a)
particle occupancy behind the obstacle is lowest adjacent to the
rear of the obstacle. However, in Fig. 12(b) the lowest particle
occupancy behind the obstacle is observed at x ≈ 1450 �. This
is consistent with the approximate location of the vortices in
the corresponding spatiotemporally velocity field in Fig. 11.
The observation of migrating wake regions, in conjunction
with an evolving velocity field, further suggests that vortex
rearrangements consistent with the von Kármán vortex street
have been recovered.

The spatial extent of the recirculation zone lr behind the
obstacle is defined as the size of the closed wake or the length
over which the velocities in the x direction behind the obstacle
are negative. Figures 13 and 14 show the axial velocity profile

for flows for varying Reynolds numbers. Each axial velocity
profile has been spatiotemporally averaged. For cases where
Re < 100 and U = 0.01 �/τ , the extent of the recirculation
zone is clearly evident given that the local velocity field behind
the object is opposite to the direction of the bulk flow field
(Fig. 13). With increasing l, the length of the recirculation
zone increases, which corresponds to trends observed in
experiments [65] and previous MPCD simulations [48,66].
However, the dimensionless recirculation zone lr/ l ≈ 1 at
low Reynolds number (Fig. 13) which differs from previous
MPCD simulations [48,66]. Differences in lr/ l with previous
studies may be related to the no-slip boundary conditions at
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FIG. 13. Axial velocity profile u(x) along the center line of the
obstacle for different size obstacles and U = 0.01 �/τ . The measure
along the x direction represents the distance from the right side of the
obstacle.
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FIG. 14. Axial velocity profile u(x) along the center line of the
obstacle for different size obstacles and varying U = 0.1 �/τ .

the obstacle. For all obstacle sizes, we find a positive axial
velocity adjacent to the boundary. This anomaly is due to
the implementation of the no-slip boundary conditions in the
model where particles’ velocity vectors are reversed if they
attempt to penetrate the obstacle. This effect is localized to
the particle layers adjacent to the obstacle as the recirculation
vortices are the dominant hydrodynamic flow behavior in the
wake region.

For the case where Re > 100 and U = 0.1 �/τ (Fig. 14),
the development of a recirculation zone is dependent on the
size of the square obstacle. For l � 300 �, a recirculation
zone is evident. In addition, lr is found to be larger with
U = 0.1 �/τ in comparison to the same obstacle size with
U = 0.01 �/τ . For example, for l = 300 �, lr ≈ 375 � with
U = 0.01 �/τ while lr ≈ 535 � with U = 0.1 �/τ . How-
ever, with l = 250 � we do not recover a recirculation zone
when U = 0.1 �/τ , unlike in the case where U = 0.01 �/τ

(Fig. 13). The lack of a recirculation zone suggests that the no-
slip boundary conditions at the obstacle are insufficient to slow
the particles enough before they enter the wake region beyond
the obstacle. Recirculation zones, and thus vortices, implies the
generation of angular momentum at no-slip boundaries. As the
obstacle size increases, we increase the overall effect of no-slip
boundary conditions on the particles and thus slow the particles
adequately to motivate the development of a recirculation zone
beyond the obstacle.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented a new variant of a
diffusion hopping model, the convective diffusive lattice
model (CDLM). Unlike previous diffusion hopping models,
it includes a description of convective particle motion which
is decoupled from diffusion. Particles are restricted to discrete
locations on an underlying two-dimensional square lattice.
Particle dynamics are subject to an underlying velocity field
which is imposed upon the same square lattice. This velocity
field [Eq. (2)] is updated using an expression inspired by
the compressible Navier-Stokes equation. This expression
is controlled by three model parameters which account for
the kinematic viscosity of the fluid, the compressibility of
the fluid, and external fields such as body forces. Following
the velocity field update, particle positions are updated subject
to a convective update and a diffusive update which accounts

for random fluctuations. During the convective update, par-
ticles are displaced from their cells subject to their velocity
vector. The degree by which each particle overlaps with its
neighboring cells dictates the probability of displacement to
an empty neighboring lattice cell.

After calculating the diffusion coefficient for particles
in the absence of convection we studied a particle flow
between two no-slip boundaries leading to the development
of a parabolic velocity profile consistent with laminar flow
from an initial plug flow (Sec. III B). From the velocity
profile we calculated the kinematic viscosity ν and found
that ν ≈ 0.046 �2/τ (Fig. 5) with increasing system size.
We then explored two specific particle flow regimes with
the CDLM by comparing a flow subject to biased diffusion
with a flow subject to convective dynamics and nonbiased
or homogeneous diffusion. For biased diffusion a noticeable
buildup of particles on the inlet side of the obstacle is
observed [Fig. 7(a)] with particles predominantly traveling
along two narrow channels above and below the obstacle. In
addition particles rarely enter the wake region. With convective
dynamics, a moderate particle buildup on the inlet side of
the obstacle is observed [Fig. 7(b)]. However, particles are
shown to enter the wake region, thus representing a different
response in comparison to biased diffusion. Additionally the
CDLM captures particle dynamics near an obstacle in a
manner reminiscent of a hydrodynamic response. This study
demonstrates the adaptability of the CDLM to model systems
where differing particle dynamics account for specific particle
transport behaviors.

As an application of the CDLM, we focused on the
interaction of fluid flows with an obstacle in a flow channel
for varying Reynolds numbers. To extract the macroscopic
evolving flow conditions, we calculated a coarse-grained
velocity field for the flow channel. For Re ≈ 65 we find
a recirculation zone with two symmetric vortices (Fig. 8).
However, for large Re, we find evidence of behavior consistent
with the development of a von Kármán vortex street [63,64]
as shown in Figs. 10 and 11. This shedding from the obstacle
is due to the unsteady separation of the fluid flow around
the obstacle. We also note that the size of the recirculation
zone lr has been found to increase with Re in agreement with
experiments [50,51] and previous simulations [39,47,48,62].
It is important to highlight that a recirculation zone does not
develop for the case where l = 250 � and U = 0.1 �/τ , thus
representing a flow with Re ≈ 540 (Fig. 14). This can be
attributed to the importance of no-slip boundary conditions
towards developing a recirculation zone. Without sufficient
no-slip effects the particles do not slow down enough before
entering the wake region. As a result, the particles are moving
too fast to facilitate the formation of the recirculation zone. For
the fluids studied here, a recirculation zone at large Re has been
instigated by increasing the size of the square obstacle, and
thus increasing the effect of no-slip boundary conditions. The
dependency of the recirculation zone on the fluid type could
also be explored in a future study with the model by varying
Ac, the term associated with the compressibility of the fluid. It
should be noted that in this study compressibility effects were
set relatively low by choosing a sufficiently low value for Ag.

This initial study with the CDLM motivates further studies
of flows around obstacles where diffusive and convective
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processes compete. In lattice-type models, it is relatively easy
to include more complex obstacles such as circles, diamonds,
or irregular geometries. In addition, the algorithm may be
applied to study flow channels containing more than one
obstacle. For example, the influence of one obstacle and
its associated wake region on an another obstacle directly
beyond the wake region could be studied as in a previous finite
difference approach [67]. It is also conceivable to place a
regular array of obstacles in the flow channel to study the effect
of multiple obstacles on flow and diffusion characteristics
as in simulations on plume dispersion through objects
[68], heat transfer in flows around a matrix of all mounted
objects [69], or to size separate biological particles and DNA
molecules [70].

The model could also be applied to study flows in simple
porous media represented as a series of obstacles of varying
geometries within a flow channel. The FHP lattice gas model
[16] has already been applied to study flow throw a simplis-
tic two-dimensional porous medium [37] and subsequently
expanded to three-dimensional systems [36,41]. Recently,
LBMs have been applied to study high Reynolds number
flows around single circular obstacles and a porous medium

represented as a collection of these obstacles [39] and coupled
with a discrete-element method to study the effect of porosity
on soil permeability [42]. The CDLM presented here is an
advancement on diffusion hopping models and lattice-type
models in that it incorporates both diffusive and convective
particle dynamics. Therefore, the model is well placed to be
used in the study of flows in simple porous media in addition
to other flows where a description of hydrodynamic flow
behaviors is a necessity. We also envisage applications in active
matter systems where collective dynamics greatly influences
system behavior.
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