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Prediction of the moments in advection-diffusion lattice Boltzmann method.
II. Attenuation of the boundary layers via double-� bounce-back flux scheme
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Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the
impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent
improvements for the Neumann condition in the lattice Boltzmann method–advection-diffusion equation, the BB
rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We
examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that
it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil.
Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the
full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion
ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium,
but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back
rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties,
namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the
Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate
from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the
kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned
channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight
values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency
in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines.
In order to vanish or attenuate the disparity of the modeled transport coefficients with the equilibrium weights
without any modification of the BB rule, we propose to use the two-relaxation-times collision operator with
free-tunable product of two eigenfunctions �. Two different values �v and �b are assigned for bulk and
boundary nodes, respectively. The rationale behind this is that �v is adjustable for stability, accuracy, or other
purposes, while the corresponding �b(�v) controls the primary accommodation effects. Two distinguished but
similar functional relations �b(�v) are constructed analytically: they preserve advection velocity in parabolic
profile, exactly in the two-dimensional channel and very accurately in a three-dimensional cylindrical capillary.
For any velocity-weight stencil, the (local) double-� BB scheme produces quasi-identical solutions with the
(nonlocal) specular-forward reflection for first four moments in a channel. In a capillary, this strategy allows for
the accurate modeling of the Taylor-dispersion and non-Gaussian effects. As illustrative example, it is shown
that in the flow around a circular obstacle, the double-� scheme may also vanish the dependency of mean
velocity on the velocity weight; the required value for �b(�v) can be identified in a few bisection iterations in
given geometry. A positive solution for �b(�v) may not exist in pure diffusion, but a sufficiently small value of
�b significantly reduces the disparity in diffusion coefficient with the mass weight in ducts and in the presence
of rectangular obstacles. Although �b also controls the effective position of straight or curved boundaries, the
double-� scheme deals with the lower-order effects. Its idea and construction may help understanding and
amelioration of the anomalous, zero- and first-order behavior of the macroscopic solution in the presence of the
bulk and boundary or interface discontinuities, commonly found in multiphase flow and heterogeneous transport.
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I. INTRODUCTION

Among the broad scope of the advection-diffusion equation
(ADE) problems modeled by the lattice Boltzmann method
(LBM-ADE) the mesoscale solute transport through heteroge-
neous porous media is one of the most motivating [1–12] be-
cause of the complex boundaries and implicit interface shape.
As an alternative to the finite difference, boundary-element
and finite-element methods [13], the pioneering work [14]
computes the effective diffusivity through a media composed
of the overlapping randomly distributed grid-aligned rect-
angular obstacles, combining the d2Q5 discrete-velocity set
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with the discontinuous single-relaxation rate for heterogeneity,
and bounce-back reflection for impermeable boundary. While
originally the hydrodynamic velocity sets were adopted for
isotropic soil [15–17], their coordinate subclasses, or the mini-
mal d2Q5 and d3Q7 models [1,14,18], gain popularity for their
efficiency, e.g., [3,7,8,10,12,19]. Already early work [1] re-
ports an agreement within 0.2% between the three-dimensional
6 and 19 discrete-velocity sets for tracer dispersion in a nontriv-
ial geometry. Recall that there exists an infinite number of suit-
able mass- and velocity-weight stencils, ranging from the min-
imal models to their rotated (diagonal) counterparts [20–22].
These two weight families independently determine the under-
lying discretization for diffusion and advection terms, respec-
tively. In this work, we analytically and numerically examine
their role on the first four moments of the averaged solute
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distributions. The moments of our interest are first moment
characterizing the effective velocity (U), second moment re-
lated to effective diffusivity of the porous structure [13,14,23]
and Taylor dispersion [24–26], third and fourth moments
quantified by their normalized values skewness and kurtosis,
respectively. The results of the LBM schemes for their descrip-
tion are promising. The work [7] matches the experimental,
highly “asymmetric” probability distributions for molecular
displacement in rock cores with increasing degree of het-
erogeneity by the d3Q7 multiple-relaxation-time (MRT-ADE)
isotropic-diffusion scheme [27,28]. The two-relaxation-times
(TRT-ADE) d2Q5 scheme [29] agrees well with the reference
solutions for resident-time and average-concentration distribu-
tions in bimodal stratified systems in heterogeneous porosity.

However, the numerical moments, rather than solute distri-
butions, were found [29,30] much more sensitive to truncation
and interface accuracy of the numerical scheme. It has been un-
derstood [31] that the truncation corrections in ADE schemes
impact the measured Taylor-dispersion coefficient even in
straight Poiseuille flow. Our conjoined investigation [30] ex-
tends the extended method of moments (EMM) approach [29]
to prediction of the truncation contributions to the first four
moments. The methodology [30] is worked out with the fourth-
order-accurate mass-conservation equation of the TRT-ADE
scheme [20,31] and illustrated for plug and Poiseuille profiles
in straight channel and for Poiseuille profiles in cylindrical
capillary. In a fully developed Taylor regime, the physical
values [29,30] of the nondimensional dispersion (kT ), skew-
ness (Sk�), and kurtosis (Ku�) coefficients are all set by Péclet
number (Pe). However, the results [30] reveal their dependency
on the numerical parameters: (i) the equilibrium group, com-
posed of the diffusion-coefficient scale factor (hereafter ce) and
weights, and (ii) two positive relaxation eigenfunctions �±.
The two groups are linked by molecular diffusion coefficient
D0 = ce�

−, while the weight dispatching and �+ are freely
adjustable. It is shown [30,31] that the relative truncation
corrections to dispersion, skewness, and kurtosis have second-
order accuracy. As Pe increases, they become controlled by
the weights and the relaxation product � = �−�+.

This latter feature is predicated by the � property,
that is, �± enter the nondimensional spatial truncation
correction only via their � product, either in hydrodynamic or
transport TRT schemes with constant source terms [32–34].
This allows for the consistent measurement of the effective (ge-
ometrical) characteristics of the structure such as permeabil-
ity [34–38], heat conductivity [39], or relative diffusivity [19].
Furthermore, the � property allows to reach the equivalent ac-
curacy [22,27] and stability [21] for any value of the diffusion
coefficient, accelerate the convergence to steady state [19,34–
37], and it becomes crucial for boundary and interface accuracy
with the discontinuous or spatially variable transport coeffi-
cients, e.g., high viscosity ratio multiphase flows [40–42], non-
Newtonian fluids [43], unsaturated flow [4,44], heterogeneous
and anisotropic soil [22,41,45], or thermal coefficients [39].
A very recent single-relaxation-time Bhathager-Gross-Krook
(BGK) approach [12] mimics the soil porosity with the
spatially variable partial bounce-back mechanism, and
thus formally allows for a uniform diffusion collision rate.
However, this scheme requires a relaxation-rate dependent
equilibrium velocity. Its numerical diffusion and consistency

have not been examined yet. The subtle point is that, even if
a modified propagation algorithm is coupled with the TRT or
MRT operators, the � property is not guaranteed [46].

In a bulk the “optimal” � value is dictated by the truncation
accuracy [20,30,31] and stability [21,47], that is, � ∈ [ 1

12 , 1
4 ].

However, the boundary [48,49] and interface conditions [41]
further complicate the choice of �. It becomes evident by the
optimal (most accurate) choice of � for regular and random
arrays of spheres [34] or high-ratio thermal conductivity
benchmark problem with the rotated interface [39]. The TRT
solution obtained in [39] depends on � much stronger than
it depends on the d2Q4-d2Q9 stencil. It is appropriate to
mention that (i) the d2Q4 and d3Q6 isotropic MRT-ADE
schemes automatically reduce to TRT, (ii) the full and minimal
MRT-ADE schemes [27,28,50] are mostly used in two-rate
configuration for isotropic diffusion, e.g., [51,52], and (iii)
the MRT needs to fix all even-odd two-rates � combinations
with specific rules [34] for consistent control [32] of the
nondimensional solutions by governing physical numbers.

Note that the � property holds in computations only if all
involved boundary rules maintain it. This is the case of the (i)
bounce-back (BB) rule, either for Dirichlet flow velocity or
Neumann advection-diffusion flux, and (ii) the anti-bounce-
back Dirichlet (ABB) rule, either for concentration [48,51] or
pressure [49,53,54]. Recall, the outgoing population returns
in the opposite direction with the BB, but it changes its sign
with the ABB. The parametrization of their steady solutions
by � is independent of the geometry, dimension, boundary
values, and discrete-velocity set; rather, it is stipulated by
the specific organization of the symmetric and antisymmetric
components in the closure relations of these two reflection
rules [32,49]. As has been demonstrated [32,34,35,49], the
� property is not automatic and it is not preserved with
the recently recommended [55] linear and parabolic Bouzidi-
Firdaouss-Lallemand (BFL) rules [56]. However, the linear
BFL rules may be improved for the � property with the
help of a local post-collision correction or the alternative but
adequate interpolation coefficients [32,34,49]. At the same
time, � controls the effective location of the boundary with
the BB, ABB, and the properly parametrized high-order
schemes [48,57]. For the sake of completeness (in the “Back-
ground” section) we update the “third-order” accurate ABB
� solution [41,48]: it locates the parabolic, homogeneous,
or heterogeneous diffusion profile halfway in the grid in
any discrete-velocity set and, for a particular choice of scale
factor ce, it comprises recent solutions [51]. Specifically, the
d2Q4 MRT scheme [19,51], where the mean value of two
relevant relaxation rates is 1, is indeed the TRT scheme with
� = 1

4 : this fact explains the diffusion-coefficient-independent
relative diffusivity [19] computed with the ABB and BB
rules, opposed to their BGK results. In the aforementioned
(parabolic) configuration, the ABB rule serves as an example
of the “favorable” matching of the boundary to the bulk, valid
for any equilibrium stencil. This situation is principally distinct
from the Neumann bounce-back zero-flux condition.

On the one hand, one of our motivations for this work on the
bounce-back zero-flux rule is to support the truncation moment
analysis [30] in full weight space. On the other hand, keeping in
mind highly heterogeneous transport in reconstructed porous
images, we are interested in the staircase wall description. This
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also explains our brief recursion to the ABB rule: while in some
recent works the prescribed Dirichlet [58], Neumann [59], or
Robin [60,61] conditions are used to interpolate the solution
to an (artificial) staircase midgrid boundary, the ABB rule
enforces the interpolated values. However, neither the ABB
rule nor the high-order Dirichlet schemes [48,49,62] guarantee
mass conservation. While mass conservation is not necessary
for steady solutions [35], it is not so for an accurate transient
modeling of distribution and moments. Although one can
always compensate the deficit of mass through a correction to
the incoming populations, it is shown [63] that the procedure
degrades the tangential accuracy with the interesting, mirror-
type curved boundary Neumann approach [63]. In turn, when
the reference tangential flux is zero, the BB performs as well
as the improved d3Q7 and d3Q19 mass-conserving Neumann
schemes [63], and much better than the nonconserving
schemes for time-dependent symmetric diffusion solution
inside a sphere. In the future, it will be important to extend
the benchmarking of different Neumann approaches on the
moments of the modeled distributions. In this work, we start
with the bounce-back rule for its locality, mass conservation
in any geometry, and � property.

It was early recognized [64] that “the bounce-back rule di-
minishes the diffusive transport and consequently enlarges the
longitudinal hydrodynamic dispersion.” This statement [64]
addresses the Taylor dispersion in a channel modeled with
the d3Q19 scheme. It has been demonstrated [48] that
the bounce back nonphysically constrains the tangential
advective-diffusive flux on the flat wall, via the diagonal links.
This is to be contrasted [48] with the specular-forward reflec-
tion [64,65]: it correctly mimics the free slip in flow and no flux
in ADE but naturally applies only on the straight walls. In turn,
according to [66], “hardly any thermal Neumann boundary
condition in literature takes the tangential aspects of the flux
into account”; in our opinion, this is only partially true: several
approaches [22,48,62,67] try to preserve the tangential flux
explicitly. For that purpose, the BB was complemented [48]
with a local correction derived from the population solution:
it removes the leading-order tangential constraint from the
BB closure relation; this scheme was further validated [22]
with the d3Q15 velocity set in cuboid box in the presence
of highly anisotropic and heterogeneous mass-weight stencil.
The scheme [22,48] is expected to keep mass conservation in
grid-aligned ducts, but its accuracy may degrade on staircase
obstacle where the effective normal and tangential direc-
tions are unknown. The mixed Dirichlet-Neumann nonlocal
scheme [62] risks to encounter similar difficulties because
it carefully reconstructs the tangential flux on the smooth
surface. Besides, the interpolation schemes [62,68] have been
only worked out with the d2Q5 scheme, where they reduce to
the ABB and BB rules for the midgrid location of straight wall.

Only very recently the two aforementioned bounce-back
deficiencies [64], also shared by local specular reflection [69],
were shown [69] to act independently and their primary
effects were predicted exactly in straight channel for the d2Q9
scheme. They are (i) decrease of the diffusion coefficient,
and (ii) delay of the average advection velocity. In a straight
channel, these two effects are proportional to diagonal mass
and velocity weight, respectively, and they decay only linearly
with the space resolution [69]. As the secondary effect,

the boundary-layer transverse velocity gradient induces the
Taylor-type longitudinal dispersion; its relative correction to
the physical Taylor coefficient is almost Pe independent for
Pe � 1. The quantification of these spurious effects becomes
possible [69] due to the construction of the nonequilibrium
correction in the linkwise recurrence form [32], referred to
as the “boundary-layer” component. It accommodates the
mismatch between the bulk solution and the closure relation
of the boundary rule.

It should be underlined that in the rarefied gas dynamics
the boundary layers are a physical reality [70], while in
our study they are unwanted numerical artifacts anticipated
in early work [71]. The construction of the nonequilibrium
boundary layers is based on the exact recurrence equations
(RE) of the TRT scheme [32]. We point out that, unlike other
approaches, namely, Chapman-Enskog expansion [27,72–74],
Fourier series [75], Taylor-truncation expansion [76,77],
equivalent partial differential equations [78], asymptotic anal-
ysis [28], or lattice kinetic approach [42,79], the nonequilib-
rium component in the RE is exact. It is given without any
approximation in a compact form, as a linear combination of
the central, spatial, and temporal finite differences applied to
equilibrium and nonequilibrium components. If the (smooth)
nonequilibrium solution can be represented as a series with
respect to the equilibrium, the Taylor series of RE matches
the Chapman-Enskog expansion [20,33]. Yet, the RE also
exactly captures any nonequilibrium perturbation. It should
be underlined that, since the developed Taylor-dispersion
regime [24] is static in moving frame, the steady-state
nonequilibrium framework [32] is sufficient, as confirmed by
the exactness of the derived solutions [69] in a straight channel.
Previously, the nonequilibrium layers were specified [53] in
order to explain the no-slip exact accommodation of the
predicted parabolic profile with the Navier-Stokes equilibrium
in straight Poiseuille flow. The distinctive feature of the
present tangential bounce-back deficiency is that it modifies all
transport coefficients in comparison to their bulk predictions.

In this work, we first extend construction [69] of the
nonequilibrium boundary layers to a cylindrical capillary.
Since the variance of the numerical distribution consists of
physical, truncation, boundary-layer diffusion and dispersion,
this analysis enables us to single out the truncation error
and obtain a numerical confirmation for its estimate [30].
In addition, we will reveal the effect of boundary layers on
skewness and kurtosis. Our analysis is operated with the d3Q15
velocity set in the presence of all adjustable parameters and
weights. The d3Q7 TRT scheme with � = 1

4 was successfully
employed for Taylor dispersion in shear thinning capillary
flow [80], and it might be argued that the coordinate stencil
presents the best choice for the isotropic diffusion with the BB
rule because it is aligned with the staircase walls. However,
it can be easily imagined that the rotated stencil holds the
same property for diagonally oriented walls. Moreover, in
a capillary the hydrodynamic mass weight is required for
the isotropy of the fourth-order diffusion term and rigorous
validity of the truncation estimate [30]. Although the higher-
order isotropy might be regarded as a luxurious requirement
for transport in porous media, the two weight families are
responsible for stability in d2Q9, d3Q13, d3Q15, and d3Q19
schemes [20,21,47]: the identical specific full stencil for
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mass and velocity terms vanishes very restrictive stability
constraints of the minimal schemes and enhances efficiency
at high Pe range. In fact, this advanced stability is due
to the diagonal links enforcing the anti-numerical-diffusion
tensor [21,45]; the diagonal links are also required for the
same purpose with the alternative MRT approach [81].

In order to liberate the bounce-back results from the primary
weight dependency, we propose the double-� bounce-back
TRT scheme. It does not require any modification, either for
bounce back or TRT. The double-� scheme operates with the
two distinguished � values: �b in grid boundary nodes and
�v in bulk nodes. The rationale behind this idea is that the
presence of two very different � values may change the sign
of the effect [69]. The construction of double � in straight
channel and cylindrical capillary will be performed with the
help of the generic steady-state interface conditions [41,82].
They close the system and prove their validity in the presence
of the boundary layers in nonequilibrium component. On the
constructed solution of the scheme, we look for the dependency
�b (�v) for any given �v such that the bounce-back tangential
effect vanishes for first moment. Therefore, in straight chan-
nel and cylindrical capillary, the derived solutions �b(�v)
preserve mean velocity in parabolic profile. In a channel,
it makes the BB solutions quasi-identical to the specular
reflection for dispersion, skewness, and kurtosis. In a capillary,
the double-� scheme reduces the boundary-layer dispersion
and enables validation of the truncation predictions [30] in the
presence of diagonal-velocity weight. The �b(�v) solutions
are very similar in two geometries but distinct and resolution
dependent. A simple procedure is proposed to locate the
root �b(�v) within few bisection iterations in any given
geometry; it will be illustrated for two-dimensional flow
around a circular cylinder where the effective mean velocity
then remains the same for any velocity weight. The double-�
scheme may not have a positive �b(�v) root in pure diffusion.
The possibility to reduce the mass-weight disparity in the
effective diffusivity [19,83] using a small but positive �b will
be examined in simple porous configurations.

The rest of the paper is organized as follows. Section II
provides (i) the TRT-ADE scheme, (ii) the closure relations
of the anti-bounce-back and bounce-back rules together with
their illustrative solutions, and (iii) the recurrence form of
the nonequilibrium boundary layers. Section III predicts the
bounce-back boundary-layer effects in straight channel and
cylindrical capillary. In pure diffusion, they are worked out for

(i) diffusion coefficient and (ii) kurtosis; in plug and Poiseuille
flow, these effects are specified for (i) apparent velocity
and (ii) longitudinal dispersion. Section IV is devoted to the
symbolic construction of the double-� distributions in straight
channel and cylindrical capillary. Section V examines their
efficiency in reduction of the velocity-weight dependency in
dispersion, skewness, and kurtosis. Section VI examines the
double-� approach for effective diffusivity in periodic porous
arrangements and develops an iterative procedure in advective
flow around obstacle. Section VII concludes the work. The
technical details for boundary-layer analysis are provided in
the Appendix.

II. BACKGROUND

In Sec. II A, we recall the TRT-ADE d2Q9 and d3Q15
schemes along with their advanced free parameter combi-
nations and discuss the exact, second-order-accurate, and
averaged advection-diffusion equations, the truncation and
numerical computation of the first four moments of the
averaged solute distributions. The exact closure relations of the
anti-bounce-back (Sec. II B 1) and bounce-back (Sec. II B 2)
rules are discussed with respect to the Dirichlet (Sec. II B 1)
and zero-flux Neumann (Sec. II B 2) boundary conditions.
They are illustrated by solutions in a straight channel for
pure diffusion with a constant mass source (Sec. II B 1) and
advection diffusion (Sec. II B 2). This analysis questions the
suitable definition of the macroscopic variables (Sec. II B 1)
and the tangential-constraint dependency on the equilibrium
weight (Sec. II B 2). Because of the incompatibility of the bulk
solution with the bounce-back rule in full weight space, the
concept and exact form of the accommodation nonequilibrium
numerical layers is recalled (Sec. II C).

A. TRT-ADE scheme

The two-relaxation-times (TRT) model [20,27,41] assumes
the d-dimensional velocity set consisting of zero-amplitude
vector c0 and Qm = Q − 1 vectors cq connecting cuboid-grid
nodes r; each vector cq has the opposite one: cq̄ = −cq ,
q = 1, . . . ,Qm/2. Accordingly, the two populations per link
fq(r,t) and fq̄(r,t) are decomposed into their symmetric
and antisymmetric components: f ±

q = (fq ± fq̄)/2. The TRT
scheme updates them with the help of the two relaxation rates
s± ∈]0,2[:

fq(r + cq,t + 1) = fq(r,t) + g+
q + g−

q , g±
q = −s±(f ±

q − e±
q ), q = 0, . . . ,

Qm

2
,

(1)

fq̄(r − cq,t + 1) = fq̄(r,t) + g+
q − g−

q , q = 1, . . . ,
Qm

2
.

In this study, the common-form distribution {e±
q (r,t), q = 0, . . . ,Qm/2}, suitable for d2Q9 in 2D and d3Q15 in 3D, is computed

with the local mass value C(r,t) = ∑Qm

q=0 fq and prescribed local velocity U(r,t):

e+
q (r,t) = C

[
t (m)
c ce + t (u)

c Ū 2 + 1

2

(
U 2

α − Ū 2
)]

, e−
q = t (a)

c CUαcqα, if cqα �= 0, cqαcqβ |α �=β = 0 (2a)

e+
q (r,t) = C

⎛
⎝t

(m)
d ce + t

(u)
d Ū 2 + 1

Nd

∑
α �=β

UαUβcqαcqβ

⎞
⎠, e−

q = t
(a)
d CU · cq, if cqαcqβ |α �=β �= 0 (2b)
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FIG. 1. This figure illustrates the coordinate and the diagonal equilibrium stencils of the d2Q9 scheme for, from the left to the right, the
mass weight, the velocity weight, and the anti-diffusion weight in Eq. (2). The three families of weights are independent, but all of them satisfy
the isotropic constraint

∑Qm

q=1 t (·)
q cqαcqβ = δαβ . The d3Q15 is composed from 6 coordinate discrete velocities ||cq ||2 = 1 with the weight t (·)

c , and

8 diagonal velocities ||cq ||2 = 3 with the weight t
(·)
d . The d2Q5 and d3Q7 yield t (·)

c = 1
2 , t

(·)
d = 0. The hydrodynamic choice is t (m)

c = t (a)
c = 1

3 ,

t
(m)
d = t

(a)
d = 1

12 (d2Q9), and t
(m)
d = t

(a)
d = 1

24 (d3Q15).

e+
0 (r,t) = C(r,t) − 2

Qm
2∑

q=1

e+
q (r,t), e−

0 (r,t) = 0, with Ū 2 = U 2

d
,U 2 =

d∑
α=1

U 2
α , (2c)

t
(m)
d = 1 − 2t (m)

c

Nd

, t
(a)
d = 1 − 2t (a)

c

Nd

, t
(u)
d = 1 − 2t (u)

c

Nd

, t (·)
c ∈

[
0,

1

2

]
, Nd =

Qm∑
q=1

c2
qαc2

qβ , α �= β. (2d)

This equilibrium form is extended for heterogeneous porous
soil [29] and, including the d3Q13 and d3Q19 schemes, for
anisotropic diffusion [20,21,45]. In these relations, Eq. (2a)
applies on the subset of 2d “coordinate” discrete velocities,
while Eq. (2b) addresses the Nd “diagonal” discrete velocities,
with Nd = 4 in d2Q9 and Nd = 8 in d3Q15. The three
independent, non-negative, isotropic weight families t (.)

q =
{t (m)

q ,t (a)
q ,t (u)

q } obey the same constraint:
∑Qm

q=1 t (·)
q cqαcqβ =

δαβ . They are illustrated in Fig. 1. The d2Q5 and d3Q7
coordinate (minimal) schemes lack the diagonal velocities,
Eq. (2b) vanishes in them, and Eq. (2a) reads as t (·)

c = 1
2 ,

then e+
q = 1

2C(ce + U 2
α ), e−

q = 1
2CUαcqα for cqα �= 0, q =

1, . . . ,Qm/2 = d. The two-dimensional model composed of
the diagonal links will be referred to as the “rotated” d2Q5
scheme [21,69]. The positive parameter ce is free tunable:
its stability range depends on the mass weight [20,21,47],
with ce ∈]0, 1

d
] in minimal schemes. In stability limit ce = 1

d
,

t (u)
q = 0, the d2Q5 and d3Q7 reduce, respectively, to d2Q4

and d3Q6 diffusion schemes. Thus, Eq. (2) offers the three
principal degrees of freedom: ce, mass weight {t (m)

c ,t
(m)
d },

and velocity weight {t (a)
c ,t

(a)
d }. These three elements are

often fixed to their hydrodynamic choice, with ce = c2
s = 1

3 .
The “hydrodynamic” weight, t (·)

c = 1
3 in d2Q9 and d3Q15,

satisfies the second constraint: Sd (t (·)
q ) = ∑Qm

q=1 t (·)
q c2

qαc2
qβ =

t
(·)
d Nd = 1

3 when α �= β. The “hydrodynamic” mass weight
improves the isotropy of the fourth-order linear pure-diffusion
form [20,30]. The hydrodynamic velocity weight provides
the isotropy of the third-order linear advection correction in
d2Q9 scheme, at least [20]. The stable maximum velocity
amplitude |U |max(ce,t

(a)
q ) is predicated by ce and velocity

weight, the most stable value is t (a)
c = 1

4 in d2Q9 and d3Q15
schemes: their necessary stability constraints in d-dimensional

velocity field are derived [20,21] and resumed [30,45,47].
The stable velocity amplitude is conditioned [20,21] by the
(negative) quantity of the second-order numerical diffusion.
The anti-numerical-diffusion correction in Eq. (2) is controlled
by the weight family {t (u)

q }; this term completely removes
the second-order numerical diffusion in plug [21,27,45] and
streamwise-invariant [30,31] flow, at least. Within the second-
order-accurate approximate, the solute concentration C then
obeys advection-diffusion equation with the advective velocity
U(r,t) and molecular diffusion coefficient D0 (in lattice units):

∂tC + ∇ · (UC) = ∇ · (D0∇C),D0 = ce�
−. (3)

The two eigenfunctions �± = 1
s± − 1

2 are positive: while
�− = D0/ce is fixed by ce and D0, �+ is free. A special
role in numerical assessment of the scheme is played by
free-tunable product of two eigenfunctions: � = �−�+.
When � is prescribed, the two relaxation parameters s± are
interconnected:

s+ = 2(2 − s−)

2 − s− + 4s−�
with � = �−�+

=
(

1

s+ − 1

2

)(
1

s− − 1

2

)
. (4)

It has been proved [32] that fixed value of � controls any nondi-
mensional steady-state solution of the exact mass-conservation
equation (with constant mass-source, at least) on top of the
Péclet number Pe = UL/D0 (giving characteristic length L
and velocity U). Two particular values, such as � = 1

12 and 1
6 ,

vanish the coefficients of the third- and fourth-order-accurate,
respectively, spatial truncation corrections [20,30,31]. In

combination with the particular choice �− =
√

1
12 , these two

distinguished � values, respectively, vanish either advective or
pure-diffusion transient truncation corrections to Eq. (3). The
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most stable choice [21] is � = 1
4 , where the arithmetical-mean

value of two eigenvalues (4) is equal to one:

� = 1

4
: s+ = 2 − s− or

s+ + s−

2
= 1. (5)

This choice makes the necessary stability condi-
tions [20,21,47] sufficient for any �−, either with the minimal
schemes or suitable mass and velocity weight stencils. Hence,
� = 1

4 allows to reach high Pe with the largest possible
velocity amplitude. When � <≈ 1

6 , the stable velocity
amplitude drastically depends [20,47] upon �− and ce when
ce�

− → 0. These theoretical predictions, derived in constant
(plug) flow, are numerically confirmed [31] for |U |max(ce) in
Poiseuille profile (focused on the d2Q5 scheme).

The advanced stability of � = 1
4 is due to the specific form

of the exact mass-conservation equation
∑Qm

q=0 g+
q = 0, which

reads as, after substitution of the recurrence solution [32] for
the nonequilibrium components {g±

q },⎡
⎣�̄t

Qm∑
q=0

e+
q +

Qm∑
q=1

�̄qe
−
q

⎤
⎦(r,t)

=
⎡
⎣�−

⎛
⎝ Qm∑

q=1

�̄2
qe

+
q −

Qm∑
q=0

�̄2
t e

+
q

⎞
⎠

−
(

� − 1

4

) Qm∑
q=1

�̄2
qg

+
q

⎤
⎦(r,t). (6)

Mass-conservation equation is expressed in terms of the
central-time and linkwise-central spatial finite-difference op-
erators (see [20,30,31] for details). This form, suitable for any
mass-conserving, either isotropic or anisotropic, equilibrium
provides the fourth-order-accurate truncation corrections to
Eq. (3), e.g., in constant velocity field [20], heterogeneous
soil [29], and streamwise-invariant flows [30,31]. With the
second-order-accurate space averaging of Eq. (3), mean con-
centration C̄(x,t) = 〈C(r,t)〉 obeys the advection-dispersion
equation with mean velocity U = 〈Ux(r)〉 and dispersion
coefficient D:

∂t C̄ + ∂xUC̄ = D∂2
x C̄. (7)

We assume that the mean seepage velocity U is space and
time independent; it is directed along the x axis where 〈. . .〉 =
S−1

∫
S
ds denotes the average value over the void (porous)

part in cross section S(x). Let μn(t) = ∫∞
−∞(x − x0)nC̄(x,t)dx

denote the nth raw moment of C̄ for n � 0, and μ�
n(t) be

its nth central moment: μ�
n(t) = ∫∞

−∞(x − x0 − U t)nC̄(x,t)dx,
for n � 2. The apparent solutions for U , D, skewness Sk(t),
and kurtosis Ku(t) are set by the first four spatial moments
[assuming μ0(t) ≡ 1]:

U = μ1

t
, D = μ�

2

2t
, Sk(t) = μ�

3(t)

[μ�
2(t)]3/2

,

Ku(t) = μ�
4(t)

[μ�
2(t)]2

− 3. (8)

We consider evolution of the Dirac delta function C(r,t =
0) = δ(x − x0) in the fully developed Taylor regime [24,25]

FIG. 2. This figure illustrates construction of the nonequilibrium
boundary layers along the vertical axis in straight channel and along
a coordinate axis in circular cross section. The grid nodes are those
whose centers lie inside the bounded domain; the boundary nodes
rb = {r0,rN } have two (d2Q9) and four (d3Q15) incoming diagonal
populations with cqx = ±1.

where the longitudinal dispersion, skewness, and kurtosis
can be characterized by the dimensionless time-independent
coefficients kT , Sk�, and Ku�:

kT = D

D0
− 1, Sk� =

√
U t

L Sk(t), and Ku� = U t

L Ku(t).

(9)

The two well-known solutions for the dispersivity coefficient
kT in Poiseuille velocity profile are kT = Pe2

210 (with Pe = UH
D0

in straight channel of width H ) and kT = Pe2

192 (with Pe = 2UR
D0

in cylindrical capillary of radius R). Based on the Gaussian
distribution as solution of Eq. (7) for initial Dirac plume
distribution, Sk� and Ku� are both equal to zero in these
two configurations. Yet, this second-order result neglects
the third- and fourth-order corrections appearing in space
averaging of Eq. (3). By accounting for them automatically
with the EMM approach [29], the effective (physical) values
of Sk� and Ku� can be found in [30] (they present the
particular case of bimodal, stratified channel, and cylindrical
capillary solutions [29]). Further, the truncation corrections
of the TRT scheme in kT , Sk�, and Ku� are derived in
these two configurations with the EMM approach [30] from
Eq. (6). Unlike the physical coefficients kT , Sk�, and Ku�, the
truncation corrections are not set by Péclet number alone, but,
in addition, they depend on ce, �−, �, and weights. Their
dependency on velocity weight principally vanishes for � =
1
12 , while the mass-weight dependency in kurtosis vanishes
for � = 1

6 and asymptotically vanishes as Pe increases,
∀�. The relative truncation modification in all three trans-
port coefficients decays with the second-order accuracy, as
L−2.

B. Closure relations

At grid boundary node rb, when rb + cq lies outside the
computational domain, the system is closed by the boundary
rule providing the incoming population fq̄(rb,t + 1) with
cq̄ = −cq (see Fig. 2). Here, two situations can be distin-
guished. In the favorable situation, the boundary rule supports
nonequilibrium solution g±

q = G±
q , where G±

q is given by
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the second-order-accurate Chapman-Enskog expansion with
respect to the equilibrium e±

q : Eqs. (3) and (7) then keep
their predicted form. We will illustrate this configuration
for parabolic distributions modeled with the help of the
anti-bounce-back (ABB) Dirichlet boundary rule [41,48]. In
the unfavorable situation, the incoming population cannot
match the nonequilibrium solution G±

q : the system creates
nonequilibrium accommodation corrections referred to as
boundary layers. They are not described by the Chapman-
Enskog expansion but they are covered by the recurrence
(exact) nonequilibrium form [32]. This unfavorable situation
happens with the bounce-back no-flux rule on straight walls in
the presence of the diagonal weight [69].

1. Anti-bounce-back Dirichlet boundary rule

Let us complement (in this section only) the right-hand
side in Eq. (3) with the external mass source quantity
S(r,t) by adding, in Eq. (1), S+

q = t (m)
q ceS to g+

q and

S − 2
∑Qm

q=1 S+
q to g+

0 . Assume the boundary value Cb for
macroscopic concentration solution C(rb + cq) is enforced
by the Dirichlet ABB rule. It reads as the TRT collision
(1):

ABB : fq̄(rb,t + 1) = −[fq + g+
q + g−

q + S+
q ](rb,t) + 2wq,

wq = e+
q (Cb). (10)

Since, by definition in Eq. (1), fq = e+
q + e−

q − g+
q

s+ − g−
q

s− and

fq̄ = e+
q − e−

q − g+
q

s+ + g−
q

s− , the steady-state closure relation of
the ABB rule (10) reads as for any (cut) link cq intersecting
the solid surface

ABB : e+
q + 1

2g−
q − �+g+

q + 1
2S+

q = wq. (11)

Let us consider the pure-diffusion situation e+
q = t (m)

q ceC,
e−
q ≡ 0. The expected steady-state second-order-accurate bulk

solution for g±
q is given by the Chapman-Enskog expansion

G−
q = ∂qe

+
q and G+

q = −∂q�
−∂qe

+
q − S+

q , with ∂qC = ∇C ·
cq . After substitution of this solution into Eq. (11), the closure
relation becomes

ABB :
[(

e+
q + 1

2S+
q

)+ 1
2∂qe

+
q + ∂q�∂qe

+
q + �+S+

q

]
(rb)

= e+
q (Cb). (12)

When S+
q = 0, Eq. (12) fits the second-order-accurate

linkwise-directional Taylor expansion from rb to rb + 1
2 cq ,

provided that � = 1
8 . This solution has been originally

presented by Eq. (43) in Ref. [27]; note that the notations [27]
are different: �2 = 4/3�+�− = 1

6 . That is, � = 1
8 locates

the prescribed boundary value midgrid for any e+
q in the

absence of external mass source. The suitability of � = 1
8

is extended [27] for time-dependent solution and nonzero
(arbitrary) mass source with the help of the specific correction
to wq in Eq. (10): it directly removes the unsuitable terms from
the ABB closure relation.

We note that by equating the set of closure relations of the
given boundary scheme to the Taylor expansion, one avoids
the tedious solving [51,84] of the entire population system or
particular construction of the nonequilibrium solution [42],
commonly restricted to the straight channel configuration. The

approach of exact closure relations is quite general and it was
employed in analysis and design of the high-order boundary
and interface conditions in flow schemes [34,35,41,49]
and ADE schemes [41,48], pressure Dirichlet
schemes [49,53] recently adapted [54] for free-interface stress
condition.

Let us consider now the particular case of the parabolic
distribution C(y) in a straight channel y ∈ [−H

2 ,H
2 ] main-

tained by the constant mass source S, then −S = ce�
−∂2

yC,
S+

q = −t (m)
q �−c2

e∂
2
yC, ∂qe

+
q = t (m)

q ce∂yCcqy , and ∂q�∂qe
+
q =

t (m)
q ce�∂2

yCc2
qy . If the macroscopic solution C(y) is redefined

with the half-mass quantity C = C + 1
2S, the closure rela-

tion (12) becomes

ABB,S = const : t (m)
q ce

[
C + 1

2∂yCcqy + �(1 − ce)∂2
yCc2

qy

]
(rb) = t (m)

q ceCb, if c2
qy = 1. (13)

This closure relation dictates the identical closure conditions
for normal and diagonal cut links. It maintains the parabolic
profile in straight channel of the width Heff given by Eq. (14)
for any �, and it assures the halfway location of two solid
walls provided that � obeys Eq. (14):

ABB,S = const : H 2
eff = H 2 + 8(1 − ce)� − 1 ∀�,

Heff = H if � = 1

8(1 − ce)
, ce ∈]0,c(max)

e ]. (14)

Note that the derivation of Eq. (14) holds for any velocity
set and that Eq. (14) also assures midgrid location of the
flat interface in stratified parabolic configuration [41] with
the bimodal (discontinuous) diffusion coefficients [see their
Eq. (99) with �eq = 1

8(1−ce) + �−ce

2(1−ce) in case when C is not
redefined with S/2]. The redefinition of the macroscopic
variables with the half source quantity allows for the consistent
parametrization of the steady-state solutions and the spatial
truncation variation in transient solutions with the nondimen-
sional numbers [32,49]. This property is supported by the ABB
and BB boundary rules. It has been recognized [41] that whenC
is redefined with S/2, the “optimal” � reduces to the bounce-
back solution [35,57] for Poiseuille flow, which is � = 3

16 in
particular case ce = c2

s = 1
3 in Eq. (14). It can be shown by

the symmetry argument e+
q → e−

q , S+
q → S−

q , g±
q → g∓

q that
the BB closure relation in force-driven Poiseuille flow and
the ABB closure relation (11) are simply interchangeable. The
Poiseuille flow solution � = 3

16 is valid for any hydrodynamic
discrete-velocity set [35], provided that the external force
quantity is computed with the same (hydrodynamic) weight
as for e−

q in flow. Moreover, � = 3
16 [or s− = 8(s+−2)

s+−8 in TRT
and MRT flow schemes] is also suitable for straight two-phase
Poiseuille flow with different viscosities [40,41] and halfway
interface; in conventional flow schemes [40,41], it is equivalent
to the recent solution [42].

Remark I. Equation (14) comprises recent results [51]
for parabolic concentration profile modeled with the d2Q4,
d2Q5, and d2Q9 MRT schemes in combination with the ABB
rule (called there “halfway bounce-back rule”). The d2Q4
and d2Q5 schemes [51] are particular cases of Eq. (2) with
t (m)
c = t (a)

c = 1
2 , ce = 1

2 , and ce = 2
5 , respectively, while the

d2Q9 scheme [51] fits Eq. (2) with t (m)
c = t (a)

c = ce = 1
3 . In
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the parabolic concentration profile, the only one relevant �

product in schemes [51] is set by (diffusion) rate sD = s−
and (free) rate s2 = s+, then � = ( 1

sD
− 1

2 )( 1
s2

− 1
2 ). Applying

Eq. (14), � = { 1
4 , 5

24 , 3
16 } in three configurations [51]. This

corresponds, with the the help of Eqs. (4) and (5), to three
individually derived solutions [51]: s2 = 2 − sD (d2Q4), s2 =
12(sD−2)
sD−12 (d2Q5), and s2 = 8(sD−2)

sD−8 (d2Q9). The BGK model

assures Eq. (14) with the specific value �− = √
� but, in

contrast with [51], the BGK is not restricted to one particular
value D0, rather to the interval D0 ∈]0,c(max)

e

√
�] inside the

velocity-set-dependent stability interval ce ∈]0,c(max)
e ].

Remark II. Identical weight distribution for Dirichlet vari-
able in e±

q and source quantity S±
q , like t (m)

q ce in Eq. (13), makes
the closure relation and the optimal � weight independent.
If one applies S+

q = t (m)
q ce

(m)S with ce
(m) �= ce, the optimal

solution in Eq. (14) should be replaced by � = 1
(1−ce

(m)) [
1
8 +

�−(ce
(m) − ce)]. The disadvantage of this weight choice is that

it makes � depending on the diffusion eigenfunction �− and,
in general, it violates � property.

Finally, we note that the so-called third-order-accurate ve-
locity [34,35,49] and scalar [48,49] Dirichlet schemes support
exactly �-independent parabolic solutions in an arbitrarily
oriented channel. They make any other macroscopic solution
almost� independent [34,35] because their closure relations
shift the � dependency to truncation third order. The key
point is that, unlike the parabolic interpolations [52,56,62],
the third-order-accurate schemes do not reduce to BB or ABB
for the midgrid location.

2. Bounce-back zero-flux Neumann boundary rule

Assume that the normal component of the advective
velocity vanishes on the solid surface; the impermeable
condition for the advective-diffusive flux then reduces to
the zero diffusive flux condition −D0∂nC = 0, or Neumann
condition ∂nC = 0. In this study, the no flux is modeled either
with the nonlocal specular-forward mirror reflection (SNL) in
2D straight channel, or with the bounce-back reflection (BB
rule) in any geometry, including flow around circular-shaped
inclusion. The two schemes coincide with the d2Q5 scheme
at straight walls. In three dimensions, we will operate with
the d3Q15 scheme and bounce-back reflection (d3Q15 BB).
All considered schemes conserve mass exactly. It has been
demonstrated [48] that the SNL mimics the impermeable wall
without any restriction of the tangential flux. This property is
confirmed by results [30,31], where the SNL allows for quasi-
exact validation of the bulk truncation analysis for the first four
moments with any equilibrium weights. The situation is differ-
ent with the BB rule [48,64]. With the TRT operator (1) the BB
reads as

fq̄(rb,t + 1) = [fq + g+
q + g−

q ](rb,t). (15)

Applying the same procedure as for Eq. (11), the bounce-back
steady-state closure equation becomes

BB :
[
e−
q + 1

2g+
q − �−g−

q

]∣∣
r b

= 0. (16)

The closure relation (16) attempts to vanish the linkwise pro-
jection of the advective-diffusion flux (t (a)

q U − D0t
(m)
q ∇C) · cq

[it is given by e−
q − �−g−

q = t (a)
q U · cq − ce�

−t (m)
q ∂qC with

the help of the first-order-accurate Chapman-Enskog
expansion and Eq. (2)]. For illustration assume the pure-
diffusion spread of the initial condition C(x0,y) = δ(x − x0)
in a straight channel y ∈ [−H/2,H/2]. The specular-forward
reflection provides the same solution as the periodic conditions
on the flat walls: C(x,y) remains y independent. However,
the bounce back makes the concentration y dependent
[the actual solution C(x,y) is derived in Sec. III B and
illustrated in Fig. 7]. In this situation, e−

q ≡ 0, and the
expected y-independent Chapman-Enskog bulk solution is
G−

q = t (m)
q ce∂xCcqx and G+

q = −t (m)
q ce�

−∂2
xCc2

qx . All these
components vanish on the vertical link and it supports the
no-flux condition exactly. All schemes (2) without diagonal
mass weight t

(m)
d = 0 share this property and, in particular,

the d2Q5 and d3Q7 schemes. Further, when t
(m)
d �= 0, the sum

of the diagonal links (with cqx = ±1) in closure relations (16)
maintains the leading-order expansion because the term of
∂xCcqx vanishes. At the same time, the half-difference of
the diagonal-link closure relations (16) yields at the leading
order

BB : t (m)
q ce∂xC ≈ 0. (17)

That is, the bounce back tries to vanish the tangential diffusive
flux unless when t

(m)
d = 0. In order to accommodate the

closure relation (17) to the bulk solution, the system develops
the nonequilibrium corrections δg±

q to the Chapman-Enskog
solution G±

q , and the solution becomes g±
q = G±

q + δg±
q .

Their generic form is described in Sec. II C.
The specular-forward reflection is free from the con-

straint (17) because the outgoing diagonal-link term g+
q =

t (m)
q ce∂xC serves to continue C(rb,t) to C(rb + cqx,t + 1).

However, the local specular reflection, when the diagonal
population returns into the node of departure, shares similar
deficiency with the bounce back [69]. Very similar situation to
Eq. (17) takes place in the presence of the constant advection
velocity [48] when the bounce back tries to vanish the nonzero
tangential advection flux via the diagonal links, unless when
t

(a)
d = 0 in Eq. (2). It is expected that the situation is reversed on

the diagonally oriented flat wall: the bounce back then attempts
to vanish the tangential advective-diffusive flux, unless when
t (m)
c = 0 and t (a)

c = 0.
The bounce-back closure relation (16) becomes second-

order correct for the halfway linkwise flux location if Eq. (16)
is replaced by

fq̄(rb,t + 1) = [fq + g+
q + g−

q ](rb,t)

− 2cq · (t (a)
q U − D0t

(m)
q ∇C)|(r b+cq ). (18)

The subtle point is that the (unknown) tangential diffusive-flux
boundary value is required for that, unless when the cut
link cq is normal with the surface. The tangential diffusive
flux [22,48] is derived locally from the actual nonequilibrium
solution at the boundary node [see Eq. (56) from [48] and
Eqs. (44) and (47)–(49) from [22]; we note a typo in their
Eqs. (48) and (49), i.e., they should read with the opposite
sign]. This correction is mass conserving on the flat wall
due to the symmetry (cqx = ±1 in our example), and it has
been verified with a fully anisotropic d3Q15 scheme. A more
careful, but nonlocal, interpolation procedure [62] extends the
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construction of the tangential flux to a curved boundary. The
three-population-based Neumann scheme [62] is worked out
with the d2Q5 scheme and it has been not examined yet,
either for full-weight stencil or in three dimensions. The two
approaches [22,62] require prescribed tangential and normal
wall coordinates, which are not well defined on a staircase
boundary.

Remark. On the staircase wall segment with normal n,
the bounce-back no-flux closure relation (16) reads as the
following solution for g±

q in the pure-diffusion modeled with
the minimal schemes:

g−
q = 1

2ce

[∇̄nC + (
� − 1

4

)
�̄2

n[∇̄nC]
]
cqn,

g+
q = − 1

2�−ce

[
�̄2

nC + (
� − 1

4

)
�̄2

n

[
�̄2

nC
]]

c2
qn, c

2
qn = 1.

(19)

These relations are derived from the exact steady-state
recurrence equations (20) and they are expressed via the
exact central-difference operators along the normal direction.
At the second order they reduce to the Chapman-Enskog
solution employed above with g−

q = t (m)
q ce∂nCcqn and g+

q =
−t (m)

q ce�
−∂2

nCc2
qn. When � = 1

4 , the diffusive-flux condi-
tion (16) is set midgrid with Eqs. (19) in the finite-difference
sense, as 1

2g+
q − �−g−

q = −D0[∇̄nC + 1
2�̄2

nC]|rb = 0. Since
� = 1

4 also produces the finite-difference-type discretization
of the mass-conservation equation [20,30], its solutions
can be expected to match the finite-difference reference
solutions best (we discuss this for effective diffusivity in
Sec. VI A).

C. Nonequilibrium boundary-layer corrections

The numerical assessment [69] confirms the validity of
the steady-state framework for construction of the boundary
layers and their impact on the transport coefficients in Taylor-
dispersion regime. At steady state, the two pairs of the
recurrence equations [32] of the TRT scheme become

g±
q (r) = [

�̄qe
∓
q − �∓�̄2

qe
±
q + (

� − 1
4

)
�̄2

qg
±
q

]
(r),

q = 0, . . . Qm (20a)[
�̄2

qe
±
q −�±�̄2

qg
±
q −�̄qg

∓
q

]
(r) = 0, q = 1, . . . Qm.

(20b)

These equations are expressed in terms of the linkwise-
central spatial finite-difference operators. These equations
remain satisfied if we disturb the set {g±

q (r)} by the boundary-
layer nonequilibrium correction{δg±

q (r)} which obeys

δg±
q (r) = (

� − 1
4

)
�̄2

qδg
±
q (r), (21a)[

�±�̄2
qδg

±
q + �̄qδg

∓
q

]
(r) = 0, q = 1, . . . Qm. (21b)

Following [32,69], consider the grid nodes rn = r0 + ncq

along the lattice direction cq from one boundary end at
r = r0 to another at rN = r0 + N cq (see Fig. 2). When
� = 1

4 , δg±
q (r) �= 0 only in two boundary nodes rb = {r0,rN }

because it vanishes in bulk according to Eq. (21a). When
� �= 1

4 , the solution of Eqs. (21) decays as δg±
q (rn) =

a±
q kn

σ + b±
q k−n

σ , where {a±
q ,b±

q } are linkwise constant and kσ

has two roots:

� �= 1

4
: kσ = 2

√
� − σ

2
√

� + σ
, σ = ±1,

√
�+a+

q = σ
√

�−a−
q ,

√
�+b+

q = −σ
√

�−b−
q , (22a)

� = 1

4
: δg∓

q (r0) = δg±
q (r0)

2�∓ ,

δg∓
q (rN ) = −δg±

q (rN )

2�∓ , with 2�∓ = 1

2�± . (22b)

The relations (22b) between different parity components are
obtained from Eq. (21b). If we assume that k = k1 (σ = 1),
then |k| < 1 and the solution of Eqs. (21) with (22a), satisfying
the prescribed boundary values δg+

q (n = 0) = δg+
q (r0) and

δg+
q (n = N ) = δg+

q (rN ), reads as

δg+
q (rn) = pN (n)δg+

q (rN ) + p0(n)δg+
q (r0),

pN (n) = kn − k−n

kN − k−N
,

p0(n) = k(N−n) − k−(N−n)

kN − k−N
. (23)

Let us assume the solution at the ends to be related by the
symmetry argument, e.g., [r0,rN ] is perpendicular to the
symmetry axis in straight channel or it goes through the center
of the circle (see Fig. 2). Then, two possible situations can be
considered. First, δg+

q (rN ) = −δg+
q (r0), δg−

q (rN ) = δg−
q (r0),

and Eq. (23) becomes

δg+
q (rn) = P (n)δg+

q (rN ),
(24a)

P (n) = kn − k(N−n)

kN − 1
, P (N ) = −P (0) = 1,

δg−
q (rn) =

√
�

�− M(n)δg+
q (rN ),

(24b)

M(n) = kn + k(N−n)

kN − 1
,M(N ) = M(0) = kN + 1

kN − 1
.

Second, δg+
q (rN ) = δg+

q (r0), δg−
q (rN ) = −δg−

q (r0), and
Eq. (23) becomes

δg+
q (rn) = P(n)δg+

q (rN ), P(n) = kN − 1

kN + 1
M(n), (25a)

δg−
q (rn) =

√
�

�− M(n)δg+
q (rN ),M(n) = kN − 1

kN + 1
P (n).

(25b)

The functions P (n), M(n), and P(n), M(n) are plotted
in Fig. 3: they monotonously decay towards the center when
� > 1

4 and they oscillate when � < 1
4 . When � = 1

4 , they are
constrained to two boundary nodes.

In this study, the mismatch between the bulk component
{G±

q (r,t)} given by the Chapman-Enskog expansion and the
effective solution g±

q of the scheme in straight channel and
a cylindrical capillary is described in terms of the boundary-
layer corrections {δg±

q (r)} given by Eqs. (24) and (25). In these
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(a) (b)

(c) (d)

FIG. 3. This figure plots the functions (a) P (n) and (b) M(n) defined in Eq. (24), then (c) P(n) and (d) M(n) from Eq. (25), when � = 1
12

(dotted line, “squares,” black), � = 1
6 (dotted-dashed line,“lozenges,” blue), � = 1

2 (dashed line, “circles,” magenta). The � = 1
4 (solid line,

“triangles,” red) is constrained to the boundary points. The two functions (a) and (b) produce (for n = 0,1, . . . ,7) the boundary-layer solution
in straight channel of H = 8 displayed in Figs. 5 and 6.

corrections, the boundary values {δg+
q (rN )} will be derived

from the closure relation of the bounce-back rule.

III. BOUNCE-BACK SPURIOUS EFFECTS

In this section, we will construct the nonequilibrium correc-
tions {δg±

q (r)} due to the bounce-back unphysical tangential
constraint. This derivation is illustrated for a cylindrical
capillary by extending the channel solution [69]. We also
extend it to the fourth order for pure diffusion in a straight
channel where the transverse y dependency in concentration,
induced by the bounce back, is analytically restored. The exact
(channel) and approximate (capillary) solutions are built for
spurious modifications of Eq. (7). They are (i) due to the
diagonal mass weight in diffusion coefficient (Sec. III A) and
kurtosis (Sec. III B); (ii) due to the anti-numerical-diffusion
weight stencil in diffusion coefficient (Sec. III C); (iii) due to
the diagonal velocity weight in apparent velocity (Sec. III D),
for plug (Sec. III D 1) and parabolic (Sec. III D 2) profiles,
and the associated dispersion coefficient (Sec. III E). In
the presence of boundary corrections {δg±

q (r)}, the closure
relation (16) with wq = 0 reads as

BB :
[
e−
q + 1

2 (G+
q + δg+

q ) − �−(G−
q + δg−

q

)]∣∣
r b

= 0,

g±
q (r) = G±

q (r) + δg±
q (r). (26)

The present analysis will also apply if wq in Eq. (15) is set equal
to projection of the prescribed boundary advective-diffusive
normal-flux value on velocity cq (see [27]). The d2Q9 and
d3Q15 schemes yield a very similar discretization in boundary
nodes when the coordinate discrete-velocity links are normal

with the staircase solid wall (see Fig. 2). Assuming the rotation
invariance of the boundary-layer solution over the circular
cross section, and thus partly neglecting the discretization
effect, we apply the straight-channel methodology [69] along
the coordinate axis in cylindrical capillary. On this basis,
Eqs. (24) and (25) are applied uniformly, either for n =
0,1, . . . ,N = H − 1 along the y axis in straight channel, or
for n = 0,1, . . . ,N = 2R − 1 along one of the coordinate axis
{y,z} in circle.

A. Bounce-back diffusion-coefficient correction err(bb)
D

Assume first pure-diffusion simulation where we measure
the apparent diffusion coefficient D(num) = μ�

2(t+δt )−μ�
2(t)

2δt
with

the help of Eq. (8). In straight channel, the d2Q9 SNL produces
exact solution D(num) ≡ D0, for all mass weights [30,31,69].
This property is achieved by the d2Q9 BB only when t (m)

c = 1
2

and, in particular, with the d2Q5 BB. We first find by numerical
computations that in cylindrical capillary, D(num) ≡ D0 with
the d3Q15 BB when t (m)

c = 1
2 , and, in particular, with the

d3Q7 BB. Thereby, in both geometries the minimal d2Q5
and d3Q7 schemes assure the diffusion coefficient exactly.
Otherwise, since the diffusion flux is restricted to zero at flat
solid boundary via Eq. (17) when t (m)

c �= 1
2 , wq = 0, D(num) is

smaller than the predicted value D0 = ce�
−. This retardation

of the diffusion spreading is demonstrated in Fig. 4 for relative
correction err(bb)

D = D(num)

D0
− 1. This correction is proportional

to the diagonal mass-weight value t
(m)
d = (1 − 2t (m)

c )/Nd and
it depends on � and radius R. Thereby, we look for it in the
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FIG. 4. This figure compares pure-diffusion numerical results
(symbols) by d3Q15 bounce-back scheme for its relative error in
diffusion coefficient to its theoretical prediction err(bb)

D = δm (straight
lines) given by Eq. (27) with Eq. (35) for kT = 0. From the top to the
bottom: R = {5,10,20}. The results are plotted for � = { 1

12 , 1
6 , 1

4 , 1
2 }

with dotted line (black), dotted-dashed line (blue), solid line (red),
dashed line (magenta).

form for characteristic length L:

err(bb)
D

(
t (m)
c ,�,L

) = δm

1 + kT

, δm

(
t (m)
c ,�,L

)
= F (m)(�,L)

(
1 − 2t (m)

c

)
. (27)

In pure diffusion and plug flow, Eq. (27) reads as kT = 0.
Nonequilibrium corrections. We look for the functional

form of F (m)(�,L). Since the corrections {δg±
q (r)} should

accommodate t (m)
q ce∂xC(rb) [cf. Eq. (17)] in boundary nodes

rb = {r0,rN }, we employ, on the symmetry argument, Eq. (24)
in the following form:

δg+
q (rn) = K1P (n)∂xC(rN )cqxcqα, α = {y,z}

δg−
q (rn) =

√
�

�− K1M(n)∂xC(rN )cqxc
2
qα, n = 0,1, . . . ,N.

(28)

It satisfies Eqs. (21) along the coordinate axis α, with �̄q =
�̄αcqα , �̄2

q = �2
αc2

qα , δg+
q (rN ) = K1∂xC(rN )cqxcqα . We look

now for the coefficient K1. Let us decompose C(x,r) into its

averaged value C̄(x) and the fluctuation C ′(x,r):

C(x,r) = C̄(x) + C ′(x,r), C̄(x) = 〈C〉, 〈C ′(x,r)〉= 0. (29)

The fourth-order analysis in Sec. III B will show that the dif-
ference between ∂xC̄(x) and ∂xC(rN ) behaves as O(∂3

x C̄), that
is, the ∂xC̄(x) in Eqs. (28) will produce the same second-order
result as the ∂xC(rN ). This approximation was adopted for
channel [69]. We now consider the closure relation (26) where
the second-order steady-state expansion for G±

q (r) reads as

G−
q (r) = t (m)

q ce

[
d∑

α=1

∂αcqα

]
C(r),G+

q (r)

= −�−t (m)
q ce

[
d∑

α=1

∂αcqα

]2

C(r). (30)

Assume α = y, then the populations outgoing at rN

have the same component cqy . In d3Q15, we first sum
the closure relations (26) for the outgoing populations
with cqz = ±1, then the terms like t (m)

q ce∂zC(rN )cqz and
−�−t (m)

q ce∂β∂zC(rN )cqβcqz, β = {x,y} vanish from those
sums. The difference of the obtained diagonal closure relations
with cqx = ±1 is now addressed. The term t (m)

q ce∂yC̄(rN )cqy

vanishes from it, as well as the remaining terms from
G+

q [except the term −�−t (m)
q ce∂x∂yC̄(rN )cqxcqy which

is of higher order]. Thereby, by substituting Eq. (28) and
employing ∂xC(rN ) ≈ ∂xC̄(x), the first-order-accurate linear
combination of the closure relations reads as

1

2

{
K1P (N ) − 2�−

[
t

(m)
d ce + K1

√
�

�− M(N )

]}
∂xC̄(x) = 0,

then K1 = 2ce�
−t

(m)
d

1 − 2
√

�M(N )
. (31)

Solution (31) for the coefficient K1 in the nonequilibrium
correction (28) has the same form in straight channel and
cylindrical capillary.

Numerical validation. Figures 5 and 6 compare theoretical
prediction for {δg±

q (x,y)} given by Eqs. (28) and (31) to
numerical results, when � = 1

12 and 1
4 , respectively. Pure-

diffusion simulations are run in a straight channel for H = 8
and 40. The numerical values of the nonequilibrium compo-
nents g−

q (xc,y) = G−
q + δg−

q and g+
q (xc,y) = G+

q + δg+
q are

monitored at x = xc and projected on the relevant basis
vectors, such as cx = {cqx}, qx = {cqx(3c2

qy − 2)}, and vxy =
{cqxcqy}. The bulk components G−

q (xc,y) = t (m)
q ce∂xC̄(xc)cqx

and G+
q (xc,y) = −2�−t (m)

q ce∂x∂yC(xc,y)cqxcqy are approxi-
mated with the help of the central finite differences. Equa-
tions (28) are computed by replacing ∂xC(rN ) by ∂xC̄(xc).
The predictions and numerical results are projected on the
relevant basis vectors of the d2Q9 scheme.

The numerical results validate the constructed solution
and manifest the expected properties of the boundary-layer
components: while for � = 1

4 (Fig. 6) they are constrained
to the two boundary nodes, they oscillate for � = 1

12 (Fig. 5)
in bulk and exponentially decay towards the center. As the
space resolution increases, the boundary-layer nonequilibrium
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FIG. 5. The pure diffusion in straight channel is modeled by d2Q9 BB with � = 1
12 , t (m)

c = 1
4 . The two first diagrams compare, respectively,

the predicted projections (lines) for (i) m = [g−
q (xc,y)·cx ]

||cx ||2 , cx = {cqx}, and (ii) m = [g+
q (xc,y)·vxy ]

||cx ||2 , vxy = {cqxcqy}, to their numerical values (symbols)

at grid points y = 1,2, . . . ,H = 8. The two last diagrams display results for H = 40, with m = [g−
q (xc,y)·qx ]

||qx ||2 , qx = cqx(3c2
qy − 2), and m =

[g+
q (xc,y)·vxy ]

||vxy ||2 . The nonequilibrium solution g±
q = G±

q + δg±
q is predicted by Eqs. (28) and (30); it is monitored at grid node xc = x0 − 1 at some

time t and normalized by maxx ∂t C̄(x,t).

corrections with � = 1
12 confine to two to three boundary-node

neighbors (see two last diagrams in Fig. 5).
Diffusion-coefficient correction. According to the

Chapman-Enskog analysis and recurrence equations [30,31],
the diffusion form in the right-hand side of the averaged

mass-conservation equation (7) is created by the term
�−〈∑Qm

q=1 �̄xG
−
q cqx〉. Let us apply similar argument to

{δg−
q }. The correction �−〈∑Qm

q=1 �̄xδg
−
q cqx〉 [Eqs. (28)

and (31)] then modifies the diffusion coefficient D0 by the

FIG. 6. Similarly as in Fig. 5 but for � = 1
4 .
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quantity δmce�
− and the apparent second-order-accurate

diffusion equation becomes [cf. Eq. (2)]

∂t C̄ = ce�
−(1 + δm)∂2

x C̄, with δm = 〈δm(n)〉 (32)

δm(n) = �− K1

ce�−

√
�

�− M(n)t (m)
d Nd

= 2
√

�M(n)

1 − 2
√

�M(N )

(
1 − 2t (m)

c

)
. (33)

In straight channel, the average values are computed via the
arithmetical mean of the grid-node solution. In a circle, we
apply the following approximation:

〈δm(r)〉 = 2π

πR2

∫ R

0
rδm(r)dr ≈ 2π

πR2

R−1∑
n=0

r(n)δm(n),

r(n) = R − n − 1

2
, n = 0,1, . . . R − 1. (34)

In that we express 〈M(n)〉 via the function �(�,L) given by
Eq. (A1) in straight channel and Eqs. (A2) and (A3) in cylin-
drical capillary. The relative diffusion-coefficient correction
δm obtains the closed-form expression

δm = F (m)(�,L)
(
1 − 2t (m)

c

)
,

F (m)(�,L) = −2
√

�

l
�(�,L), (35a)

δm

(
� = 1

4

)
= −

(
1 − 2t (m)

c

)
l

, (35b)

δm|L→∞ = −2
√

�

l

(
1 − 2t (m)

c

)
, ∀� (35c)

with

Channel : l = L = H,

�(�,L) = �(s)(�,H ), φ(�,L) = φ(s)(�,H ), (36a)

Circle : l = 2R2

2R − 1
, L = R,

�(�,L) = �(c)(�,R), φ(�,L) = φ(c)(�,R). (36b)

According to Eqs. (35), δm is nonpositive and it decays towards
zero as � decreases; δm vanishes for t (m)

c = 1
2 ; its amplitude

linearly increases with the diagonal weight value t
(m)
d , ∀�.

In straight channel [69], Eq. (35) with Eq. (36a) predicts δm

exactly.
Numerical validation. Figure 4 compares the numerical

results and analytical prediction for δm in the capillary of
radius R = {5,10,20}. The principal dependency F (m)(�,L)
over � and R is captured well but, unlike in straight channel,
the result (35) is not exact in circular shape because of the
discretization effect, partly neglected by this construction. The
agreement is even better for R = 10 than for R = 20: we
relate this to the smaller discretization error for R = 10 (this
is observable in Table I). Further, numerical computations
confirm that err(bb)

D takes the same value in constant (plug)
flow (when the velocity weight t (a)

c = 1
2 and boundary-layer

dispersion effect is absent).

Summary. The relative diffusion boundary-layer effect
of err(bb)

D is independent of the velocity amplitude.
Asymptotically, as mesh-resolution prefactor l increases,
the relative correction to diffusion coefficient δm behaves as
−2

√
�(1 − 2t (m)

c )/l; � = 1
4 yields this behavior for any l. It

is shown [69] that the scale factor
√

� is reached very rapidly.
In duct flow, δm can be measured from the pure-diffusion
simulation for any D0.

The actual value δmD0 should be then subtracted from the
obtained value D(num) in order to obtain the effective bulk
solution of the scheme, e.g., the effective Taylor-dispersion
coefficient. This procedure is applied [30] in order to verify
the truncation dispersion analysis for Poiseuille flow in a
capillary. It should be noted that in duct flows, err(bb)

D in Eq. (27)
asymptotically decreases to zero as kT increases with Pe. It
follows that the first-order boundary-layer diffusion effect is
most relevant in pure diffusion, plug-type flow, and for small
Pe. In the presence of the solid obstacles, the effective diffusion
coefficient Deff in Eq. (7) is different from D0 and it is unknown
in general. The dependency of Deff on the mass weight in pure
diffusion spread around rectangular and circle obstacles is
preliminarily examined in Sec. VI A.

B. Boundary-layer effect in kurtosis

Truncation predictions. In this section, we quantify the
modification in kurtosis due to the bounce-back restriction
of the tangential flux in the pure-diffusion simulations in
straight channel. The fourth-order-accurate diffusion equa-
tion [20,30,31] reads as

∂tC = D0∂
2
xC + A3∂

4
xC,D0 = ce�

−,

A3(ce,�
−,�) = ce�

−(� − 1
6

)− c2
e�

−[(�−)2 + � − 1
4

]
.

(37)

In the absence of the truncation correction (A3 = 0), one
expects the initial Dirac δ function C(r,t = 0) = δ(x − x0)
to spread with the Gaussian distribution where kurtosis is zero
in Eqs. (8) and (9): Ku(t) = 0, Ku� ≡ 0. However, because of
truncation correction, Ku(tr)

� gets the solution [30]

Ku(tr)
� = Ku(t)t = 6A3

D2
0

, Ku(tr)
� = 0 if � = 1

6
, (�−)2 = 1

12
.

(38)

The Ku(tr)
� is nonzero except for “optimal-diffusion”

choice [20]: � = 1
6 , (�−)2 = 1

12 where A3 = 0. Since A3

is mass weight independent, Ku(tr)
� is {t (m)

q } independent in
pure diffusion in straight channel. Furthermore, Ku(tr)

� is
independent of the space resolution and it is set by ce, �−, and
�. The simulations [30] for diffusion spread of the Dirac plume
are conducted in straight channel of width H = {2,4,8,20,40}
applying the d2Q9 SNL scheme. The Ku(num)

� is derived from
the fourth-order moment with Eqs. (8) and (9). It is verified [30]
that the predicted solution (38) is quasi-exact on the numerical
measurements of Ku(num)

� . Since Ku� is t (m)
q independent, this

result is the same with the d2Q5 BB and d2Q9 BB when
t (m)
c = 1

2 .
Numerical results with the BB rule. The two first diagrams

in Fig. 7 compare Eq. (38) for Ku(tr)
� to the numerical results of
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FIG. 7. Pure diffusion in straight channel. In two first diagrams, the (horizontal) lines plot t (m)
c - and H -independent truncation prediction (38)

for Ku(tr)
� when {ce,�

−} = { 1
3 ,

√
1
12 } and � = { 1

12 , 1
6 , 1

4 } [solid line (red), dotted-dashed line (blue), dotted line (black)]. In two last diagrams,

the lines plot t (m)
c - and H -dependent bounce-back prediction (46). The numerical results of the d2Q9 BB (“empty” symbols) are computed with

t (m)
c = 1

4 in the first (third) diagrams and with t (m)
c = 0 in the second (fourth) diagrams.

the d2Q9 BB scheme with nonzero mass-weight values, when
{t (m)

c = 1
4 ,t

(m)
d = 1

8 } and {t (m)
c = 0,t

(m)
d = 1

4 }, respectively. In
these simulations, similarly to what has been reported [69],
Eq. (35) is exact and D(num) ≡ D0[1 + δm(t (m)

c ,�,H )].
Further, we observe that, unlike with the d2Q9 SNL, Ku(num)

�

deviates from Eq. (38). The deviation depends on the mass
weight t (m)

c , channel width H , and �. Namely, the discrepancy
with Eq. (38) clearly increases with t

(m)
d . The surprising

result is that Ku(num)
� does not converge to Eq. (38) when H

increases. This is evidenced for � = 1
4 in the second and

fourth diagrams where t (m)
c = 0: Ku(num)

� is H independent but
its value is different from Ku(tr)

� in Eq. (38). This result cannot
be explained by the diffusion-coefficient correction δm alone
because δm converges to zero as H−1. In order to explain this
result, we extend the analysis of the diffusion boundary-layer
effect to the fourth order.

The fourth-order boundary-layer effect. The second-order
analysis derives the relative diffusion-coefficient correction δm

given by Eq. (35). This correction is due to the boundary-layer
nonequilibrium component (28). We look for its modification
in the truncation coefficient in Eq. (37): A3 → Abb

3 and then
Ku� → Kubb

� . The fourth-order-accurate diffusion equation for
the averaged concentration C̄(x,t) is then looked for as

∂t C̄(x,t) = ce�
−(1 + δm)∂2

x C̄ + Abb
3 ∂4

x C̄ + O(ε6),

Kubb
� = 6Abb

3

[ce�−(1 + δm)]2
. (39)

The key point is that, because of the bounce back, the con-
centration solution becomes y dependent: C(x,y) = C̄(x) +
C ′(x,y) [cf. Eq. (29)]. Recall that Eq. (31) has been derived
under assumption that ∂xC(x,yb) = ∂xC̄(x) + ∂xC

′(x,yb) ≈

∂xC̄(x) + O(ε3), here rN = (x,yb). A preliminary inspection
suggests that the asymptotically constant modification in Ku�

may originate from the omitted term �̄2
xC

′(x,yb). Assume the
fourth-order polynomial solution for C ′(x,y):

C ′(x,y) = a0(x)y4 + a2(x)y2 + a3(x), 〈C ′(x,y)〉 = 0,

y ∈ [−H/2,H/2], (40)

where, for convenience, a2(x) is written as (with some
coefficients s and p to be found)

a2(x) = 1
2

[
s�̄2

xC̄(x) + 1
12p∂4

x C̄(x)
]

= 1
2

[
s∂2

x C̄(x) + 1
12 (s + p)∂4

x C̄(x)
]
. (41)

Effective profile when � = 1
4 . When � = 1

4 , the last compo-
nent in Eq. (6) vanishes. It follows that the correction δm∂2

x C̄

in Eq. (39) is produced by the term 〈∂2
yC ′(x,y)〉, that is, with

making use of δm(� = 1
4 ) in Eq. (35):

� = 1

4
: s = δm, �̄2

yC
′ = δm�̄2

xC̄, with δm = −4t
(m)
d

H
. (42)

Figure 8 illustrates (in the first diagram) the numerical
distribution C ′(x,y) versus y for several points along the x

axis. The second diagram confirms that the parabolic fitting
for C ′(x,y) has the curvature prescribed by Eq. (42), with
∂2
yC ′(x,y) ≈ δm∂2

x C̄(x) along the x axis.
The boundary-layer effect in kurtosis. Thereby, numerical

simulations confirm Eq. (42) and we employ it to restore the
fourth-order correction �̄2

xC
′(x,yb) on the profile (40) and(41)

where

C ′(x,yb) = 1
12γ s∂2

x C̄(x) + O
(
∂4
x C̄
)
, γ = (H − 2)(H − 1).

(43)
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FIG. 8. Pure diffusion in straight channel is modeled with
the d2Q9 BB scheme for � = 1

4 and t (m)
c = 1

4 . The first diagram
displays the dependency C ′(x,y) in three points from center
x0, x = {x0,x0 − 50,x0 − 100} (red, magenta, blue), versus y ∈
[−H/2,H/2], H = 40. The second diagram plots together numerical
solution C ′(x,y = 0) (blue) and its predicted parabolic approximation
(magenta) C ′(x,y = 0) ≈ δm

24 (1 + 2H 2)∂2
x C̄(x). The third diagram

plots together ∂4
x C̄(x) and the fourth-order correction ∂t C̄ − �−(1 +

δm)∂2
x C̄, divided by Abb

3 from Eq. (39). The C ′(x,y) is normalized
with maxx ∂t C̄(x,t) in all diagrams.

By using Eq. (43) to express ∂xC
′(x,yb) in Eq. (28), the term

�−〈∑Qm

q=1 �̄xδg
−
q cqx〉 produces the fourth-order correction

1
12ce�

−γ δms in the right-hand side of pure-diffusion equation,
with s = δm according to Eq. (42). Further, following [31] but
accounting for the modified second-order equation (32) in the
derivation of the fourth-order correction, the Abb

3 in Eq. (39)
obtains two additional terms. It reads as [see Eqs. (A4)–(A7)
for further details]

� = 1

4
: Abb

3 =ce�
−

12
γ δ2

m−�−3
c2
e (1+δm)2+ce�

−

12
(1+δm),

γ δ2
m =

(
1 − 3

H
+ 2

H 2

)(
4t

(m)
d

)2
. (44)

The third diagram in Fig. 8 confirms that the fourth-order
correction, numerically estimated as ∂t C̄ − D0(1 + δm)�̄2

xC̄,
is in very good accordance with Abb

3 ∂4
x C̄(x) [Eq. (44)]. The

first term in Eq. (44) explains the asymptotic modification in
kurtosis because it does not vanish as H increases. This result
allows us to predict the absolute correction K̃u� to truncation

result Ku(tr)
� in Eq. (39):

� = 1

4
: K̃u� = Kubb

� − Ku(tr)
� ,

K̃u� = 2t
(m)
d {H−1 − δm[H−1 + (H − 3)]}

ce�−(1 + δm)2
,

K̃u�|H→∞ =
(
4t

(m)
d

)2

2ce�− . (45)

The result (45) tells us that K̃u� vanishes when t
(m)
d = 0;

otherwise, it remains asymptotically constant. Unlike the Ku�,
the Kubb

� is H dependent, unless with the “rotated” mass stencil
{t (m)

c = 0,t
(m)
d = 1

4 }, where δm = − 1
H

and K̃u� = 1
2 (ce�

−)−1,
∀H . The two last diagrams in Fig. 7 demonstrate that Eq. (45)
exactly (or quasi-exactly) agrees with Ku(num)

� for H � 2.
Finally, we note that the parabolic approximation C ′(x,y)
was sufficient to derive Eq. (45). However, for the sake of
completeness, Eq. (A9) provides the coefficient p for the
fourth-order polynomial distribution in Eqs. (40) and (41).

Case � �= 1
4 . In this case, both the truncation and boundary-

layer corrections from the last term −(� − 1
4 )〈∑Qm

q=1 �̄2
qg

+
q 〉

in Eq. (6) should be accounted for. We are not yet aware of its
exact solution and suggest the following approximate:

Abb
3 = ce�

−

12
γ sδm − �−3

c2
e (1 + δm)2 + �−ce

12
(1 + δm)

−
(

� − 1

4

)
�−c2

e (1 + δm)2

+
(

� − 1

4

)
ce�

−

12

[
1 + 6Sd

(
t (m)
q

)
s + s2

]
, (46)

K̃u�|H→∞ = γ sδm

2ce�− = 2�
(
4t

(m)
d

)2

ce�− ,

with s|H→∞ ≈ δm, δm|H→∞ = −8
√

�t
(m)
d

H
. (47)

In this approximation, the first line is similar to the case where
� = 1

4 in Eq. (44), but the actual curvature in Eq. (41) is
only approximate: s ≈ δm when H is sufficiently large (in
agreement with the numerical measurements when H = 40).
The term of (� − 1

4 ) in Eq. (47) is produced via the averaging
of truncation component for Eq. (40), with ∂2

yC ′ ≈ s∂2
x C̄,

∂4
yC ′ ≈ s2∂2

x C̄, and ∂2
x ∂2

yC ′ ≈ s∂4
x C̄. The two last diagrams

in Fig. 7 confirm a good asymptotic agreement between
the numerical results and Kubb

� [Eq. (39) with Eqs. (46)
and (47)]. However, the discrepancy with this prediction is
quite noticeable in the limit case t (m)

c = 0 (last diagram) when
H < 8 and � �= 1

4 . Further work is required to understand
how exactly to account for the fourth-order boundary-layer
truncation correction when � �= 1

4 .
Summary. The interesting result is that, unlike with δmD0,

the absolute deviation K̃u� from the (H -independent) trun-
cation correction Ku(tr)

� does not converge to zero with H .
Whereas |δm| increases linearly with

√
�t

(m)
d /H , the K̃u�

grows as �(t (m)
d )2. The presented analysis provides the (quasi-)

exact solution (45) for K̃u� when � = 1
4 , ∀H � 2, and only

asymptotic solutions (46) and (47) when � �= 1
4 . The two
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0.005

0.010

0.015

C

FIG. 9. The first diagram compares two pure-diffusion solutions
by d2Q5 with errD = 0 (dotted-dashed line, black) to Gaussian
distribution (dotted line, magenta) in straight channel at t ′ = t/T =
{ 625

√
3

96 , 625
√

3
48 }, T = H 2/ce�

−, ce�
− = 1

3

√
1
12 , H = 8. The second

diagram compares profiles by d2Q5 (dotted-dashed line, black)
and “rotated” d2Q9 scheme {t (m)

c = 0,t
(m)
d = 1

4 } (dotted line, blue)
where errD = δm = −1/H (or −12.5%) according to Eq. (35a) for
� = 1

4 . The last diagram compares the centered profiles of these two
schemes in parabolic flow Pe ≈ 9.5. They correspond to the largest
discrepancy in moments displayed in Fig. 18 (bottom row), when
errD , err(Sk), and err(Ku) differ in two schemes by about −3.5%,
−130%, and 50% for H = 20.

first diagrams in Fig. 9 illustrate the pure-diffusion solutions
with � = 1

4 in straight channel of H = 8. In this figure,
the d2Q5 BB yields errD = 0 and Ku(tr)

� [ce = 1
3 ,(�−)2 =

1
12 ] = 2

√
3 [Eq. (38)]. The “rotated” d2Q5 BB scheme yields

errD = err(bb)
D = −1/H and err(Ku) = Kubb

� /Ku(tr)
� − 1 = 3

2
[Eq. (45)]. The (relatively small) boundary-layer decrease of
the diffusion coefficient is clearly observable. At the same

time, the (relatively large) increase in Ku� is not evident by
visual inspection. We further address this point in the presence
of the advection velocity in Sec. V A.

C. Diffusion-coefficient correction due to weight family {t (u)
q }

The term of the {t (u)
q } weight family removes the second-

order numerical diffusion of the scheme, entirely in pipe
flows at least [31]. When its free-tunable coordinate value
is t (u)

c �= 1
2 , the bounce back further modifies the apparent

diffusion coefficient in Eq. (7) because of the diagonal-link
equilibrium value 1

d
t

(u)
d U 2

x C in Eq. (2). In plug flow, this term
is a linkwise constant and its correction to diffusion coefficient
can be obtained similarly as for the mass term t

(m)
d ceC in

Eq. (27):

Ux = const : err(bb,u2)
D

(
t (u)
c ,�,L

)
= U 2

x

dce(1 + kT )

(
1 − 2t (u)

c

)
F (m)(�,L). (48)

In variable velocity field, the U 2
x term varies along the link

and one may expect to get the functional form F (m)(�,L)
of the diffusion term only for � = 1

4 , replacing U 2
x by

the boundary value U 2
x (rb). This result was confirmed in

straight channel [69]. Since the stable velocity amplitude
U 2max

is usually smaller than dce (with the necessary stability
condition [21] U 2max

< d
d−1ce on the coordinate velocity

stencil), and since U 2
x (rb) � U 2max

, the err(bb,u2)
D is small

against the first-order diffusion-coefficient correction err(bb)
D . In

all computations below, t (u)
c = 1

2 so that err(bb)
D (t (u)

c ) vanishes.

D. Bounce-back velocity correction err(bb)
U

We examine the apparent velocity in Eq. (7). Its effective
value U (num) = μ1(t+δt )−μ1(t)

δt
is derived from the first raw

moment and compared to the prescribed mean velocity U .
The computations in straight channel and cylindrical capillary
are run with the plug flow Ux = U (c field) and Poiseuille
profile (p field). We first observe that U (num) is equal to the
arithmetical-mean value U (sum) = 〈Ux〉 in these four configu-
rations when the coordinate-velocity weight is t (a)

c = 1
2 :

t (a)
c = 1

2 : U (num) = U (sum). (49)

In particular, this result is valid with the d2Q5 and d3Q7
schemes. This property takes also place with the d2Q9 SNL in
straight channel, for any velocity weight. In plug flowU (sum) ≡
U . In straight Poiseuille flow U (sum) = U[1 + 1/(2H 2)]. The
relative velocity error err(sum)

U = U (sum)/U − 1 is tabulated
in Table I for the parabolic profile imposed in cylindrical
capillary. It is interesting that its decay is not monotonous with
the increase of radius R. When t (a)

c �= 1
2 , Fig. 10 demonstrates

TABLE I. This table provides relative summation correction err(sum)
U (R) = U (sum)/U − 1 computed on the parabolic velocity profile imposed

in the discretized circular shape. The data are in percents.

R 5 10 20 40 80 160

err(sum)
U (%) −1.6 −0.54 −0.58 5.3 × 10−2 −8.9 × 10−3 −3.4 × 10−2
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(a)

(c)

(b)

FIG. 10. The two first diagrams (a) � = 1
12 and (b) � = 1

4
illustrate the bounce-back retardation effect in cylindrical capillary
of R = 5 due to velocity weight, when t (a)

c = { 1
2 , 1

3 ,0} [dotted line
(black), dashed line (blue), dotted-dashed line (red)]. The third
diagram (c) displays together for � = 1

12 and 1
4 , and for three weights,

the profiles obtained with the double-� BB scheme. The simulations
are run at Pe ≈ 9.5 starting from the uniform plume C(x = x0,r) = 1
and output after 104 time steps; the mass weight t (m)

c = 1
3 .

that the advection front progressively slows in a pipe of
R = 5 from t (a)

c = 1
2 to t (a)

c = { 1
3 ,0}. This effect is much more

pronounced for � = 1
4 (second diagram) than for � = 1

12
(first diagram). This retardation effect due to velocity weight
is dramatic in plug flow, as illustrated for channel [69] and
explained below. Thereby, the entire relative-velocity error
becomes composed of the two components (i) summation
err(sum)

U and (ii) boundary layer err(bb)
U :

errU = U (num)

U − 1 = err(sum)
U + err(bb)

U . (50)

In both c field and p field, err(bb)
U is independent of the velocity

amplitude, ce and �−, and hence err(bb)
U is Pe independent.

Also, the choice of the two other weight families does not
impact err(bb)

U but |err(bb)
U | increases linearly with the diagonal

velocity weight t (a)
d . This is illustrated in the two first diagrams

in Fig. 11. Similar as for diffusion coefficient in Eq. (35a), we

(a)

(b)

(c)

FIG. 11. The two first diagrams (a) R = 5 and (b) R = 10
compare numerical results (symbols) for the relative mean-velocity
error errU in plug flow prescribed in cylindrical capillary to
its theoretical prediction err(bb)

U (t (a)
c ,�,R) (straight lines) given by

Eq. (55), with errU (t (a)
c = 1

2 ) = 0. The last diagram (c) compares
numerical results for errD/Pe2 (symbols) to theoretical prediction
err(bb,U )

D (t (a)
c ,�,R)/Pe2 (lines) for boundary-layer relative dispersion

correction given by Eq. (60) when R = 10 (data are in percents, tc =
t (a)
c ). The results are plotted for uniform distribution � = { 1

12 , 1
6 , 1

4 }
[dotted line (black), dotted-dashed line (blue), solid line (red)].

look for err(bb)
U in the form

err(bb)
U

(
t (a)
c ,�,L

) = 〈δU (r)〉 = δa,

δa

(
t (a)
c ,�,L

) = F (a)(�,L)
(
1 − 2t (a)

c

)
. (51)

In this relation, δU (r)U is the boundary-layer velocity profile;
it is superposed with the advection profile. We construct
δU (r) in plug and parabolic profiles and derive dependency
F (a)(�,L). This will tell us that in c field, the dependency
F (a)(�,L) is the same as F (m)(�,L) in Eq. (27) but it is
different in p field.

1. Constant velocity field

When the diagonal velocity weight t
(a)
d �= 0, the diagonal

links in Eq. (2b) obtain nonzero components e−
q (x,t) =

t
(a)
d UxC(x,t)cqx . In plug flow, this situation is very similar

to the restriction of the tangential diffusion flux in Sec. III A
because the bounce-back closure relation (26) tries to enforce
the advective flux to zero. We suggest that the boundary-
layer correction {δg±

q } accommodates this deficiency via the
advective-flux correction δU (r)U∂xC̄(x,t). The leading-order
nonequilibrium boundary-layer correction is looked for in the
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TABLE II. This table gives parameters for four numerical experiments with the parabolic profile imposed in cylindrical capillary of
radius R = 5 × 2n, n = 0,1,2. The molecular diffusion coefficient is D0 = ce�

−, Pe = 2RU
D0

. The mean velocity U = |U |max/2 is set with
|U |max(n = 0) = √

ce|ce=1/30 = 2 × 0.091287. The Sk� and Ku� apply their solutions [30]. These two coefficients are equal to zero in Gaussian
distribution.

Expt. Pe = 2RU
ce�− U ce (�−)2 k

(c)
T = Pe2

192 Sk� = Sk × √
tU/R Ku� = Ku × tU/R

I 2.47461 0.091287/2n 1
3

√
3
2 3.19 × 10−2 1.48 × 10−3 −2.6 × 10−4

II 9.48682 0.091287/2n 1
3

1
12 4.687 × 10−1 9.62 × 10−2 −1.06 × 10−1

III 24.74612 0.091287/2n 1
30

√
3
2 3.19 5.72 × 10−1 −1.58

IV 94.8682 0.091287/2n 1
30

1
12 46.87 1.63 −9.99

form [cf. Eq. (28)]

δg+
q (rn) = K1P (n)C̄(x)cqxcqα,

δg−
q (rn) =

√
�

�− K1M(n)C̄(x)cqxc
2
qα,

α = {y,z}, n = 0, . . . ,N. (52)

After substitution of e−
q (x,t) = t

(a)
d UxC(x,t)cqx , G±

q = 0, and
Eq. (52) into Eq. (26), the suitable combination of the diagonal
links gives closure condition in the form

Ux =const : C̄(x,t)
[
2t

(a)
d Ux(rN )+K1(1−2

√
�M(N )

]=0,

then K1 = − 2t
(a)
d Ux(rN )

1 − 2
√

�M(N )
. (53)

The term −�−∑Qm

q=1 �̄xδg
−
q cqx then modifies the convective

flux in the left-hand side of the modeled advection-diffusion
equation by the quantity δU (n)U∂xC̄(x,t), where the relative
velocity correction δU (n) reads as

Ux = const : δU (n) = 2
√

�
(
1 − 2t (a)

c

)
M(n)

1 − 2
√

�M(N )

Ux(rN )

U ,

with Ux(rN ) ≡ U . (54)

The mean velocity U obtains correction δaU where δa reads as

δa

(
t (a)
c ,�,L

) = 〈δU (n)〉=F (a)(�,L)
(
1−2t (a)

c

)Ux(rN )

U ,

F (a)(�,L) = −2
√

�

l
�(�,L), (55a)

δa

(
t (a)
c ,� = 1

4
,L
)

= −
(
1 − 2t (a)

c

)
l

Ux(rN )

U , (55b)

δa|L→∞ = −2
√

�
(
1 − 2t (a)

c

)
l

Ux(rN )

U ,∀�.

(55c)

In c field, Ux(rN ) = U and the relative velocity and
diffusion-coefficient corrections coincide: δa(t (a)

c ) = δm(t (m)
c )

[cf. Eqs. (35) and (55)]. They are set by resolution and � alone.
In straight channel [69], �(�,L) is given by Eq. (36a) and
δaU = U (num) − U exactly agrees with the numerical results.
In cylindrical capillary, 〈δU (n)〉 is computed with Eq. (34)
and �(�,L) is given by Eq. (36b). Figure 11 compares
the numerical result err(num)

U to the predicted value err(bb)
U

for plug flow imposed in cylindrical capillary of R = 5 and
10. These results are exactly the same as for the diffusion
coefficient in Fig. 4 (replacing t (m)

c by t (a)
c and err(bb)

D by err(bb)
U ).

The constructed dependency δa(�,R) is only approximate
in a capillary. Its quality improves when the geometrical
discretization error diminishes. Figure 4 is computed with the
parameters of Expt. II from Table II but errU (t (a)

c ,�,R) takes
the same value for any velocity amplitude and Péclet number.

2. Parabolic velocity profile

We extend the straight channel solution [69] to cylindrical
capillary. In the parabolic profile Ux(r), the first- and second-
order velocity gradients should be taken into account. The
velocity deviation UδU (n) is decomposed as the sum of two
components with the help of Eqs. (24) and (25):

UδU (n) = −Nd [
√

�K1M(n) + K2P(n)], n = 0, 1, . . . , R − 1,

with K1 = − 2t
(a)
d

1 − 2
√

�M(N )

[
Ux − 1

2
|∂rUx(r)| + �∂2

r Ux(r)

]∣∣∣∣
r b={r 0,rN }

, (56)

K2 = 2t
(a)
d �

1 − 2
√

�M(N )

[
|∂rUx(r)| − 1

2
∂2
r Ux(r)

]∣∣∣∣
r b={r 0,rN }

.

In this relation, K1 is derived from the difference of suitable linear combinations of closure relations with cqx = ±1, similarly
to what has been described for constant velocity. With the symmetry argument, the K2 is derived from their sum. Further details
can be found in Sec. IV B 3 (by restricting them to the space uniform �). When the velocity variation vanishes, Eq. (56) reduces
to Eq. (54) in c field. The mean velocity U obtains correction δaU where the relative correction δa = 〈δU (n)〉 reads as in d3Q15
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scheme

δa

(
t (a)
c ,�,L

) = −2
√

�
(
1 − 2t (a)

c

)
U l

[(
Ux − 1

2
|∂rUx | + �∂2

r Ux

)∣∣∣∣
r b

�(�,L) +
√

�

(
|∂rUx | − 1

2
∂2
r Ux

)∣∣∣∣
r b

φ(�,L)

]
,

(57a)

δa

(
t (a)
c ,� = 1

4
,L
)

= −
(
1 − 2t (a)

c

)
l

Ux(rb)

U , rb = {r0,rN }. (57b)

These equations can be computed with the help of Eq. (36b).
Since �(�,L)|�= 1

4
= φ(�,L)|�= 1

4
= 1, the terms of velocity

gradients vanish in Eq. (57a) for � = 1
4 and the solution

takes the same form as in Eq. (55b) but here Ux (r b)
U � 1.

The result (57) reduces to the straight channel solution [69]
by replacing ∂rUx(r) by ∂yUx(y) and ∂2

r Ux(r) by ∂2
yUx(y),

together with Eq. (36a). This solution is demonstrated [69]
to be exact for a straight channel. Figure 12 compares the
numerical results for err(bb)

U = errU − err(sum)
U to the theoretical

estimate (57) in a capillary, with err(sum)
U from Table I. The

advection velocity slows down linearly when t
(a)
d increases.

This effect reduces with � in accord with the two first diagrams
in Fig. 10. Again, the estimate given by Eq. (57) is only

FIG. 12. This figure quantifies bounce-back retardation of the
Poiseuille profile in cylindrical capillary of R = {5,10,20} (from the
top to the bottom). The numerical values errU − err(sum)

U in Eq. (50)
(symbols) are compared to its theoretical prediction err(bb)

U (t (a)
c ,�,R)

from Eq. (57) (straight lines) The results are plotted for uniform
distribution � = { 1

12 , 1
6 , 1

4 } [dotted line (black), dotted-dashed line
(blue), solid line (red)].

approximate in a capillary; its accuracy is better for R = 10
than for R = 20 where the discretization effect is larger
(cf. Table I).

Finally, it should be said that the velocity retardation is less
significant in parabolic flow than in plug flow (cf. two first
diagrams in Figs. 11 and 12) because err(bb)

U (approximately)
scales in the proportion to Ux(rb)/U . Whereas Ux(rb) = U in
c field, Ux(rb) is much smaller than U in p field. We underline
that in the two cases, the relative velocity error is independent
of the velocity amplitude and Pe.

E. Bounce-back dispersion correction err(bb,U)
D

In straight channel, the transverse gradient in the boundary-
layer velocity component δU (y)U creates numerical disper-
sion, accurately predicted [69] with the help of the Taylor
argument [24]. The predicted dispersion coefficient kT D0 in
Eq. (7) becomes modified by the quantity k

(bb)
T D0. Its relative

contribution is quantified via err(bb,U )
D (t (a)

c ,�,L):

err(bb,U )
D

(
t (a)
c ,�,L

) = k
(bb)
T

(
t (a)
c ,�,L

)
1 + kT

. (58)

In straight channel [69], k
(bb)
T is built in c field and p field, in

good agreement with the numerical results.
In cylindrical capillary, we look for the correction C ′(x,r,t)

to the mean concentration C̄(x,t) which obeys the Taylor
ansatz [24] in the form

D0�rC
′(x,r) ≈ [U ′(r) + δU ′(r)]∂xC̄(x,t),

where �rC
′(x,r) = 1

r
∂r (r∂rC

′(x,r)),

U ′(r) = Ux(r) − U , δU ′(r) = U[δU (r) − δa].

(59)

In this equation, U ′(r) is the difference between the prescribed
velocity profile and its mean value U , while δU ′(r) is the
deviation of the boundary-layer profile from its mean value
δaU .

In c field, U ′(r) ≡ 0 and C ′(x,r,t) = γ (r)
D0

∂xC̄(x,t), where
γ (r) solves �rγ (r) = δU ′(r) subject to the normaliza-
tion condition 〈C ′(x,r)〉 = 0. The averaged-flux component
〈δU ′(r)∂xC

′(x,r)〉 then modifies the diffusion form by quantity
D0k

(bb)
T ∂2

x C̄, with

Ux = const : k
(bb)
T ≈ −〈δU ′(r)γ (r)〉

D2
0

,�rγ (r) = δU ′(r).

(60)

In this relation, δU ′(r) = U[δU (n) − δa] is given by
Eqs. (54) and (55a) and, hence, δU ′(r) ∝ (1 − 2t (a)

c )U/L. In
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Eq. (58), since kT = 0 in plug flow, err(bb,U )
D = k

(bb)
T ∝ (1 −

2t (a)
c )2Pe2/L2. Since we are only aware of δU ′(r) along the

coordinate α axis, α = {y,z}, solution of �rγ (r) = δU ′(r) is
built approximately, in the form γ (n) = γ (1)(n) + γ (2)(n) with

∂2
αγ (1)(n) = δU (n)U , γ (2)(n) = − r2

4
δaU ,

r(n) = R − n − 1

2
, n = 0,1, . . . R − 1, α = {y,z}.

(61)

Recall that δU (n) in Eqs. (54) and (56) presents the linear
combination of functions k±n; hence, γ (1)(n) is built as
the linear combination of functions γ ′(n) = k

(k−1)2 k
±n: they

solve ∂2
αγ ′(n) = k±n. This function has the same form as the

channel solution.
Figure 11 compares numerical results for errD =

D(num)/D0 − 1 to predicted boundary-layer dispersion in
Eq. (58) (kT = 0), with the help of Eqs. (60) and (61). The sim-
ulations are run with the constant-velocity profile prescribed in
the cylindrical capillary; the parameters correspond to Expt. III
from Table II. The mass weight t (m)

c is set equal to 1
2 , hence,

the boundary-layer diffusion-coefficient correction in Eq. (27)
vanishes, err(bb)

D = 0. Then, in agreement with the predictions,
err(num)

D = 0 for t (a)
c = 1

2 . When t (a)
c decreases towards 0 and

hence t
(a)
d increases to 1

4 , the err(bb,U )
D increases rapidly, as t

(a)
d

2
.

The numerical results follow well the constructed dispersion
estimate when the velocity estimate is accurate enough (R =
10 here).

In Poiseuille profile Ux(r) in cylindrical capillary, the
boundary-layer dispersion results from the superposition of
Ux(r) with the boundary-layer profile δU (r). Let �rα(r) =
U ′(r), then 〈U ′(r)α(r)〉 produces Taylor-dispersion coefficient
k

(c)
T (see [24,31]). In turn, k(bb)

T is derived from the superposition
of two velocity fields:

k
(bb)
T ≈ −〈[U ′(r) + δU ′(r)]γ (r)〉 + 〈δU ′(r)α(r)〉

D2
0

,

α(r) = U
16

(
r2 − r4

2R2

)
. (62)

In this relation, γ (r) is constructed similar to Eq. (61),
with δU ′(r) being the difference between the boundary-layer
velocity UδU (n) from Eq. (56) and its mean value δaU from
Eq. (55). In straight channel, the constructed boundary-layer
dispersion estimate [69] is exemplified by closed-form result
for � = 1

4 . The dispersion estimate [69] is employed for chan-
nel in Sec. V A; Eq. (62) produces boundary-layer dispersion
estimate err(bb,U )

D in Sec. V B. We note that the construction of
the boundary-layer numerical dispersion with Eq. (62) can be
easily extended from the parabolic to any other pipe flow.

In summary, we emphasize that k
(bb)
T approximately scales

as (1 − 2t (a)
c )2Pe2/L2 and its relative contribution err(bb,U )

D

becomes asymptotically constant as Pe increases in parabolic
profile where kT ∝ Pe2, whereas it grows as Pe2 in plug flow.
In turn, the relative diffusion-coefficient correction err(bb)

D (t (m)
c )

becomes negligible against the err(bb,U )
D (t (a)

c ) as Pe increases
since err(bb)

D (t (m)
c ) scales as Pe−2. It follows that the largest

impact from err(bb)
D (t (m)

c ) is expected in pure diffusion and for

small Péclet numbers, while err(bb,U )
D (t (a)

c ) should be reduced in
computations with high Pe. This is achieved with the double-�
strategy considered in Sec. IV.

IV. DOUBLE-� BOUNCE-BACK SCHEME

The boundary-layer nonequilibrium corrections are excited
by the BB closure relation (26) in boundary nodes. The idea
is to apply the bounce-back rule (15) in combination with the
TRT operator (1) where the two distinguished positive values
are prescribed for free collision combination � = �−�+, with
�v in bulk nodes and �b in boundary nodes. This situation
is sketched in Fig. 13. The rationale behind this is that the
amplitude of the bounce-back primary effects, such as the
diffusion-coefficient relative correction err(bb)

D = δm(t (m)
c ,�,L)

[Eq. (27) with Eq. (35)], or the mean-velocity relative
correction err(bb)

U = δa(t (a)
c ,�,L) [Eq. (50) with Eqs. (55)

and (57)], can be controlled by the couple {�v,�b} in
given geometry. The preliminary results [69] confirm that
the spurious modifications in transport coefficients in Eq. (7)
can be attenuated with the help of sufficiently small value
�b, e.g., �b ≈ 1

4 × 10−2 is employed [69]. Our purpose is
to analytically construct the most efficient functional form
�b(�v,L) in straight channel and cylindrical capillary.

The starting point (Sec. IV A) is the generic (implicit)
steady-state interface conditions of the TRT scheme. With their
help, the bounce-back corrections are exactly constructed in a
straight channel in the presence of the double-� distribution.
This concerns the effective velocity in plug flow (Sec. IV B 1),
the effective diffusion coefficient (Sec. IV B 2), and the mean
velocity in parabolic profile (Sec. IV B 3). The specific depen-
dencies �b(�v,H ) may vanish the bounce-back corrections
but they should obey the positivity condition �b > 0. The
similar but the approximate analysis (Sec. IV C) is performed
in a cylindrical capillary. The positive-valued dependencies are
compared for the parabolic profiles in a channel and a capillary.

A. Interface

In Sec. III, the nonequilibrium boundary-layer correction
{δg±

q } has been constructed from the closure relation of the
bounce-back rule assuming that � is uniform. We aim to
extend this solution to double-� (discontinuous) distribution.
It has been demonstrated [41] that any steady-state population

FIG. 13. This figure illustrates construction of the double-� BB
scheme in (a) channel and (b) circular shape, where �v is set in all bulk
nodes while �b is prescribed in all boundary nodes. The bounce-back
closure conditions are set at n = nb, the interface conditions are set for
n = {nb,nv}, and the axis-symmetry condition is set for n = {n+

i ,n−
i }.
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solution of the TRT scheme implicitly obeys two generic
interface conditions per link connecting any two grid neighbors
r and r + cq , with cq̄ = −cq :

Sq(r) = Sq̄(r + cq), Sq(r) = [
e+
q + 1

2g−
q − �+g+

q

]
(r),∀ e+

q

(63a)

Vq(r) = −Vq̄(r+cq), Vq(r) = [
e−
q + 1

2g+
q −�−g−

q

]
(r),∀ e−

q .

(63b)

These two closure conditions are simple linear combinations
of Eq. (1): they apply the local relaxation eigenfunctions,
as �±(r) and �±(r + cq). The two relations are valid
for either continuous or discontinuous distribution �±(r).

Assume uniform distribution ce(r) ≡ ce (this condition is
required [29] for continuity of the concentration C). When the
diffusion coefficient D0 is homogeneous, �−(r) = D0/ce(r) is
continuous. In double-� scheme, �+(r) takes the two separate
values: �+

v = �v/�
− in bulk and �+

b = �b/�
− in boundary

nodes. The interface conditions (63) have been applied in
the presence of discontinuous collision components in strat-
ified advection-diffusion [22,41] and hydrodynamic [41,82]
configurations. The idea of this work is to apply Eqs. (63)
to the perturbed nonequilibrium solution {g±

q = G±
q + δg±

q }
because, by construction, Eqs. (63) should remain valid for
any steady-state solution of the TRT scheme (see [41] for
including of sources).

B. Straight channel

We consider plug flow Ux ≡ U (c field) and Poiseuille profile Ux(y) (p field) in straight channel y ∈ [−H/2,H/2]. The
bounce back produces the relative velocity correction δa(t (a)

c ,�,H ) = F (a)(�,H )(1 − 2t (a)
c ) given by Eq. (55) in c field and

Eq. (57) in p field. We first extend these solutions to the double-� BB scheme with the help of Eqs. (63) and then examine
whether it exists a specific dependency �b(�v,H ) where δa(t (a)

c ,�v,�b,H ) vanishes for any velocity weight t (a)
c .

1. Constant velocity profile

Let the grid nodes along the normal y direction be numbered as n = {nb = 0,nv = 1, . . . ,n−
i ,n+

i , . . . ,nv = H − 2,nb =
H − 1}, with the symmetry axis located between n−

i and n+
i (see Fig. 13). Hereafter, “v” and “b” denote bulk and boundary

nodes, respectively. The double-� strategy presents the three-layered stratified configuration; it is composed of two equivalent
(boundary) regions of unit width which are separated by the bulk region. The implicit interface conditions (63) take place between
the (bottom) nodes nb = 0 and nv = 1, and between the (top) nodes nv = H − 2 and nb = H − 1. We look for the “stratified”
correction {δg±

q (n)} in the form (52) with two constants per layer, say A and B:

δg+
q (n) = (Akn + Bk−n)C̄(x,t)cqxcqy, q = 1, . . . ,Qm

δg−
q (n) =

√
�

�− (Akn − Bk−n)C̄(x,t)cqxc
2
qy, n = 0,1, . . . ,N = H − 1,H � 3

with A(n) = {Av,Ab}, B(n) = {Bv,Bb}, k(n) = {kv(�v),kb(�b)}, k(�) = 2
√

� − 1

2
√

� + 1
. (64)

The half-system takes advantage of the symmetry on the channel axis. The four constants are then to be derived from the
four following conditions: the two interface conditions (63), the bounce-back condition (26), and the axial-symmetry condition.
Following uniform-� analysis in Sec. III D 1 for {g±

q (n) = δg±
q (n)} and, as there, neglecting the variation of C̄(x) between the

two interface nodes in leading-order analysis, the four closure conditions become

||S|| = 0, where ||S|| = (
e+
q + 1

2δg−
q − �+

v δg+
q

)∣∣
n=nv

− (
e+
q − 1

2δg−
q − �+

b δg+
q

)∣∣
n=nb

,

with e+
q |n=nv

= e+
q |n=nb

= t (m)
q ceC̄(x), (65a)

||V || = 0, with ||V || = (
e−
q + 1

2δg+
q − �−δg−

q

)∣∣
n=nv

+ (− e−
q + 1

2
δg+

q + �−δg−
q

)∣∣
n=nb

, (65b)(
e−
q + 1

2δg+
q − �−δg−

q

)∣∣
n=nb

= 0, with e−
q (nb) = t (a)

q C̄(x)Ux(nb)cqx, (65c)

δg+
q |n=n+

i
= −δg+

q |n=n−
i
. (65d)

Substituting Eqs. (64), we consider the respective differences of Eqs. (65) for two diagonal links with cqx = ±1, c2
qy = 1. Their

common prefactor C̄(x) is factorized and the linear system takes the form

k(−1+N)
v (1 − 2

√
�v)

√
�vAv − k(1−N)

v (1 + 2
√

�v)
√

�vBv + kN
b (2

√
�b + 1)

√
�bAb + k−N

b (2
√

�b − 1)
√

�bBb = 0, (66a)

k(−1+N)
v (1 − 2

√
�v)Av + k(1−N)

v (1 + 2
√

�v)Bv + kN
b (1 + 2

√
�b)Ab + k−N

b (1 − 2
√

�b)Bb = 0, (66b)

kN
b (1− 2

√
�b)Ab + k−N

b (1 + 2
√

�b)Bb =−2t
(a)
d Ux(nb)

(66c)

Avk
N
v + Bv = 0. (66d)
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FIG. 14. Straight channel of H = 12 is modeled with the double-� BB scheme for (arbitrary) small value �b = 1
4 × 10−2. The numerical

results for relative velocity error err(bb)
U = errU − err(sum)

U are displayed versus velocity-weight tc = t (a)
c , plug flow in the left diagram and

parabolic flow in the right diagram. Their predicted respective solutions (69) and (77) are plotted by lines for � = { 1
6 , 1

4 , 1
2 } [dashed-dotted line

(blue, “lozenges”), solid line (red, “triangles”), dashed line (magenta, “squares”)].

This system depends on the relaxation rates only via two � products: �v = �−�+
v and �b = �−�+

b . The boundary-layer
solution (64) is constructed by solving Eqs. (66) with respect to the four coefficients {Av,Bv,Ab,Bb}. When �v = �b = �,
k(�) = 2

√
�−1

2
√

�+1
, solution of Eqs. (66) reads as in c field with Ux(nb) = U

A = Av = Ab = 2t
(a)
d U

1 + 2
√

� + (1 + 2
√

�)k1+N
,B = Bv = Bb = − 2t

(a)
d U

(1 + k−(1+N))(2
√

� − 1)
. (67)

With this solution, Eq. (64) is equivalent to the uniform-� solution given by Eqs. (52) and (53). Further procedure
follows Sec. III D 1. The nonequilibrium correction (64) modifies the local advective flux by the quantity δU (n)U∂xC̄(x,t) =
−�−∑Qm

q=1 �̄xδg
−
q (n)cqx , with

δU (n) = −
√

�Nd

U [A(n)kn − B(n)k−n]. (68)

The averaged convective term in Eq. (7) is then modified by the quantity δaU∂xC̄(x,t), where the relative mean-velocity correction
δa = 1

H

∑H−1
n=0 δU (n) is computed via the arithmetical averaging of grid values:

δa

(
t (a)
c ,�v,�b,H

) = − Nd

HU

[
2
√

�b

(
Abk

H−1
b − Bbk

1−H
b

)+
√

�v

H−2∑
n=1

(
Avk

n
v − Bvk

−n
v

)]
. (69)

After substitution of the solution to Eq. (66), Eq. (69) gives

δa

(
t (a)
c ,�v,�b,H

) = 2t
(a)
d Nd

H

c1[4�b(
√

�v − 1) + √
�v] − c2[4�b(

√
�v + 1) + √

�v]

c1[1 + 4(�b − √
�v)] + c2[1 + 4(�b + √

�v)]
, with

c1 = (1 + 2
√

�v)2(−1 + 2
√

�v)H , c2 = (1 − 2
√

�v)2(1 + 2
√

�v)H . (70)

This solution is valid when H is either even or odd number. It tells us that δa remains proportional to the diagonal velocity weight
t

(a)
d and it vanishes for t (a)

c = 1
2 .

When �v = �b = �, Eq. (70) reduces to Eq. (55). The
numerical configuration displayed in the left diagram in
Fig. 14 is the same as used in Fig. 14 from [69], with
�b = 1

4 × 10−2 and �v = { 1
6 , 1

4 , 1
2 }. Figure 14 illustrates that

Eq. (70) describes exactly numerical solutions in double-
� scheme when �v �= �b, with err(bb)

U = U (num)/U − 1 =
δa(t (a)

c ,�v,�b,H ). The straightforward idea is to try to vanish
δa with the help of the specific dependency �b(�v,H ). By
equating δa(t (a)

c ,�v,�b,H ) from Eq. (70) to zero, solution for
�b(�v,H ) reads as [with c1 and c2 from Eq. (70)]

�b(�v,H ) =
√

�v(c2 − c1)

4[c1(
√

�v − 1) − c2(
√

�v + 1)]
,

lim �b|�v→∞ = 2 − H

4H
. (71)

Yet, �b(�v,H ) is negative when H � 2. Figure 15 illustrates
this situation in the left diagram. That means that there is no
positive-valued required dependency �b(�v,H ) which is able
to vanish δa in constant velocity field. However, small �b will
reduce the boundary-layer effect.

2. Pure diffusion

Recall that in the uniform-� BB scheme, the diffusion-
coefficient correction δm(t (m)

c ,�,H ) from Eq. (35) is exactly
the same as the velocity correction in c field, δa(t (a)

c ,�,H ) from
Eq. (55). In agreement with the numerical simulations, the
straightforward analysis shows that this feature remains valid
in double-� BB scheme. That means that Eq. (70) exactly
describes relative correction δm(t (m)

c ,�v,�b,H ) to diffusion
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(a) (b)

FIG. 15. The two diagrams show (a) exact solution �b(�v,H ) given by Eq. (71) for plug flow in straight channel, H = {4,8,16} (solid,
dashed, dotted lines) and (b) approximate solution �b(�v,R) for plug flow in a capillary, R = {2,4,8} (solid, dashed, dotted lines). The
�b(�v,L) is negative meaning that the desired solution does not exist in plug flow.

coefficient with double-� strategy: it reduces to Eq. (35)
for uniform �. It follows from Eq. (71) that there is no
suitable positive-valued dependency where δm vanishes in pure
diffusion, but the small �b is expected to reduce the delay and
disparity with respect to the mass weight. In Sec. VI A we
examine these predictions for the relative diffusivity of the
simple porous structures.

3. Parabolic velocity profile

In Poseuille profile, the velocity correction UδU (n) in
Eq. (56) is decomposed into two components with the
coefficients K1 and K2. Based on the symmetry argument,
the component of K1 is given by Eq. (24), while the
component of K2 obeys Eq. (25). We extend this construction
to three-layered double-� system and decompose g±

q into two

components, say g±
q = g±

q
(1) + g±

q
(2), where g±

q
(i) is further

decomposed into bulk and boundary counterparts g±
q

(i)(n) =
G±

q
(i)(n) + δg±

q
(i)(n), i = {1,2}. The bulk component G±

q =
G±(1)

q + G±(2)
q is built with the Chapman-Enskog expansion,

where G±(1)
q (n) introduces the first- and second-order velocity

gradients; and δg±
q

(1) keeps its form (64)

G+(1)
q (n) = t (a)

q ∂yUx(n)C̄(x,t)cqxcqy,

G−(1)
q (n) = −�+(n)t (a)

q ∂2
yUxC̄(x,t)cqxc

2
qy,

δg+
q

(1)(n) = (Akn + Bk−n)C̄(x,t)cqxcqy,

δg−
q

(1)(n) =
√

�(n)

�− (Akn − Bk−n)C̄(x,t)cqxc
2
qy,

with A(n) = {
A(1)

v ,A
(1)
b

}
,

B(n) = {
B(1)

v ,B
(1)
b

}
, n = 0,1, . . . ,H − 1. (72)

The second nonequilibrium component G±(2)
q (n) describes

the evolution of Ux(y)∂xC̄(x,t) along the vertical axis [we
write only its relevant components, which will define the
accommodation solution {δg±

q
(2)(n)}]:

G+(2)
q (n) = �(n)t (a)

q ∂2
yUx∂xC̄c2

qxc
2
qy,

G−(2)
q (n) = −�+(n)t (a)

q ∂yUx(n)∂xC̄c2
qxcqy,

δg+
q

(2)(n) = (Akn + Bk−n)∂xC̄c2
qxc

2
qy,

δg−
q

(2)(n) =
√

�(n)

�− (Akn − Bk−n)∂xC̄c2
qxcqy,

with A(n) = {
A(2)

v ,A
(2)
b

}
, B(n) = {

B(2)
v ,B

(2)
b

}
,

k(n) = {kv(�v),kb(�b)}, n = 0,1, . . . ,H − 1. (73)

The two components g±
q

(1)(n) and g±
q

(2)(n) require us to define

their four individual constants. Since the set {g±
q

(2)
,G±(2)

q }
scales with c2

qx , it vanishes from the difference of the closure
relations assigned for two diagonal links with cqx = ±1, c2

qy =
1. The inverse situation happens with the set {g±

q
(1)

,G±(1)
q }:

it scales with cqx and it vanishes from the sum of two
diagonal-link closure relations. Hence, due to linearity, the
whole system is decomposed into two subsystems where the
two sets of four coefficients can be derived independently.
Each subsystem is composed of the two interface conditions,
the bounce-back closure relation and the symmetry condition.
The component {g±

q
(1)

,G±(1)
q } from Eq. (72) obeys

(
1
2δg−

q

(1) − �+
v δg+

q

(1))∣∣
n=nv

+ (
1
2δg−

q

(1) + �+
b δg+

q

(1))∣∣
n=nb

=−( 1
2G−(1)

q − �+
v G+(1)

q

)∣∣
n=nv

− (
1
2G−(1)

q + �+
b G+(1)

q

)∣∣
n=nb

, (74a)(
1
2δg+

q

(1) − �−δg−
q

(1))∣∣
n=nv

+ (
1
2δg+

q

(1) + �−δg−
q

(1))∣∣
n=nb

= −(e−
q + 1

2G+(1)
q − �−G−(1)

q

)∣∣
n=nv

− (− e−
q + 1

2G+(1)
q + �−G−(1)

q

)∣∣
n=nb

, (74b)(
1
2δg+

q

(1) − �−δg−
q

(1))∣∣
n=nb

= −(e−
q + 1

2G+(1)
q − �−G−(1)

q

)∣∣
n=nb

, with e−
q (nb) = t (a)

q C̄(x)Ux(nb)cqx, (74c)

δg+
q

(1)|n=n+
i

= −δg+
q

(1)|n=n−
i
. (74d)

We substitute Eq. (72) into (74) and consider their four respective differences for two diagonal links with cqx = ±1, c2
qy = 1. The

left-hand side of the linear system has the same form as in Eqs. (66). The right-hand side of the second equation simplifies since,
with Eq. (72), −(e−

q + 1
2G+(1)

q )|n=nv
+ (e−

q − 1
2G+(1)

q )|n=nb
= 0 on the parabolic velocity profile due to constant curvature. The
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system (72) is solved with respect to the four constants {A(1)
v ,B(1)

v ,A
(1)
b ,B

(1)
b }; the solution is lengthy but its symbolic contribution

δU (1)U to the convective term is built straightforwardly with Eq. (68). Like the δa in Eq. (57), δU (1) remains proportional to the
diagonal velocity weight t

(a)
d .

In turn, the component {g±
q

(2)
,G±(2)

q } from Eq. (73) obeys(
1
2δg−

q

(2) − �+
v δg+

q

(2))∣∣
n=nv

+ (
1
2δg−

q

(2) + �+
b δg+

q

(2))∣∣
n=nb

= −( 1
2G−(2)

q − �+
v G+(2)

q

)∣∣
n=nv

− (
1
2G−(2)

q + �+
b G+(2)

q

)∣∣
n=nb

,

(75a)(
1
2δg+

q

(2) − �−δg−
q

(2))∣∣
n=nv

+ (
1
2δg+

q

(2) + �−δg−
q

(2))∣∣
n=nb

= −( 1
2G+(2)

q − �−G−(2)
q

)∣∣
n=nv

− (
1
2G+(2)

q + �−G−(2)
q

)∣∣
n=nb

,

(75b)(
1
2δg+

q

(2) − �−δg−
q

(2))∣∣
n=nb

= −( 1
2G+(2)

q − �−G−(2)
q

)∣∣
n=nb

, (75c)

δg+
q

(2)|n=n+
i

= δg+
q

(2)|n=n−
i
. (75d)

In that system, we consider the four respective sums for two diagonal links with cqx = ±1, c2
qy = 1 and solve it with respect

to the four coefficients {A(2)
v ,B(2)

v ,A
(2)
b ,B

(2)
b }. The component {δg+

q
(2)} modifies the averaged convective term by the quantity

δU (2)U∂xC̄(x,t) = − 1
H

∑
n

∑Qm

q=1 δg+
q

(2)(n) and δU (2) reads as

δU (2)(t (a)
c ,�v,�b,H ) = −12[2�b + (H − 2)�v]

(
1 − 2t (a)

c

)
H 3

. (76)

The entire mean-velocity relative correction is given by the sum of the two components:

δa

(
t (a)
c ,�v,�b,H

) = δU (1) + δU (2) = F (a)(�v,�b,H )
(
1 − 2t (a)

c

)
, δa

(
t (a)
c = 1

2

)
= 0. (77)

Figure 14 illustrates in the right diagram the exact agreement between the predicted solution (77) and numerical results for
err(bb)

U = errU − err(sum)
U . The parameters of these simulations correspond to Fig. 15 from [69]. These results indicate that, for

sufficiently small �b, the err(bb)
U may become positive, meaning that the apparent velocity amplitude may exceed the prescribed

velocity amplitude. This is in contrast with the situation in plug flow, where δa(t (a)
c ,�v,�b,H ) is negative in Eq. (70). We consider

equation F (a)(�v,�b,H ) = 0. Its root reads as [with c1 and c2 from Eq. (70)]

�
(sol)
b (�v) = A(sol)

√
�v

4B(sol)
, lim �b|�v→∞ = (H − 2)[3 + 2H (H − 4)]

4H (1 + 2H 2)
, with

A(sol) = c1[1 + 8�v + 4
√

�v(H − 2)] − c2[1 + 8�v − 4
√

�v(H − 2)],

B(sol) = c1{−1 + 2H [1 − 2
√

�v(1 −
√

�v)] +
√

�v[3 − 8
√

�v(1 −
√

�v)]}
+ c2{−1 + 2H [1 + 2

√
�v(1 +

√
�v)] −

√
�v[3 + 8

√
�v(1 +

√
�v)]}. (78)

This solution is illustrated in the two first diagrams in Fig. 16.
It is shown that asymptotically, as H increases, �

(sol)
b ∈≈

[0.02,0.05] for �v ∈ [ 1
12 , 1

4 ], but �(sol)
b rapidly reduces towards

zero when H <≈ 10. Numerical simulations confirm that errU
becomes equal to err(sum)

U for any velocity weight thanks to
the double-� scheme (78). Thereby, solution (78) allows to
preserve the correct mean velocity in Poiseuille profile for
any velocity weight. The striking point is that �

(sol)
b (�v,H ) is

independent of other model parameters and Pe. The dispersion
and high-order moments by double-� approach in straight
channel are discussed in Sec. V A.

C. Cylindrical capillary

In a capillary, the specific value �b is set in all boundary
nodes where the bounce back applies at least for one outgoing
link, while �v applies for all other nodes (see Fig. 13). The
construction of the boundary layers combines the double-�

interface analysis developed in straight channel with the
uniform-� nonequilibrium solutions for cylindrical pipe from
Sec. II C. As there, we adapt the channel solution for any
one of the coordinate axes in circular cross section. In
plug profile Ux(y,z) = U , the nonequilibrium solution (68)
with the coefficients (66) is adapted and the mean-velocity
correction δa = 〈δU 〉 is estimated with Eq. (34). In Poiseuille
profile Ux(r) = 2U(1 − r2

R2 ), solution for δa(t (a)
c ,�v,�b,R) is

derived in the two-component form, similarly to Eq. (77).
The two components are built solving Eqs. (74) and (75)
for the coefficients. In that, we replace ∂yUx by ∂rUx

and ∂2
yUx by ∂2

r Ux , with H replaced by 2R and Nd = 4
(d2Q9) by Nd = 8 (d3Q15). Solution δa(t (a)

c ,�v,�b,R) is
then derived similar to Eq. (57). As in the case of the
uniform �, δa remains proportional to the diagonal velocity
weight t

(a)
d .

Next, the two solutions δa(t (a)
c ,�v,�b,R), derived in c field

and p field, are equated to zero. It happens that �b(�v,R)
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(a) (b)

(c) (d)

FIG. 16. The two first diagrams (a) and (b) plot solution (71) for �
(sol)
b (�v,H ) in double-� scheme derived for parabolic profile in 2D

channel. (a) �b(�v) for H = {4,8,16} (solid, dashed, dotted lines) and (b) �b(H ) for �v = { 1
12 , 1

6 , 1
4 } [dotted line (black), dotted-dashed

line (blue), solid line (red)]. The two last diagrams (c) and (d) plot solution �b(�v,R) for parabolic flow in a capillary. (c) �
(sol)
b (�v) for

R = {5,10,20} (solid, dashed, dotted lines) and (d) �
(sol)
b (R) for �v = { 1

12 , 1
6 , 1

4 } [dotted line (black), dotted-dashed line (blue), solid line (red)].

is negative in c field, alike in straight channel. Figure 15
illustrates this situation in the right diagram. However, the
positive-valued branch �

(sol)
b (�v,R) exists in Poiseuille pro-

file, at least in the most relevant interval �v ∈]0, ≈ 1]. This is
displayed in the third and fourth diagrams in Fig. 16 for R � 5.
Typically, the available �v interval enlarges as R increases.
The second and the fourth diagrams in Fig. 16 show that
the dependency �

(sol)
b (�v) versus R in cylindrical capillary,

and the dependency �
(sol)
b (�v) versus H in straight channel

have very similar form and amplitude. Since this dependency
�b(�v,R) is lengthy in cylindrical capillary, several specific
combinations {�v,�b(�v,R)} are exemplified in Table III
for bulk values �v = { 1

12 , 1
6 , 1

4 , 1
2 }. Table IV examines their

numerical results in a small pipe of R = 5 when t (a)
c = 1

3 .

It displays err(num)
U and err(num)

U /err(sum)
U obtained with the

uniform-� and double-� BB schemes. With the double-�
scheme, the err(num)

U /err(sum)
U becomes approximately equal to 1

TABLE III. This table provides distribution �
(sol)
b (�v,R) for

double-� bounce-back scheme in cylindrical capillary. It van-
ishes the approximate of the relative mean-velocity correction
δa(t (a)

c ,�v,�b,H ).

�v R = 5 R = 10 R = 20

1
12 1.567 × 10−2 1.997 × 10−2 2.197 × 10−2

1
6 2.393 × 10−2 3.167 × 10−2 3.53 × 10−2

1
4 2.824 × 10−2 3.963 × 10−2 4.499 × 10−2

1
2 2.766 × 10−2 5.126 × 10−2 6.249 × 10−2

for four examined values �v , meaning that the boundary-layer
component err(bb)

U = err(num)
U − err(sum)

U almost vanishes. It
should be said that although U (num) ≡ U (sum) on solution
�

(sol)
b (�v,H ) in a channel, �

(sol)
b (�v,R) does not account for

the discretization effect exactly, and only the approximate
solutionU (num) ≈ U (sum) is expected. Figure 17 illustrates these
results for R = {5,10,20} by applying �b(�v) from Table III.
These results can be compared with Fig. 12 for uniform �.
We observe that U (num)(R) converges to U (sum)(R) rapidly
when the discretization properties improve (cf. R = 5 and 10).
However, the convergence is not monotonous: |err(bb)

U (R)| is
larger for R = 20 than for R = 10, that is in accord with the
err(sum)

U from Table I. As expected, there still exists a very small
(unpredicted) difference betweenU(R) andU (sum)(R), with the
maximum relative difference of about 0.25% for R = 5 and

TABLE IV. This table reports the relative velocity correction
err(num)

U in d3Q15 BB with t (a)
c = 1

3 , and compares it with the err(sum)
U =

−1.6% in a small pipe of R = 5, for uniform-� scheme in the two
first columns and the double-� scheme from Table III in the two last
columns.

�b = �v �b = �
(sol)
b (�v)

�v errU (%) errU/err(sum)
U errU (%) errU/err(sum)

U

1
12 −2.37 1.48 −1.52 0.948
1
6 −3.06 1.91 −1.62 1.01
1
4 −3.72 2.32 −1.59 0.997
1
2 −5.49 3.43 −1.45 0.905
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FIG. 17. This figure displays numerical results (lines with sym-
bols) obtained with the d3Q15 double-� BB scheme in cylindrical
capillary with the help of solution �

(sol)
b (�v,R) from Table III. The

relative velocity error err(bb)
U = errU − err(sum)

U in Poiseuille flow is
displayed when R = {5,10,20}, from the top to the bottom. To be
compared with Fig. 12 for uniform �. The numerical results are
plotted for bulk values �v = { 1

12 , 1
6 , 1

4 } [“squares” (black), “lozenges”
(blue), “triangles” (red)].

about (7 × 10−3)% for R = 10 when � ∈ [ 1
12 , 1

4 ]. The third
diagram in Fig. 10 confirms the velocity improvement on the
distribution profiles: all of them are advected correctly with the
double-� BB scheme and the profiles of �v = 1

12 and 1
4 almost

collapse for t (a)
c = { 1

2 , 1
3 ,0}. The dispersion and high-order

moments by double-� scheme in cylindrical capillary are
discussed in Sec. V B.

V. DISPERSION, SKEWNESS, AND KURTOSIS WITH THE
DOUBLE-� SCHEME

Our main objective is to verify the validity of the double-�
scheme for reduction of the spurious effects in first four
distribution moments. The bulk predictions [30] for the
dimensionless coefficients of Taylor dispersion (kT ), skewness
(Sk�), and kurtosis (Ku�) account for the relative (truncation
and discretization) corrections to their physical values. In what
follows, the predicted relative bulk corrections [30] to diffusion
or dispersion coefficient D in Eq. (7), Sk� and Ku� in Eq. (9)
are quantified via errD , err(Sk), and err(Ku), respectively,
and they are compared to numerical results. We address the
simulations [30] and compare the specular-forward reflection
results in straight channel with the bounce-back results. In
turn, the bounce-back simulations are run with the uniform-�

and double-� schemes in straight channel (Sec. V A) and
cylindrical capillary (Sec. V B).

A. Straight channel

The uniform-� SNL scheme. A very good agreement is
achieved [30] in a channel between the bulk predictions
and numerical results with the help of the specular-forward
boundary reflection (SNL), in full parameter space of the TRT
model given by Eqs. (1) and (2). Recall that for any weights,
this boundary rule is free from the bounce-back artifacts.
Figures 18 and 19 illustrate this: they display the d2Q9 SNL
results (“empty” symbols) for Pe≈ 9.5 [ce = 1

3 , (�−)2 = 1
12 ]

and Pe ≈ 95 [ce = 1
30 , (�−)2 = 1

12 ], respectively. In these
figures, the two (limit) velocity-weight values t (a)

c = 1
2 and

t (a)
c = 0 are displayed together. The results are also displayed

for two (limit) mass-weight values: (i) t (m)
c = 1

2 in the top row
and (ii) t (m)

c = 0 in the bottom row. In full agreement with
the bulk predictions, (i) all three numerical coefficients are
velocity weight independent at � ≈ 1

12 ; (ii) the kT and Sk�

are mass weight independent; and (iii) the Ku� depends on it
noticeably at small Pe≈ 9.5 (Fig. 18).

The uniform-� BB scheme. Figures 18 and 19 also display
the d2Q9 BB results in the same configurations. The SNL and
BB coincide only for t (m)

c = t (a)
c = 1

2 in the top row diagrams.
Because of the diffusion boundary layer, the BB results depend
on the mass weight and, hence, they differ between the top
and bottom rows. First, in the first top row diagrams in
Figs. 18 and 19, the errD deviates from the bulk estimate for
“rotated” velocity weight {t (a)

c = 0,t (m)
c = 1

2 } because of the

(positive) boundary-layer numerical dispersion err(bb,U )
D . This

component is predicted [69] similar to Eq. (58) with Eq. (62).
When its analytical estimate is added to predicted bulk value,
the bounce-back numerical results and predictions approach
very closely.

Second, in the first diagram in the bottom row in Figs. 18
and 19, the additional (negative) diffusion boundary-layer
correction err(bb)

D (t (m)
c ) due to “rotated” mass weight {t (m)

c =
0,t

(m)
d = 1

4 } should be added to the top-row estimate. This
component is predicted by Eq. (27) with Eqs. (35a) and (36a).
When err(bb)

D is accounted for, the entire analytical estimate
perfectly fits the numerical results for all weights. Note that
the err(bb)

D dominates both bulk and boundary-layer dispersion
corrections for Pe ≈ 9.5 but, as it has been expected, its role
becomes insignificant as Pe increases to Pe ≈ 95.

Third, Sk(num)
� (the second diagram) and Ku(num)

� (the third
diagram) in Figs. 18 and 19 disagree with their respective
bulk estimates and the SNL results in the presence of the
diagonal weights. Recall that the asymptotically constant
deviation in kurtosis, because of the diffusion boundary layer,
was predicted and confirmed in pure-diffusion simulations
in Sec. III B. We are not yet aware of the boundary-layer
predictions for Sk� and Ku� in motion. We only note that
their deviations are especially noticeable only for relatively
small value Pe ≈ 9.5 in the limit case t (m)

c = 0 (see two
diagrams in the bottom row in Fig. 18). When Pe ≈ 95 in
Fig. 19, the relative deviations reduce for Sk� and Ku� but
they still remain larger for t (a)

c = 0. These results confirm
that although the principal deviation in Sk� and, especially,
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FIG. 18. The errD , err(Sk), and err(Ku) (from the left to the right) at Pe ≈ 9.5 in straight Poiseuille profile. The results are plotted together
for d2Q9 SNL (“empty” symbols) and d2Q9 BB (“filled” symbols) and compared to bulk predictions (lines) when velocity weight t (a)

c = 1
2

[dashed line (blue), “circles”] and t (a)
c = 0 [dotted line (magenta), “triangles”]. Top row: mass weight t (m)

c = 1
2 . Bottom row: t (m)

c = 0. In the

first column, the d2Q9 SNL agrees with the bulk prediction err(bulk)
D (t (a)

c ); the d2Q9 BB agrees with err(bulk)
D (t (a)

c ) + err(bb)
D (t (m)

c ) + err(bb,U )
D (t (a)

c ),
with account of the boundary-layer diffusion and dispersion corrections.

Ku�, is due to the diffusion-boundary layer, similar to the
observation [30] in plug flow, the boundary-layer velocity
and dispersion affect them at the intermediate Pe range.
The last diagram in Fig. 9 shows that, despite the distinct-
ness in high-order transport coefficients, there is not any
visually observed difference between the profiles modeled
with the d2Q5 BB and the “rotated” d2Q5 BB schemes
because of the small-valued coefficients Sk� and Ku� at
Pe ≈ 9.5.

The double-� BB scheme. Figures 20 and 21 address the
same configurations as in Figs. 18 and 19, respectively, but with
the double-� scheme (78). For consistency of the comparison,

the SNL also applies double-� scheme (the SNL then agrees
slightly less accurately with the theoretical predictions [30]
than in Figs. 18 and 19 because the predictions [30] do not
account for the nonuniformity in �).

Our focus is on the BB scheme. Recall, the root �
(sol)
b (�v)

given by (78) suppresses the retardation of the mean velocity
due to the diagonal velocity weight t

(a)
d and U (num) becomes

equal to U (sum) for any weights and model parameters.
Therefore, the double-� BB scheme (78) is expected to
vanish or reduce the boundary-layer dispersion component
err(bb,U )

D (t (a)
c ) from Eq. (58).

FIG. 19. Similarly as in Fig. 18 but for Pe ≈ 95.
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FIG. 20. Similarly as in Fig. 18, Pe ≈ 9.5, but the d2Q9 SNL and d2Q9 BB are both applied with the double-� scheme (78). Top row:
t (m)
c = 1

2 . Bottom row: t (m)
c = 0. The d2Q9 BB results for errD are compared to err(bulk)

D + err(bb)
D (t (m)

c ).

When t (m)
c = 1

2 , there is no boundary-layer diffusion, hence,

err(bb)
D (t (m)

c ) = 0. The two first (top row) diagrams in Figs. 20
and 21 confirm that the double-� BB scheme agrees with
the SNL result and bulk prediction err(num)

D ≈ err(bulk)
D . Notice

that despite the correct advection velocity, |errD| may become
larger with the double-� scheme because of the canceling
effect, e.g., when errD sums the negative bulk value err(bulk)

D

and the positive boundary-layer value err(bb,U )
D (t (a)

c ) with the
uniform-� scheme. The three diagrams in the top row in
Figs. 20 and 21 show that the SNL and BB results become
quasi-identical even in the limit case t (a)

c = 0. This confirms
that the double-� scheme efficiently suppresses velocity
retardation due to velocity weight in the first four moments.

Figure 20 shows that when t (m)
c = 0 (in the bottom row),

the difference between the SNL and the BB results is well
described by err(bb)

D (t (m)
c ,�b,H ) [where �b replaces � in

Eq. (35a)]; consequently, its amplitude decreases with �b.
Recall that (i) there is no positive root �b(�v) where err(bb)

D

vanishes in the pure-diffusion case, and (ii) the double-�
dependency given by Eq. (78) is not called to vanish the
boundary-layer diffusion-coefficient correction err(bb)

D due to
the diagonal mass weight. However, the relatively small value
of �b given by Eq. (78) is expected to reduce the diffusion
retardation effect, in agreement wih the results in two first
bottom-row diagrams in Figs. 20 and 21. However, we observe
that the boundary-layer diffusion effect remains significant
with t (m)

c = 0 for skewness and kurtosis at Pe ≈ 9.5 (although
the distance between the BB and SNL is reduced by factor
2 due to small �b). As Pe increases to Pe ≈ 95, Fig. 21
confirms that the SNL and BB produce very similar results
in the three transport coefficients for all weight combinations
due to double-� distribution (78).

1
12

1
6

1
4

6

5

4

3

2

1

0
errD

FIG. 21. Similarly as in Fig. 19, Pe ≈ 95, but the d2Q9 SNL and d2Q9 BB are both applied with the double-� distribution (78).
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0.1 0.2 0.3 0.4 0.5
t c
a

0.5

1.0

1.5

errD

FIG. 22. The numerical estimate of the apparent bulk dispersion err(num)
D − (err(bb)

D + err(bb,U )
D ) is compared to its bulk prediction err(bulk)

D

from [30] (dashed lines of the same color as the numerical data), in Poiseuille flow in cylindrical capillary of R = 20, with parameters of Expt.
I–Expt. IV (Table II) from the left to the right and from the top to the bottom. The numerical simulations are run with the uniform � = { 1

12 , 1
6 , 1

4 }.
In summary, the double-� BB scheme proves its efficiency

in parabolic profile for vanishing velocity retardation and
reduction of the associated numerical dispersion err(bb,U )

D .
Using the double-� scheme, the results of the bounce
back and specular reflection almost coincide providing that
the diffusion boundary-layer effect is small, that is, when
Pe is sufficiently large or when t (m)

c ≈ 1
2 at small Pe. In

these cases, the truncation estimate [30] predicts well the
numerical values for kT , Sk�, and Ku� with any velocity
weight.

B. Cylindrical capillary

Like in a channel, the truncation and discretization bulk
corrections to Taylor-dispersivity coefficient in a cylindrical
capillary (kT = Pe2

192 Pe = 2UR
D0

) and to reference values [29,30]
for Sk� and Ku� are derived [30]. Numerical simulations [30]
are performed with the d3Q15 BB scheme, mostly using t (m)

c =
1
3 for the fourth-order isotropy required by the truncation
estimate, and adopting the parameter range from Table II.
It has been shown [30] that the truncation estimate applies
but less accurately when t (m)

c �= 1
3 and, in particular, that it

predicts well the d3Q7 dispersion result [80] for Newtonian
fluid at Pe ≈ 50, where summation (discretization) component
dominates the truncation counterpart. Like in a channel, the
D(num) is extracted from the second moment with Eq. (8) and
its relative correction err(num)

D = D(num)/D − 1 is compared
to bulk and boundary-layer predictions. The bulk prediction
err(bulk)

D is singled out [30] by accounting for the diffusion-layer
correction err(bb)

D from Eq. (27) and the boundary-layer disper-
sion correction err(bb,U )

D from Eq. (58); the err(bb)
D is extracted

from the pure-diffusion simulation, the err(bb,U )
D is computed

with Eq. (62). Figure 22 compares the numerical results for
err(num)

D − (err(bb)
D + err(bb,U )

D ) to predicted solution err(bulk)
D in

four experiments from Table II, by applying the uniform-� BB
scheme with � ∈ [ 1

12 , 1
4 ]. The agreement with the predictions

is rather accurate in the whole interval t (a)
c ∈ [0, 1

2 ]. The
larger discrepancy than in a channel is expected because the
discretization effect is partly neglected in err(bb,U )

D . Figure 23
explicitly illustrates the effect of the boundary-layer dispersion
within the uniform-� BB scheme. The computations are the
same as in Fig. 22 but, with the intentional neglect of the
err(bb,U )

D , the difference err(num)
D − err(bb)

D principally disagrees
with the err(bulk)

D .
We address now the double-� scheme in a capillary. It

has been demonstrated in Fig. 17 that the specific solu-
tion �

(sol)
b (�v,R) from Table III effectively diminishes the

boundary-layer mean-velocity correction due to the diagonal
velocity weight. Figure 24 presents the comparison of the
err(num)

D − err(bb)
D (t (m)

c ) and err(bulk)
D , like in Fig. 23, but when

the double-� BB scheme from Table III is employed. Here, in
contrast with the uniform-� results in Fig. 23, the agreement
is satisfactory. The best accuracy is achieved with �v =
1

12 where err(num)
D is t (a)

c independent. This result confirms

that err(bb,U )
D (t (a)

c ) is efficiently removed and the observed
velocity-weight dependency in err(num)

D − err(bb)
D (t (m)

c ) is due to
truncation component err(tr)

D (t (a)
c ,�) [recall [30], err(tr)

D (t (a)
c ,�)

is t (a)
c independent when � = 1

12 ]. Like in a channel, a slightly
larger discrepancy with the bulk prediction in comparison
with the uniform-� scheme in Fig. 22 is, most likely, due
to err(tr)

D (t (a)
c ,�) because it does not account for the double-�

distribution. Besides, one may suggest that although the
double-� scheme accurately preserves the mean velocity in
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FIG. 23. The four diagrams are similar to Fig. 22 but err(bb,U )
D is intentionally omitted and err(num)

D − err(bb)
D is compared with the bulk

estimate err(bulk)
D (the dashed lines of the same color as err(bulk)

D ).

a capillary (see Fig. 17), a very small accommodation profile
still exists there. This premise could explain the increase of
the discrepancy in Fig. 24 with Pe. However, this discrepancy
is very small against the boundary-layer dispersion err(bb,U )

D

within the uniform-� scheme, as evidenced by the comparison
of Figs. 23 and 24.

Figure 25 compares the numerical results for ||errD||,
||err(Sk)||, and ||err(Ku)|| when t (m)

c = 1
3 . These estimates are

the differences of the relative numerical corrections to the
bulk predictions obtained with the t (a)

c = 1
3 and 1

2 . Note that the
consideration of the difference for two velocity weights allows
us to get rid of the diffusion-layer effects in three transport

0.1 0.2 0.3 0.4 0.5
t c
a

0.5

1.0

1.5

errD

0.1 0.2 0.3 0.4 0.5
t c
a

0.5

1.0

1.5

2.0
errD

FIG. 24. This figure illustrates the depreciation of the boundary-layer dispersion component err(bb,U )
D with the double-� BB scheme from

Table III. The computations are run with �v = { 1
12 , 1

6 , 1
4 } [dotted line (black), dotted-dashed line (blue), solid line (red)]. Numerical results for

err(num)
D − err(bb)

D are plotted together with the bulk prediction err(bulk)
D (dashed lines of the same color). To be compared with Fig. 23 where the

uniform-� d3Q15 BB scheme is employed.
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(a) (b) (c)

FIG. 25. Cylindrical pipe of R = 20, Expt. II [dotted line (red), “squares”] and Expt. IV [dotted-dashed line (blue), “circles”] from Table II.
This figure displays the difference in the results obtained with t (a)

c = 1
3 and t (a)

c = 1
2 versus bulk value � = �v . The numerical data (symbols)

and truncation estimate [30] (lines) are displayed together for (a) ||errD||, (b) ||err(Sk)|| and (c) ||err(Ku)||. The double-� scheme is applied; it
attenuates the boundary-layer advection effects due to t (a)

c = 1
3 and enables the truncation estimate.

coefficients due to t (m)
c = 1

3 . The double-� BB scheme is
applied in order to attenuate the boundary-layer velocity and
dispersion effects with t (a)

c = 1
3 . The results are displayed

together for Pe ≈ 9.5 and Pe ≈ 95.
We observe that, in agreement with the prediction [30], the

bulk corrections in three transport coefficients become velocity
weight independent when �v = 1

12 , where ||errD||, ||err(Sk)||,
and ||err(Ku)|| pass through zero in Fig. 25. The three
diagrams in Fig. 25 display a very good agreement between
the numerical results and bulk predictions [30] in the whole
interval � ∈ [ 1

12 , 1
4 ]. Here, ||errD|| = errD(t (a)

c ) − errD(t (a)
c =

1
2 ) = −3(1−2t

(a)
c )(�v− 1

12 )

1+k
(c)
T

k
(1,c)
T , k

(1,c)
T = 〈U ′(r)U ′(r)〉

D2
0

with U ′(r) =
Ux(r) − 〈Ux(r)〉, then k

(1,c)
T = Pe2

12R2 for parabolic profile in a
capillary. This functional dependency ||errD|| is expected to
be valid for Newtonian or non-Newtonian flow in any-shape
open-tabular conduits, and it can be used for validation of the
numerical code.

In summary, when the diagonal velocity weight is t
(a)
d �= 0,

the (analytically constructed) double-� scheme from Table III
effectively attenuates the boundary-layer effect in velocity,
dispersion, and high-order moments. We expect that the
boundary-layer behavior with respect to the mass and velocity
weights is similar within the grid-aligned conduits of the
arbitrary cross section. Our preliminary results show that
the deviation of the apparent molecular diffusion coefficient
D(num) from its prescribed value D0 still decays in proportion
to the diagonal value t

(m)
d for arbitrarily and asymmetrically

placed two-dimensional obstructions in a cylindrical tube.
Similarly, the deviation of U (num) from U (sum) linearly scales
there with the t

(a)
d . Hence, it can be expected that the disparity

of the measured moments with the weights can be reduced
with the help of the double-� BB scheme. We elaborate the
iterative algorithm to locate the root �

(sol)
b (�v) in Sec. VI B,

and examine it in more complicated cases when the tangential
constraint is not aligned with the coordinate axis, in the two-
dimensional diffusion spreading and advective flow around
the circular and rectangular impermeable obstacles, with and
without side (bounding) walls.

VI. EFFECTIVE DIFFUSIVITY AND VELOCITY
AROUND SOLID OBSTACLES

The purpose of this section is to preliminarily examine
(i) whether exists the disparity with the mass and velocity

weights in effective diffusion coefficient and apparent velocity,
respectively, when the bounce-back rule is applied on the solid
obstacles; if so, (ii) whether this dependency remains linear, as
in transport through grid-aligned ducts; (iii) whether it reduces
or vanishes with the suitable choice of the boundary value
�b(�v), and (iv) how such dependency can be established.
The bounce-back simulations with the uniform and double-�
schemes are examined for (Sec. VI A) the variation of the
relative diffusion coefficient with the mass weight in three
periodic porous arrangements, and (Sec. VI B) the variation
of the effective velocity, dispersion, and skewness with the
velocity weight in Stokes flow around a circular obstacle
where the numerically constructed �b(�v) solution will
efficiently annihilate velocity-weight dependency in the first
moment. The results and the perspectives of these preliminary
investigations are summarized.

A. Relative diffusivity

We will consider three classical examples of two-
dimensional isotropic periodic arrangements depicted in
Fig. 26. Their impermeable solid inclusions are composed
from (i) single centered square block, (ii) single centered
circle, and (iii) face-centered (staggered) array of squares,
respectively. The porosity θ of the periodic cell is set equal to
ratio of void cells to entire number of cells. The mean (phase)
concentration distribution C̄(x) in Eq. (7) is averaged over the
porous part of x cross section. In the pure-diffusion spread
around solid obstacles, the effective diffusion coefficient D =
Deff in Eq. (7) is known to become smaller than the molecular
diffusion coefficient D0 [13]; it is estimated with the help of
the experimental, semianalytical, and numerical approaches
(see review [19]). Using the LBM, the effective diffusivity
of the heterogeneous media composed from the overlapping,
permeable, and impermeable rectangular inclusions is numer-
ically examined with the help of the d2Q5 BGK scheme in
early work [14]. More recently, the Deff was addressed [19,83]
with the d2Q5 BGK and d2Q4 MRT schemes, respectively.
The impermeable inclusion is commonly modeled [14,19,83]
via the bounce-back rule. The relative diffusivity Dr is
derived [19,83] with the help of the Fick’s law, as a ratio of the
apparent mass flux across the media to the prescribed gradient.
We will apply the reference data provided by work [19] for
Dr = De/D0, De = θDeff .
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FIG. 26. Three regular arrangements in unit cell X × Y = 602 are examined: (a) centered square cylinders of porosity θ = 0.36 (obstacle
length is 4

5 of the cell width); (b) centered circular cylinders of porosity θ = 0.8365 (the diameter halves the cell width); (c) staggered square

cylinders of porosity θ = 0.56 (the neighbor corners are distanced by 2
√

2 l.u.)

Let us first comment the results [19] in light of the previous
discussion. The concentration gradient across the sample is
induced [19] with the help of the (anti-bounce-back) Dirichlet
ABB rule (10). As has been mentioned (see Remark II in
Sec. II B 1), the d2Q4 isotropic diffusion MRT model [19,51] is
the particular TRT d2Q5 scheme given by Eqs. (1) and (2) with
ce = t (a)

c = t (m)
c = 1

2 and U = 0, using diffusion rate sD = s−
and free rate s2 = s+. The two rates [19] are related as s2 = 2 −
sD on the base of the ABB solution [51] for parabolic profile.
This choice corresponds to the fixed value � = 1

4 [cf. Eq. (5)],
and it is a particular case of � solution (14) for ce = 1

2 . As has
been proved [32] for the TRT model in combination with the
ABB and BB rules, the dimensionless steady-state solutions of
the scheme are set by physical nondimensional parameters and
�. It means that the TRT simulations with these two reflections
provide D0-independent coefficient Dr if � remains fixed for
any D0. Since � = ( 1

sD
− 1

2 )2 = (�−)2 with the BGK operator,
it varies together with D0. This explains the MRT and BGK
results [19]. However, the combination s2 = 2 − sD [19,51]
is not the only suitable choice because Dr is D0 independent
∀� > 0. In principle, � = 1

6 [20,30,31] is the most accurate
pure-diffusion bulk choice, rather than � = 1

4 . However, it is
possible that the TRT with � = 1

4 is in best agreement with
the finite-difference coordinate method [13] (FDM) because of
the similarity in the bulk discretization and zero-flux condition
in these two schemes [cf. Eq. (19)].

We underline that the obtained values Dr depend on �. That
means that the BGK scheme with τ = 1

2 + �− produces the
same value Dr as the TRT with � = (�−)2, ∀�−; the BGK
results coincide with the TRT(� = 1

4 ) when �− = 1
2 (sD =

s2 = 1). Indeed, the BGK results are found deficient [19] for
large diffusion coefficients because the large values of � are
inaccurate both in bulk and boundary. In return, the BGK
results [19] for dependency De/D0 versus sD , presented in
their Figs. 16 and 22, can serve to examine dependency Dr (�).
This tells us that the similar accuracy as with � = 1

4 is reached
for � �≈ 0.7 (sD ≈ 3

4 in BGK). In principle, the dependency
and resolution performance might be addressed for Dr (�)
similar to permeability measurements, e.g., in regular and

random arrays of spheres of the same porosity [34]. The
results [34] show that the dependency of the permeability on �

reduces with the space resolution, but the monotonic behavior
towards �-independent (common) solution has approximately
only first-order rate.

In this study, our concern is not so about Dr (�) as about
Dr variation with the mass-weight stencil {t (m)

c ,t
(m)
d } because of

the bounce-back rule. Recall that in the pure-diffusion spread
through a straight channel, cylindrical capillary or differently
obstructed cylindrical conduits, Deff ≡ D0 only when t (m)

c =
1
2 , that is, with the d2Q5 and d3Q7 BB schemes. Otherwise,
the d2Q9 and d3Q15 BB schemes diminish Deff proportionally
to the diagonal mass-weight value t

(m)
d . The relative error of

this deviation, err(bb)
D , is quantified by Eq. (35) exactly in a

channel and approximately in a capillary. Further, there is
no positive �b(�v) root in double-� scheme where err(bb)

D =
0, but very small boundary values �b may reduce |err(bb)

D |
noticeably.

We perform pure-diffusion simulations (U = 0) with the
d2Q9 BB scheme. The pulse is initialized with C(x0,y,t =
0) = 1 through open cross section x = x0. Unlike in previous
works [14,19,83], the Deff is derived from the second moment
with Eq. (8). The simulations are run through a series of the
identical porous cells X × Y = 602 in three porous arrange-
ments of impermeable inclusions (Fig. 26). The numerical
system is periodic in all directions. Such computations are
more expensive than those in a single porous cell, but their
results are insensitive either to accuracy of the ABB rule
or to the effective Fick’s flux. In these simulations, ce = 1

3

(where the d2Q5 is different from d2Q4) and � = { 1
6 , 1

4 }; it
has been first verified that Dr is �− independent at fixed �

(we use �− = 1; its larger values may further accelerate the
convergence to steady state).

We first consider a square array depicted in the first
diagram in Fig. 26. As suggested, the d2Q5 BB TRT scheme
with � = 1

4 produces very similar solutions with the FDM
scheme [13] in the same cell X × Y = 602: e.g., Dr (θ = 1

4 ) =
0.575894 against Dr = 0.576 with the FDM [13], and Dr (θ =
0.36) = 0.211 against Dr (FDM) = 0.212. Figure 27 displays
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FIG. 27. This figure displays the relative error errD of the relative dispersivity Dr to its reference value in three regular porous arrangements
from Fig. 26. The results are presented versus the diagonal mass weight t

(m)
d ∈ [0, 1

4 ]. The computations are performed with the uniform-�
scheme (“empty symbols”) and the double-� scheme �b = 10−4 (“filled symbols”), when �v = 1

4 (black, “squares”) and �v = 1
6 (blue,

“triangles”).

the relative difference errD with the reference solution [13]
for Dr (θ = 0.36) when the diagonal mass weight t

(m)
d varies

from 0 (d2Q5) to 1
4 (“rotated” d2Q5). The four configurations

are addressed: two runs with the uniform values � = 1
6 and

1
4 , and two runs with the double-� scheme, when �v = { 1

4 , 1
6 }

and �b = 10−4 (this choice of small value is arbitrary). The
results with the uniform � show almost a linear error decrease
with the t

(m)
d . Also, similar to Eq. (35), |errD| increases with �.

The results of the double-� scheme are presented in the same
(first) diagram in Fig. 26. They show that the two solutions
with � = 1

6 and 1
4 approach very closely one another; the

dependency errD(t (m)
d ) becomes less linear and the disparity

between t
(m)
d = 0 and 1

4 reduces by a factor 4 against uniform
�. On the whole, these results confirm that on the the diagonal
stencil the bounce back delays diffusion over rectangular
grid-aligned block, similar to axis-aligned wall. The amplitude
of this deficiency is controlled by �b: its very small value
reduces Dr dependency on the mass weight.

Figure 27 displays in the second diagram the results of
the similar simulations in the regular arrangement of circular
cylinders depicted in the second diagram in Fig. 26. The
reference data [19], based on the Monte Carlo simulation [23],
are Dr = 0.67θ (θ = 0.80365 with our mesh). We first note
that the d2Q9 BB produces very similar solutions for � = 1

4
and 1

6 because of the relatively large porosity value. Like in

all previous examples, the difference between t
(m)
d = 1

4 and

0 is negative and |errD| increases with t
(m)
d . However, the

dependency errD(t (m)
d ) is much more nonlinear than in the

square arrangement in the first diagram, although porosity
there is much smaller. This result indicates that there is a
complex interplay of the tangential boundary-layer directions.
So to say, the coordinate and diagonal weights may swap
their roles around staircase circle. We also note that the
d2Q5 has a larger discrepancy with the reference data than
in the previous example of square array because the BB rule
does not fit the circular shape exactly either for � = 1

6 or
1
4 . In this example, the double-� scheme with �b = 10−4

decreases error amplitude |errD(t (m)
d )| for all weight values,

but this situation is not general because very small � is not
necessarily accurate for shaped form [34]. On the other hand,

the difference between t
(m)
d = 1

4 to 0 is nearly the same, either
with the uniform or double-� schemes. This confirms that the
principal deviation from the reference value in this example is
because of the discretization mismatch of the circular shape,
rather than because of the boundary-layer tangential effect.

In the third example we consider the staggered array of the
nonoverlapping square blocks depicted in the third diagram
in Fig. 26. Its percolation limit is θ = 0.5, when corners of
neighbor blocks touch each other. Curiously, whereas the
d2Q5 BB converges in this limit configuration to expected
solution Deff ≡ 0, the system meets difficulties to reach steady
state on the full mass-weight stencil, when the diagonal
discrete velocities are not bounced back in “common” corners
and the solute may travel through the whole system. Figure 27
displays in the third diagram the results for slightly larger
porosity θ = 0.56, when the distance between two arrays of
the blocks is two nodes. The reference value Dr ≈ 0.26θ is
taken from the graph in Fig. 12 [19] (this graph fits the known
reference data, but the results [19], computed in a larger cell
X × Y = 2002, overestimate it at small θ ). Our results in 602

box overestimate it by about 10% when � ∈ [ 1
6 , 1

4 ]. Further,
we observe that the dependency errD(t (m)

d ) becomes much
more nonlinear with the uniform � against the (more porous)
centered-square array in the first diagram in Fig. 27 (where
there are 12 nodes distance between two neighbor arrays of
rectangles). The double-� scheme with �b = 10−4 noticeably
diminishes the difference between the two � values and
between t (m)

c = 1
4 and 0 (by factor 2). However, this reduction

is twice less than in centered-square array in the first diagram
in Fig. 27. In this third example, errD is positive for all weights,
that is, the effective diffusivity is larger than the reference one,
and the small value �b = 10−4 further increases this effect.
Similarly, we observe in two rectangular arrays in the first and
third diagrams that � = 1

6 produces larger effective diffusivity
than � = 1

4 . Similar conclusion might be derived from the
BGK results [19], where larger � diminish Dr . Such behavior
is in line with the usual bounce-back no-slip result in straight
channel and porous structures, where small values of � usually
decrease porous space and diminish permeability [34,35], that
is, increase the diffusivity of momentum.

In summary, the computations of the relative diffusivity
Dr in three simple porous structures confirm the presence
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FIG. 28. The diagram in the right illustrates streamlines of the velocity field computed in streamwise-periodic porous cell [X × H =
30 × 20] sketched left. The cell is bounded by the horizontal walls; the circular obstacle of R = 7 is placed at (x,y) = (14.5,11.5).

of the retardation BB effect. It is manifested by decrease
of Dr from the coordinate stencil t (m)

c = 1
2 to the diagonal

stencil t
(m)
d = 1

4 . With the uniform-� scheme, the dependency

Dr (t (m)
d ) varies from linear in the centered-square array to

(i) less linear in small-porosity staggered square array, and
(ii) towards highly nonlinear and smooth in dilute array of
circular cylinders. The double-� scheme with a sufficiently
small value �b is able to reduce the disparity of the results
with the mass stencil. However, its efficiency diminishes as the
nonlinearity Dr (t (m)

d ) increases. Based on these preliminary
observations, it can be suggested that the largest benefit
from the double-� distribution in pure diffusion should be
expected in open-tubular conduits, in the presence of the
external impermeable boundary and rectangular inclusions. In
steady-state simulations around shaped obstacles, when exact
mass conservation is not so needed, the accurate high-order
flux schemes should be called to improve for mass weight and
� disparity of the results.

B. Advection velocity

We consider the two-dimensional steady-state Stokes flow
around a circular obstacle of radius R = 7. Its center is
asymmetrically placed at (x,y) = (14.5,11.5) inside a sin-
gle cell [X × Y ] = [30 × 20]. The system is periodic in x

direction and mean flow is along the x axis. The circle is
staircase approximated and the discretized system has porosity
θ = 0.751(6). The two configurations are examined: (i) the cell
is bounded by two horizontal solid walls, and (ii) the cell is

periodic along the y axis. The two systems are sketched in
Figs. 28 and 29, together with streamlines of the prescribed
velocity field. The velocity field is solved with the TRT BB
Stokes-flow scheme [37,49], where we use � = 3

16 (the quality
of the velocity field and its dependency on � is out of scope
of this study). The motion is governed by the constant body
force directed along the x axis. Let u(x,y) be steady-state
macroscopic velocity field. The Darcy-velocity value uD(xi)
in cross section x = xi is calculated as section-averaged value;
uD(xi) is constant through each section of the porous sample
thanks to half-force addition to microscopic momentum [35].
Due to linearity of the Stokes equation, the advection-velocity
distribution U(x,y) in ADE equilibrium (2) scales u(x,y)
with some constant. In our simulations, UD

x = 5 × 10−3 and
it corresponds to mean seepage velocity U (sum) = UD/θ =
6.6519 × 10−3.

The ADE system is built from a sufficiently large number
of the identical cells. The apparent mean velocity U (num) is
extracted from the first raw moment of the (porous-phase)
averaged concentration C̄(x). We examine the relative differ-
ence errU = U (num)/U (sum) − 1 versus the diagonal velocity-
weight value t

(a)
d ∈ [0, 1

4 ]; the difference with the coordinate

weight ||errU (t (a)
d )|| = errU (t (a)

d ) − errU (t (a)
d = 0) is reported

for all simulations. The d2Q9 BB scheme (1) and (2) is

applied with �− =
√

1
12 (in combination with � = 1

12 this
scheme suppresses the third-order truncation advection cor-
rection [20,31]), and ce = 1

3 , then Pe = UL
ce�− (L = 20) ≈ 1.4.

Recall that Pe, mass weight, or U 2
α weight family {t (u)

q } do

FIG. 29. Similar as in Fig. 28 but the cell is periodic at all ends.
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(a) (b)

FIG. 30. This figure displays numerical results of the uniform-� d2Q9 BB scheme in porous system depicted in Fig. 28, for (a) errU =
U (num)/U − 1 and (b) ||errU || = errU (t (a)

d ) − errU (t (a)
d = 0). The results are plotted versus the diagonal velocity-weight value t

(a)
d ∈ [0, 1

4 ] when
� = { 1

12 , 1
6 , 1

4 } [dotted line (black) triangles, dotted-dashed line (blue) lozenges, solid line (red) squares].

not impact the apparent mean velocity in straight channel and
duct flows. Here, we set them on the coordinate stencil for all
computations t (m)

c = t (u)
c = 1

2 .
Figure 30 displays numerical results for errU and ||errU ||

which are obtained in bounded configuration displayed in
Fig. 28. These simulations are performed with the uniform-�
distribution � = { 1

12 , 1
6 , 1

4 }. The results are displayed versus

t
(a)
d = 1

4 − 1
2 t (a)

c = {0, 1
12 , 1

8 , 3
16 , 1

4 }. First, we observe that the

d2Q5 scheme t
(a)
d = 0 results in nonzero (negative) value

errU . Unlike in straight channel and duct flows, U (num) is
different from U (sum) on the coordinate stencil. Second,
errU (t (a)

d ) depends on � for all weights, including the d2Q5
scheme. Third, U (num) diminishes when t

(a)
d increases, and this

dependency is quasi-linear, in straight channel and duct flows
alike. Finally, we observe that the amplitude of the disparity
||errU (t (a)

d )|| decreases almost linearly with � [recall that in
open flow the decrease is ≈ √

� in Eq. (51)].
Figure 31 presents results of the similar simulations

with the double-� scheme. In bulk, �v is fixed to 1
6 . We

look for root �b(�v) where ||errU (�b,t
(a)
d )|| ≈ 0. As the

initial guess, we apply Poiseuille-flow solution (78): �
(1)
b =

�
(sol)
b (�v = 1

6 ,H = 20) = 0.033 726. Since ||errU (�(1)
b ,t

(a)
d )||

is still negative, a small value of �
(2)
b = 10−4 is employed

at the second iteration; with ||errU (�(2)
b )|| > 0, it brackets the

root. The root �(3)
b solves linear equation ||errU (�b,t

(m)
d )|| = 0

in the interval �b ∈ [�(1)
b ,�

(2)
b ]. The second diagram in Fig. 31

illustrates that �
(3)
b provides a good enough approximate

||errU (�b,t
(a)
d ,�v = 1

6 )|| ≈ 0 for all weights t
(m)
d ∈ [0, 1

4 ]. In

addition, the �
(3)
b reduces the relative disparity between the

coordinate and rotated velocity weight in effective dispersion
coefficient D in Eq. (7) and the skewness coefficient Sk�

in Eq. (9), from −0.7% and −2.4% to 0.028% and 0.88%,
accordingly.

Figure 32 displays results of the similar simulations as in
Fig. 30 but in fully periodic system depicted in Fig. 29. We
observe that, like in the wall-bounded system, the difference
||errU (t (a)

d )|| between t
(a)
d = 1

4 and 0 varies quasi-linearly with

t
(a)
d . As could be expected, the d2Q5 has nearly the same

value errU as in the presence of the side walls. However,
||errU (t (a)

d )|| has much smaller amplitude than in bounded
system, e.g., it reduces by factor 5 for � = { 1

6 , 1
4 }. Furthermore,

FIG. 31. This figure examines errU (left) and ||errU || (right) in simulations with the double-� d2Q9 BB scheme in porous system bounded
by the two horizontal walls. The bulk value �v = 1

6 is fixed for all results; the uniform-� solution is recalled from Fig. 30 [dotted-dashed line

(blue) lozenges]. The �b takes three values: �
(i)
b ≈ {0.033726,10−4,0.011(6)}, i = 1,2,3 [dashed line (magenta) squares, dotted line (black)

triangles, solid line (red) circles]; �
(3)
b solves the linear approximate ||errU (�b)|| = 0 when �b ∈ [�(2)

b ,�
(1)
b ].
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FIG. 32. This figure displays numerical results errU (t (a)
d ) (left) and ||errU (t (a)

d )|| (right) for simulations in fully periodic flow depicted
in Fig. 29. The results are plotted for uniform distribution � = {10−4, 1

12 , 1
6 , 1

4 } [dashed line (magenta) circles, dotted line (black) triangles,
dotted-dashed line (blue) lozenges, solid line (red) squares]. To be compared with the similar simulations in bounded porous channel in Fig. 30.

� = 1
12 reverses the previous behavior because ||errU (t (a)

d )||
becomes positive. That is, there is a change from retardation
to acceleration. To underline this new situation, absent in
duct flow solution (51), Fig. 32 is complemented with the
results for � = 10−4: they display further linear increase of
U (num) with t

(a)
d . These results indicate that the most decisive

boundary-layer retardation effect is exited by the side wall,
while the superposition of the distinguished accommodation
effects alter � dependency in ||errU || and may even change
the sign of the effect.

Figure 33 applies the double-� scheme in combination
with the bulk value �v = 1

4 in a fully periodic system. The

initial guess interval [�v,�
(1)
b ] is built from �b = �v = 1

4

and Poiseuille-flow solution (71): �
(1)
b = �

(sol)
b (�v = 1

4 ,H =
20) ≈ 0.043 65. This interval brackets the root �

(2)
b ≈ 0.05.

Figure 33 illustrates that �
(2)
b produces ||errU (�(2)

b ,t
(a)
d )|| ≈ 0

in the whole interval t
(a)
d ∈ [0, 1

4 ].
In summary, the coordinate velocity weight t (a)

c = 1
2 does

not necessarily preserve the prescribed mean seepage velocity
U (sum) in flow around obstacle, but the difference ||errU (t (a)

d )||

between the diagonal and coordinate velocity stencil remains
quasi-linear. The straight side walls obviously accentuate
the retardation effect of the bounce back. In their absence,
the sign of this effect can be altered due to more complex
accommodation behavior around the shaped obstacle. The
double-� bounce-back scheme proposes a simple remedy
for velocity-weight dependency: the required �b(�v) root
annihilates this dependency in first moment and it can be
built with a few bisection iterations in given structure.
Consequently, the double-� scheme also reduces the velocity-
weight disparity in numerical values for dispersion, skewness,
and kurtosis. Worthwhile to mention that, unlike in a duct
flow, some small dependency over other parameters, such
as the velocity amplitude, �− and mass weight, has been
detected for U (num)/U (sum) in porous structures. Further work
is required to quantify this observation. In practice, in given
parameter space of the problem, one might look for �b(�v)
where ||errU (t (a)

d )|| ≈ 0. Moreover, if suitable, one may try
to enforce the correct advection velocity locating condition
errU (�v,�b,t

(a)
d ) ≈ 0 in two-dimensional parameter space

{�v,�b}, by keeping the bulk value �v in its “optimal”
accuracy and stability interval.

FIG. 33. This figure examines errU (left) and ||errU || (right) in simulations with the double-� scheme in fully periodic porous system.
The bulk value �v = 1

4 is fixed for all results; the uniform-� solution is recalled from Fig. 32 [solid line (red), squares]. The �b takes two

values: �
(1)
b ≈ 0.04365 from Eq. (78) [dashed-dotted line (blue), triangles] and �

(2)
b ≈ 0.05 [dotted line (black), lozenges]; �

(2)
b solves linear

approximate ||errU (�b)|| = 0 when �b ∈ [�v,�
(1)
b ].
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VII. CONCLUDING REMARKS

This work examines the bounce-back reflection (BB rule)
as an impermeability condition for staircase midgrid walls.
The principal deficiency of the BB rule in these geometries is
the unphysical restriction of the tangential advection-diffusion
flux on the solid surface. The focus is put on the quantification
of this deficiency for first four moments of the modeled
averaged distributions in grid-aligned channel and cylindrical
capillary. The analysis and simulations are operated with the
d2Q9 and d3Q15 TRT-ADE schemes in full equilibrium and
relaxation parameter space. We first discover that the coordi-
nate d3Q7 subclass of the d3Q15 scheme inherits in cylindrical
capillary the properties of the d2Q5 scheme in straight
channel [69]: it preserves the prescribed arithmetical-mean
grid value for streamwise-invariant mean advection velocity
(first moment) and isotropic molecular-diffusion coefficient
(second moment). Based on the preliminary computations, we
suggest that the d3Q7 BB scheme retains these properties in
coordinate-aligned ducts of any cross section. This is explained
by the fact that in those geometries the bounce-back spurious
tangential effect is induced by the diagonal equilibrium weight
stencil. We underline that the mass- and velocity-weight
families can be prescribed independently. Our interest for their
full range is because of (i) the advanced stability of the specific
mass- and, especially, velocity-weight stencil [20,21,47]; (ii)
the ability for cross entries in diffusion, dispersion, and anti-
numerical-diffusion tensors [21,45]; and (iii) the “exchange”
between the coordinate and diagonal stencils in rotated
geometry. Although there exist the alternative anisotropic
approaches, either via the linkwise relaxation rates [22,27]
or the extended minimal stencil MRT collision [28,50], all of
them operate with disparate � combinations, and this property
may degrade the bulk stability and accuracy [45]. Although the
anisotropic schemes have been analyzed in the presence of im-
permeable boundaries [22,28,48,65], our work indicates that
a further analysis with respect to the distribution moments is
required.

We show that in the presence of the diagonal equilibrium
weight stencil, the nonequilibrium solution component de-
velops an accommodation correction which links the bulk
(Chapman-Enskog) solution to closure relation of the bounce-
back rule in duct geometries. The two primary first-order
effects of this correction are quantified exactly in a channel
and, because of the discretization effect, only approximately
in a capillary. The first primary effect is a diminution of the
molecular diffusion coefficient proportionally to the diagonal
mass weight t

(m)
d . The relative diffusion-coefficient correction

is independent of the velocity field; in motion, it sums with
the dispersion in the second moment. Further, the analysis of
the diffusion boundary layer is extended to the fourth order;
it allows us to quantify and explain the resolution-invariant
correction in the kurtosis (fourth moment) observed in the
pure-diffusion case. The second primary effect is a diminution
of the prescribed mean advection velocity proportionally
to the diagonal-velocity weight t

(a)
d . The relative advection

correction is analytically constructed in plug and parabolic
profiles; roughly, it scales with the ratio of the boundary
velocity value to its mean. The relative advection correction
is independent of the velocity amplitude and it is much

more significant in a plug flow. The boundary-layer advection
correction is easy to observe by the first-moment measurement.
Next, we estimate the longitudinal Taylor-type boundary-layer
dispersion: it is created by the superposed advective and
boundary-layer velocity profiles. The diffusion and advective
bounce-back effects make the skewness and kurtosis mass
and velocity weight dependent, on top of their truncation
weight dependency [30]. In Poiseuille profile, the relative
truncation and boundary-layer dispersion effects are nearly
Pe independent as Pe increases.

In this work, we propose the double-� TRT approach which
allows for the independent control over the bulk and boundary
effects. We underline that the double-� scheme does not solve
the bounce-back problem of the midgrid and �-dependent
location of the arbitrarily shaped solid surface. The purpose of
the double-� strategy is to remove the primary boundary-
layer effects, and thus to reduce their side effects, within
rectangular and staircase walls. In that, �v remains freely
selectable for the purpose of the advanced accuracy or stability.
The specific solution �

(sol)
b (�v) given by Eq. (78) preserves

prescribed mean velocity in straight Poiseuille flow with the
BB rule. We demonstrate that for any velocity weight (but the
coordinate mass weight), the double-� scheme (78) produces
the quasi-identical solutions with the specular reflection for all
four moments. A similar but distinct dependency �

(sol)
b (�v)

is constructed for Poiseuille profile in a capillary, where it
(almost) cancels the boundary-layer dispersion and reduces
the spurious velocity-weight dependency in skewness and
kurtosis. It is also observed that the mean-velocity correction
varies linearly with the diagonal-velocity weight in flow
around a solid cylinder; this effect is accentuated by the
presence of the straight impermeable side walls. Since there is
no analytical solution for �

(sol)
b (�v) in an arbitrary geometry,

we propose an iterative numerical procedure to calculate
�b, which vanishes the velocity-weight dependency on the
measured first moment. It has been demonstrated that with a
suitable (sufficiently small) initial guess, the required root is
located in a few bisection iterations. These calculations can
be performed once, prior to the main computations in a given
geometry. According to the computations, the small valued
�b does not significantly impair stability because the velocity
near the wall is small.

The advective solution �
(sol)
b (�v) does not vanish the

diffusion bounce-back effect because of the diagonal mass
weight. Indeed, either in a straight channel or cylindrical
capillary, there is no positive �

(sol)
b (�v) root which exactly

preserves the molecular-diffusion coefficient. On the positive
side, this diffusion effect decreases either for high Pe or for
low �b. Indeed, the noticeable disparity with the mass weight
in the effective diffusivity is only observable in the presence of
straight bounding walls and grid-aligned rectangular obstacles.
Around the curved obstacle, as it was observed in a dilute
periodic array of circular cylinders, the boundary layers
are oriented differently and their complex interplay makes
mass-weight dependency indecisive.

So far, the analysis of the LBM solutions has been princi-
pally restricted to relatively smooth nonequilibrium solutions,
well described by the Chapman-Enskog or asymptotic expan-
sions. The approach developed in this study to accommodate
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the nonequilibrium component goes beyond these limitations.
In the presence of discontinuous relaxation rates, or any
other discontinuity in the scheme, the two exact generic
conditions [22,41,82] relate the equilibrium and nonequilib-
rium components across the interface intersected by the link.
The exactness of the constructed dependency �

(sol)
b (�v) in a

channel confirms the linkwise recurrence form [32] for the
nonequilibrium accommodation layers and the validity of the
interface closure condition [41] in their presence. One can
suspect that the Knudsen-type nonequilibrium layers arise at
any interface or boundary mismatch manifesting itself in the
form of resolution-invariant or only first-order convergence
rate in simple geometries. For example, this kind of behavior
has been very recently observed [52] in the presence of the dis-
continuous Dirichlet and Neumann conditions on the external,
regular, or curved boundary, modeled with the curved Dirichlet
boundary rules [48,62] and Neumann boundary rules [62].
The low-order convergence has been also encountered with
the bounce-back Poiseuille flow in inclined channels [85] and

regular or random arrays of spheres [34], the nonuniform
boundary and bulk anisotropic weights [48], the heterogeneous
anisotropic mass weight on the grid-aligned interface [22],
and the coupling of nonuniformly refined grids [44], due
to tangential mismatch in the two last cases. Curiously,
the anomalous currents were suppressed with the help of
free-rate solution equivalent to � = 0 in early two-phase
MRT schemes [40]. Similarly, the oscillations in interface
coupling of the discontinuous Darcy profiles reduce in the limit
� → 0 [82,86]. We suggest that the idea of the appropriated
nonuniform � distribution might find large applicability for
its universal control over the leading-order nonequilibrium
accommodation.

ACKNOWLEDGMENTS

The author is grateful to G. Silva and A. Vikhansky
for critical reading of the manuscript, and thanks ANR for
funding the project LaboCothep through Grant No. ANR-12-
MONU0011.

APPENDIX: DETAILS FOR BOUNDARY-LAYER ANALYSIS

1. Auxiliary averaged functions

We consider Eqs. (24) and (25). In them, 〈P (n)〉 = 0 and 〈M(n)〉 = 0 due to the symmetry. We express the averaged values
〈M(n)〉 and 〈P(n)〉. In straight channel, the auxiliary functions ψ (s)(�,H ) and �(s)(�,H ) for 〈M(n)〉, then φ(s)(�,H ) and
�(s)(�,H ) for 〈P(n)〉 are employed [69], with

M(n) = kn + k(N−n)

kN − 1
,P(n) = kN − 1

kN + 1
M(n), kN = 2

√
� − 1

2
√

� + 1
, n = 0,1,2, . . . ,N = H − 1

ψ (s)(�,H ) = − 〈M(n)〉H
2
√

� − M(N )
= 1, 〈M(n)〉 =

∑N=H−1
n=0 M(n)

H
= 1

H

(
1 − 2

√
� + 2

kN − 1

)
,

φ(s)(�,H ) = 〈P(n)〉H
1 − 2

√
�M(N )

= 1, 〈P(n)〉 =
∑N=H−1

n=0 P(n)

H
= 1

H

(
1 − 2

√
� + 4

√
�

kN − 1

)
,

�(s)(�,H ) = − 〈M(n)〉H
1 − 2

√
�M(N )

=
(

2

1 + kN+1
− 1

)
, �(s)(H )|�= 1

4
= �(s)(�)|H→∞ = 1,

�(s)(�,H ) = 〈P(n)〉H
2
√

� − M(N )
= �(s)(�,H ),H > 1. (A1)

Similarly, in circular cross section of radius R > 1, we express the 〈M(n)〉 via the auxiliary functions ψ (c)(�,R) and �(c)(�,R),
while 〈P(n)〉 employs φ(c)(�,R) and �(c)(�,R):

M(n) = kn + k(N−n)

kN − 1
,P(n) = kN − 1

kN + 1
M(n), kN = 2

√
� − 1

2
√

� + 1
, n = 0,1,2, . . . ,N = 2R − 1

ψ (c)(�,R) = − 〈M(n)〉l
2
√

� − M(N )
, ψ (c)(R)|�= 1

4
= ψ (c)(�)|R→∞ = 1,

〈M(n)〉 = 2π
∑N=R−1

n=0 M(n)r(n)

πR2
= −2k

(
k2R−1 + 1

)+ (k − 1)(2R − 1)(k2R − 1) + 2(k + 1)kR

(k − 1)2R2
(
k2R−1 − 1

) ,

�(c)(�,R) = − 〈M(n)〉l
1 − 2

√
�M(N )

, �(c)(R)|�= 1
4

= �(c)(�)|R→∞ = 1, with l = 2R2

2R − 1
(A2)
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and, respectively,

�(c)(�,R) = 〈P(n)〉l
2
√

� − M(N )
= �(c)(�,R), 〈P(n)〉 = (k2R−1 − 1)

(k2R−1 + 1)
〈M(n)〉,

φ(c)(�,R) = 〈P(n)〉l
1 − 2

√
�M(N )

, φ(c)(R)|�= 1
4

= φ(c)(�)|R→∞ = 1, with l = 2R2

2R − 1
. (A3)

2. Fourth-order-accurate concentration profile

The bounce back creates y-dependent correction C ′(x,y,t) to averaged concentration C̄(x,t) in pure-diffusion simulations
in straight channel. It follows that the apparent fourth-order-accurate equation (39) originates from the averaging of the two-
dimensional pure-diffusion equation (6) in the form

〈T (x,t)〉 = ce�
−(〈�̄2

xC
〉+ 〈

�̄2
yC
〉+ 2t

(m)
d

〈
�̄2

x�̄
2
yC

′〉)−
(

� − 1

4

)〈 Qm∑
q=1

�̄2
qg

+
q

〉
, (A4)

where, with making use of the apparent second-order equation (32),

〈T (x,t)〉 = ∂t C̄ + �−�̄2
t C̄, �−�̄2

t C̄ = �−∂t [∂t C̄] = �−[�−ce(1 + δm)]2∂4
x C̄, (A5)〈

�̄2
xC
〉 = ∂2

x C̄ + 1
12∂4

x C̄ + O(ε6),
〈
�̄2

yC
〉 = 〈

∂2
yC ′〉+ 1

12

〈
∂4
yC ′〉+ O(ε6), (A6)〈

�̄2
x�̄

2
yC

′〉 = ∂2
x

〈
∂2
yC ′〉+ O(ε6). (A7)

In particular, the first component −�−3
c2
e (1 + δm)2 in Abb

3 from Eq. (44) is due to Eq. (A5). The second component 1
12ce�

−(1 +
δm) is due to the first relation in Eq. (A6). The profile C ′(x,y,t), y ∈ [−H/2,H/2], is looked in the fourth-order polynomial
form specified by Eqs. (40) and (41):

C ′(x,y,t) = a0(x,t)y4 + a2(x,t)y2 + a3(x,t), with a2(x,t) = 1
2

[
s∂2

x C̄(x,t) + 1
12 (s + p)∂4

x C̄(x,t)
]
. (A8)

Although the parabolic approximate C ′(x,y,t) = 1
2 s∂2

x C̄(x,t)y2 + a3(x,t) was sufficient to derive kurtosis in Sec. III B when
� = 1

4 , let us provide fourth-order polynomial solution in Eq. (A8). It reads as

� = 1

4
: s = δm, p = δ2

m

2
(H 2 + 6H + 3), a0 = δ2

m

24
∂4
x C̄, with δm = −4t

(m)
d

H
. (A9)

The remaining coefficient a3(x,t) is set with normalization condition 〈C ′(x,y,t)〉 = 0. Employing the arithmetical averaging,
this solution yields Eqs. (A6)–(A7) with〈

∂2
yC ′〉 = 2a2 + a0H

2 − a0 = δm∂2
x C̄(x,t) + 1

12

(
δm + p + 1

2δm
2H 2 − 1

2δ2
m

)
∂4
x C̄(x,t)

= δm∂2
x C̄(x,t) + 1

12 [δm + δ2
m(H 2 + 3H + 1)]∂4

x C̄(x,t),
〈
∂4
yC ′〉 = δ2

m∂4
x C̄(x,t),〈

�̄2
yC

′〉 = 〈
∂2
yC ′〉+ 1

12

〈
∂4
yC ′〉 = δm∂2

x C̄(x,t) + 1
12 (H 2 + 3H + 2)δ2

m∂4
x C̄(x,t),

2t
(m)
d

〈
�̄2

x�̄
2
yC
〉 = 2t

(m)
d δm∂4

x C̄(x,t) = − 1
12 × (

6Hδ2
m

)
∂4
x C̄(x,t). (A10)

By substituting the two last relations into Eq. (A4) for � = 1
4 , it takes the form of Eq. (39) with Eq. (44). When � = 1

4 , we
confirm all these relations quasi-exactly with the help of the fourth-order polynomial fit of the numerical profiles C ′(y) at fixed
x and t . This example illustrates that the high-order finite-difference analysis can be exactly developed for � = 1

4 .
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