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Prediction of the moments in advection-diffusion lattice Boltzmann method.
I. Truncation dispersion, skewness, and kurtosis
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The effect of the heterogeneity in the soil structure or the nonuniformity of the velocity field on the modeled
resident time distribution (RTD) and breakthrough curves is quantified by their moments. While the first moment
provides the effective velocity, the second moment is related to the longitudinal dispersion coefficient (kT ) in the
developed Taylor regime; the third and fourth moments are characterized by their normalized values skewness (Sk)
and kurtosis (Ku), respectively. The purpose of this investigation is to examine the role of the truncation corrections
of the numerical scheme in kT , Sk, and Ku because of their interference with the second moment, in the form of the
numerical dispersion, and in the higher-order moments, by their definition. Our symbolic procedure is based on the
recently proposed extended method of moments (EMM). Originally, the EMM restores any-order physical mo-
ments of the RTD or averaged distributions assuming that the solute concentration obeys the advection-diffusion
equation in multidimensional steady-state velocity field, in streamwise-periodic heterogeneous structure. In our
work, the EMM is generalized to the fourth-order-accurate apparent mass-conservation equation in two- and
three-dimensional duct flows. The method looks for the solution of the transport equation as the product of a long
harmonic wave and a spatially periodic oscillating component; the moments of the given numerical scheme are
derived from a chain of the steady-state fourth-order equations at a single cell. This mathematical technique is
exemplified for the truncation terms of the two-relaxation-time lattice Boltzmann scheme, using plug and parabolic
flow in straight channel and cylindrical capillary with the d2Q9 and d3Q15 discrete velocity sets as simple but
illustrative examples. The derived symbolic dependencies can be readily extended for advection by another,
Newtonian or non-Newtonian, flow profile in any-shape open-tabular conduits. It is established that the truncation
errors in the three transport coefficients kT , Sk, and Ku decay with the second-order accuracy. While the physical
values of the three transport coefficients are set by Péclet number, their truncation corrections additionally depend
on the two adjustable relaxation rates and the two adjustable equilibrium weight families which independently
determine the convective and diffusion discretization stencils. We identify flow- and dimension-independent
optimal strategies for adjustable parameters and confront them to stability requirements. Through specific choices
of two relaxation rates and weights, we expect our results be directly applicable to forward-time central differences
and leap-frog central-convective Du Fort–Frankel–diffusion schemes. In straight channel, a quasi-exact validation
of the truncation predictions through the numerical moments becomes possible thanks to the specular-forward
no-flux boundary rule. In the staircase description of a cylindrical capillary, we account for the spurious boundary-
layer diffusion and dispersion because of the tangential constraint of the bounce-back no-flux boundary rule.

DOI: 10.1103/PhysRevE.95.013304

I. INTRODUCTION

Description of the physical phenomena in laboratory or
field experiments may necessitate fine characterization of a
data set, going beyond its mean and variance. The examples
cover a very broad spectrum of problems. In our concern
they are the statistical measures of soil bimodality [1] and
the related “abnormal” propagators curves for molecular
displacement [2,3]. Their second-order central moment (μ�

2)
determines the Taylor-Aris [4,5] longitudinal dispersion,
through correction kT D0 to molecular diffusion coefficient
D0 in duct flows: D0(1 + kT ) = μ�

2
2t

. The deviation from the
normal distribution is characterized [6] by the third- (μ�

3) and
fourth-order (μ�

4) central moments, typically through skewness

Sk = μ�
3

(μ�
2)3/2 and (excess) kurtosis Ku = μ�

4

(μ�
2)2 − 3. Whereas the

skewness measures the degree of the asymmetry [its negative
(positive) values indicate that data are left (right) skewed
relative the normal profile], the positive (negative) kurtosis

*irina.ginzburg@irstea.fr

indicates how their relative peakiness (flatness) at the center
is balanced by long (short) tails at periphery. In fact, while
the Gaussian distribution presents the asymptotic solution
for long enough time, the mean concentration or residential
time distribution (RTD) [7] may deviate from it for short
time and in finite-length systems where the high-order effects
gain in relevance. The nuclear magnetic resonance (NMR)
may allow the measurements of skewness [2,3,8] but estimate
of the kurtosis remains difficult due to the experimental
error [8]. At the same time, although analytical [9–12] and
numerical approaches [13,14] are intensively used to quantify
the Taylor-Aris dispersivity, the higher-order non-Gaussian
moments are hardly addressed.

The recently developed extended method of moments
(EMM) [15] consists of the mathematical algorithm which
allows to quantify any-order moment in given periodic velocity
field and soil structure, for entire Péclet range (Pe), by
sequentially solving linear steady-state advection-diffusion
equations with specific sources inside a single cell. At the
second order, the EMM is equivalent to Brenner’s method [9]
for effective dispersion in spatially periodic velocity field;
this methodology has been implemented numerically [13] and
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FIG. 1. The first diagram illustrates the three centered average concentration profiles in bimodal channel (composed of open layer and
porous layer of porosity φ = 10−1) produced by (i) the averaged ADE (red, dotted line), (ii) the d2Q5 TRT scheme (blue, solid line), and (iii)
the reconstruction from the predicted by the EMM values (black, dashed line): kT = 0.94, Sk� = −0.84

√
Pe, and Ku� = 1.49Pe for Pe = 13.6.

The second diagram displays similar comparison for the Darcy flow in stratified periodic soil of porosity contrast 50 where kT = 19.57,
Sk� = 2.37

√
Pe, and Ku� = 7.82Pe for Pe = 9.07. In the last diagram, the reconstruction procedure involves the four next moments and

achieves the entire agreement between the TRT and EMM. These figures are borrowed [15]: Figs. 24(b), 14(a), and 15(a) there, respectively.

successfully applied in a series of synthetic porous structures.
The work [15] shows that the two sets of moments, namely,
spatial moments of average concentration evolving in time or
temporal moments of resident time distribution [7] varying in
space, are linked through simple recursive formulas, meaning
that one can be obtained from another. The EMM assumes
the fully developed Taylor regime, when kT becomes time
independent, while Sk and Ku decay either as Sk�t

−1/2 and
Ku�t

−1 in time, or as Sk�x
−1/2 and Ku�x

−1 streamwise
from the inlet, respectively. The corresponding distribution
can be reconstructed from the predicted moments using the
entropy-maximization procedure [16]. The velocity field may
have the microscopic, mesoscopic, or macroscopic nature: the
EMM is symbolically exemplified for dispersion in shallow
channels of different cross section, power-law non-Newtonian
fluid, Darcy and parabolic flows in double-porosity stratified
soil and cylindrical capillary. The two principal advantages
of the EMM over direct transient multidimensional solvers of
the advection-diffusion equation (ADE) is that it reduces the
problem of the effective moments to steady state and a single
(streamwise-periodic) cell.

This work concerns with the direct simulations of the solute
transport by the lattice Boltzmann method (LBM-ADE). Pio-
neered in early works [17–19], it has been applied in fractures
and conduits [20–22], and more recently, in reconstructed
rock samples [23–27]. The LBM-ADE is appealing for its
intrinsic exact mass conservation supported by the Maxwell
reflections at solid walls, and for its uniform update through
the soil interfaces matching the physical continuity condi-
tions implicitly (finer interface analysis or explicit interface
conditions can be found in works [15,28–33]). The LBM
is also favored for its advanced computational efficiency;
however, the direct serial solution of the ADE remains a
time-consuming task even for the most efficient numerical
techniques. Specific adaptation for the explicit tracking of
the tracer displacement [23] or Brownian motion of parti-
cles [27] adds further complication. However, the results are
promising. From the numerical perspective, the experimental
data for molecular propagator distributions in different porous
structures ranging from homogeneous bead pack to bimodal
Portland Carbonate [3] are matched by the LBM numerical
solutions [23]. On the theoretical plan, the two approaches,

the EMM and LBM-ADE, were validated one against the other
by using the two-relaxation-times (TRT) scheme [15] which
extends uniform soil TRT schemes [34,35] to heterogeneous
soil. Figure 1 illustrates the two synthetic examples where
the soil bimodality creates the well-pronounced “asymmetric”
effects. The profiles reconstructed from the first four EMM
moments and the direct TRT simulations mainly agree and
predict deviations from the Gaussian distribution (two first
diagrams); a better agreement is achieved by reconstructing
with a higher number of the EMM moments (last diagram).
These results confirm that the LBM-ADE is indeed able to
capture the principal non-Gaussian effects.

This work aims to analyze the interference of the high-order
moments with the truncation corrections in the LBM-ADE.
The idea is to generalize the EMM from the second-order
ADE to the fourth-order-accurate apparent transport equation
of the numerical scheme. The EMM looks for the solution
of the transport equation as the product of a long harmonic
wave and a spatially periodic oscillating part. Its period is set
by the periodicity of the porous cell, and it is much shorter
than the length of the wave. Substitution of this ansatz into
the transport equation and the expansion into Taylor series
with respect to the (small) wavelength γ yields a chain of
fourth-order steady-state transport equations at a single cell,
with respect to the so-called “extended B-field” variable.
The source term of the B-field equation depends on the
nonuniformity of the velocity field; the solvability condition
allows for determination of the temporal (RTD) moments.
In duct flow, the EMM approach will reduce the problem
to the fourth-order diffusion equation with sources, allowing
for symbolic solutions for B-field variable and the temporal
moments. Further, the aforementioned recursive formulas [15]
connect the temporal and spatial moments of the averaged
concentration. With their help, we will derive the apparent
solutions for kT , Sk, and Ku, and specify their dependency
over all relevant adjustable parameters of the TRT scheme. The
developed approach applies for any other numerical method
providing its truncation corrections are known.

The truncation corrections have been partly derived in
some of LBM-ADE schemes, as the multiple-relaxation times
(MRT) models [34,36,37] or single-relaxation-times [38]
Bhatnager-Gross-Krook (BGK) schemes [39,40]. Due to
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symmetry argument, the TRT scheme allows to develop
truncation analysis in an elegant form [35,41], independent
of the discrete-velocity set and equilibrium distribution.
The truncation analysis [35,41] does not involve either the
Chapman-Enskog, Fourier, or asymptotic analysis, rather it is
based on the exact mass-conservation equation of the scheme,
which is expressed in the form of the central discrete operators,
directional in space. They are applied to any equilibrium
and nonequilibrium components, interconnected via the exact
recurrence equations [42] of the TRT scheme. In these
equations, the discrete operators are developed into Taylor
series sequentially providing solution for the nonequilibrium
component. The second- and higher-order time derivatives are
all replaced by spatial ones, recovered through the lower-order
approximations. In this way, the truncation coefficients are
established without specifying the equilibrium function and
discrete-velocity set: they uniquely depend on the two relax-
ation eigenfunctions: �− for antisymmetric (diffusion) mode
and �+ for symmetric (free) mode. So far, the third- and fourth-
order-accurate TRT truncation corrections have been ex-
pressed in a generic form, suitable for isotropic and anisotropic
equilibrium functions from one to three dimensions, either
in homogeneous [35,41] or heterogeneous [15] soil. Further,
the equilibrium distribution predicates the differential form
of the fourth-order equation; the isotropy of its third-order
(convective) term is related to the equilibrium velocity weight,
while the isotropy of its fourth-order (diffusion) term is related
to the equilibrium mass weight [35]. The two weight families
can be selected independently: they play similar roles with
the finite-difference, convective and diffusion, discretization
stencils. Additionally, the equilibrium introduces diffusion-
coefficient scale parameter, say ce: D0 = ce�

−, where �− > 0
and ce is freely adjustable inside its mass-weight-dependent
stability interval [35,43,44]. In transition, the truncation
coefficients depend on the ce and �− separately.

At steady state, the truncation coefficients become poly-
nomials of the product of two eigenfunctions; this con-
trol parameter is denoted � = �+�−. The two particular
choices [34,35,41] � = 1

12 and 1
6 vanish, respectively, the

third- and fourth-order spatial truncation components for any
equilibrium. A special attention will be also put on � = 1

4 , the
so-called OTRT (optimal TRT) subclass where the necessary
stability bounds become (i) independent of �− and �+ and
(ii) sufficient, either with the minimal models or with the
specific full equilibrium weights [43,44]. The OTRT subclass
also enables the direct finite-difference interpretation of exact
mass-conservation equation of the TRT scheme and its stability
conditions [35,43]. The optimal stability of the minimal
schemes is well understood and confirmed numerically, e.g.,
in d2Q5 with the Poiseuille profile [41]. The most interesting
combinations of the adjustable parameters, such as those which
liberate the transport coefficient either from � or weight
dependency, or those which eliminate numerical errors, will
be explored in this work. Note that in the physical model [15],
the kT , Sk, and Ku are set by Pe and the geometry alone. We
will examine the Pe dependency in the apparent coefficients
and establish their asymptotic behavior with Pe and mesh
resolution.

The d3Q7 OTRT scheme was recently applied in investiga-
tion [12] for three subsequent time-scale regimes (diffusion,

advection, and dispersion) in shear thinning flow prescribed
in the cylindrical capillary. The numerical and analytical
(derived there) expressions for Taylor-dispersion coefficients
in Herschel-Bulkley fluid were found in very good accordance
in large Pe range, Pe ∈ [50,800].

In fact, the second-order (�-independent) numerical dif-
fusion of the scheme, which is presented for linear-velocity
equilibrium even in plug flow, has been identified for a
long time and different equilibrium and relaxation techniques
were proposed for its elimination (see [41,45,46]). However,
the Taylor-type longitudinal numerical dispersivity coefficient
δk

(tr)
T , due to the transverse velocity gradient, was quantified

only recently [41]. It sums with the physical Taylor value
kT in variance of the numerical distributions. The closed-form
expression was derived [41] for δk

(tr)
T with the help of the Taylor

argument [4], by extending it to the third- and fourth-order
truncation corrections. This result was specified [41] with
the d2Q5 and d2Q9 TRT schemes for Poiseuille advection
profile: it is quasi-exact once the discretization effect in the
computation of two first moments is accounted for. It was
shown that δk

(tr)
T decays as the second-order correction to kT .

Within small Pe range, the δk
(tr)
T noticeably depends on ce

and �−. Since δk
(tr)
T scales as Pe2, its relative contribution

to kT is asymptotically constant and is set by equilibrium
velocity weight and �, and it can be eliminated or reduced for
a proper relation between them. The numerical dispersivity of
the d3Q15 TRT scheme in cylindrical capillary will be first
derived following the same methodology and compared with
the channel solution [41]. In particular, the joined truncation
and discretization estimate will produce numerical results [12]
for dispersivity in Newtonian fluid very accurately. However,
the “manual” exploration of the truncation corrections for
skewness and kurtosis becomes complicated and the EMM
approach will be called for help. The EMM-based approach
will give the same result on the numerical longitudinal
dispersion as the direct analysis of the truncation corrections
following [41]. On the one hand, this agreement underlines
the similarity between the Taylor analysis [4], Aris method of
moments [5], and the EMM; on the other hand, it confirms the
validity of the Taylor assumptions to higher-order equations.

The subtle point of the numerical validation lies in the
accuracy of the boundary scheme used to enforce the zero-flux
Neumann condition on the impermeable walls. While this
issue is not expected to pose any difficulty in a straight
channel thanks to specular-forward (nonlocal) mirror reflec-
tion [21,47,48], it is not the case in a cylindrical pipe, where
we apply the bounce-back boundary rule (BB hereafter).
Although the curved boundary is only staircase approximated
with the bounce-back rule, because of the leading-order
midgrid location of the solid surface [47,49], our main concern
is about its restriction on the tangential flux at the solid
wall [47]. It was only recently exactly quantified [50] in
straight channel that this deficiency causes (i) a diminution of
the imposed molecular diffusion coefficient D0, in proportion
to the diagonal mass-weight value, and (ii) a retardation of
the imposed advective flux, in proportion to the diagonal
velocity-weight value. The extension of the results [50] to
the cylindrical capillary is performed in joined work [51];
the results [51] enable us to account for the boundary-layer
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diffusion and dispersion in the full weight space. Although it
is found [51] that only the d3Q7 weight subclass of the d3Q15
is free from the spurious boundary effects in grid-aligned
open-tubular conduits, we will need the hydrodynamic mass
weight for the fourth-order isotropy in diffusion form, required
by truncation analysis. We keep also in mind that the suitable
diagonal velocity weights [43,44] have much larger stable
velocity range than the coordinate stencil of the d3Q7 scheme.

The rest of the paper is organized as follows. Section II
provides the principal elements of the EMM approach, speci-
fies the TRT-ADE scheme, summarizes its stability, truncation
results, and connections with the finite-difference schemes,
then provides a qualitative description of the bounce-back
effects. Section III develops the EMM approach for the
fourth-order-accurate apparent transport equation of the TRT
scheme in straight channel and produces the closed-form
bulk estimate for kT , Sk, and Ku in d2Q9 TRT scheme, for
plug and parabolic flow. The numerical validation mostly
applies the specular-forward reflection. Section IV performs
a similar analysis for the d3Q15 scheme in the cylindrical
capillary, where the numerical validation accounts for the
spurious bounce-back effects of the bounce-back rule. The
optimal parameter guidelines are discussed in Secs. III G
and IV E for two- (2D) and three-dimensional (3D) results,
respectively; the flow- and dimension-independent optimal
strategies are then summarized in the concluding Sec. V.
Appendix A presents the generic form [35,41] of the apparent
fourth-order-accurate mass-conservation equation of the TRT
scheme. Appendix B presents the detailed derivation of this
result in the particular case of � = 1

4 , illustrating connections
with the finite-difference schemes.

II. BACKGROUND

Section II A recalls and illustrates the working principles
of the EMM, extended method of moments [15]; Sec. II B
summarizes the TRT-ADE scheme [15,28,34,35], the two-
relaxation-times numerical scheme for advection-diffusion
equation, discusses its equilibrium and relaxation degrees of
freedom, stability conditions, generic truncation form and
connections with the finite-difference schemes; Sec. II C
formulates the error estimate which will be applied for
the apparent (truncation) moments of the TRT scheme and
their numerical values with respect to the predicted physical
moments; Sec. II D outlines how the possible boundary
effects [50,51] will be accounted for. It should be said
that although the truncation corrections are also known in
heterogeneous TRT schemes [15], the EMM and the TRT
algorithms are both restricted to the homogeneous transport
of the solute in duct flow in this work because the effective
location of the underlying interface continuity conditions may
dominate over truncation accuracy [15,28,32]. In fact, while
the strong non-Gaussian effects are only expected in highly
heterogeneous systems, the kT , Sk, and Ku differ from zero
due to the nonuniformity of velocity field even in most basic
systems, as the spatial spread of the Dirac plume by parabolic
velocity profile. We use this illustrative example in a channel
and in a cylindrical capillary, operated with the d2Q9 and
d3Q15 schemes, respectively; the reference (physical) kT

solution [4,5] is well known, the Sk and Ku solutions are

constructed by the EMM (we will restrict them from the
bimodal system [15] to open flow, and transform the moments
from the RTD to spatial dispersion).

A. Extended method of moments (EMM)

Consider modeling of the isotropic d-dimensional
advection-diffusion equation in duct-type (open) flow, a par-
ticular case of the heterogeneous porous flow where the EMM
is formulated [15]. The evolution of the solute concentration
C(r,t) in the prescribed steady-state velocity field U(r) is
described by the second-order advection-diffusion equation
(ADE)

∂tC + ∇ · (UC) = ∇ · (D0∇C). (1)

Assume U to be streamwise periodic over a single cell and
the mean seepage velocity U = 〈U〉 be directed along the x

axis, 〈. . .〉 = S−1
∫
S
ds denotes the average value over the open

part in cross section S(x). In the established Taylor-dispersion
regime, the averaged concentration C̄(x,t) = 〈C〉 is expected
to propagate with velocity U and to diffuse with longitudinal
dispersion coefficient D:

∂t C̄ + ∂xUC̄ = D∂2
x C̄, D = D0(1 + kT ). (2)

The nondimensional dispersivity coefficient kT determines
the Taylor-dispersion correction [4] to molecular diffusion
coefficient D0; such a dispersion is induced by the transverse
gradient in velocity field. Aris [5] demonstrates that D can
be restored from the variance of the averaged distribution. Let
μn(t) = ∫ ∞

−∞(x − x0)nC̄(x,t)dx denote the nth raw moment of
C̄, while μ�

n(t) be its nth central moment: μ�
n(t) = ∫ ∞

−∞(x −
x0 − U t)nC̄(x,t)dx, for n � 2. Hereafter, we address the first
four moments assuming the exact mass conservation with
μ0(t) ≡ 1. The mean velocity U , dispersion coefficient D,
skewness Sk, and kurtosis Ku are set by the first four spatial
moments:

U = μ1

t
, D = μ�

2

2t
, Sk(t) = μ�

3(t)[
μ�

2(t)
]3/2 ,

Ku(t) = μ�
4(t)

[μ�
2(t)]2

− 3. (3)

The EMM sequentially predicts the moments of the solute
distributions obeying Eq. (1), without directly solving it. The
method is based on the assumption that solution of Eq. (1) can
be presented in a form of the product of the periodic oscillating
part P̃(ω,γ ; r/ε) (in fast variables r/ε with small parameter
ε) with a slowly varying component:

C(ω,γ ; r,t) = 1

2π
P̃(ω,γ ; r/ε) exp [i(γ x − ωt)]. (4)

The small-valued wave number (spatial frequency) γ and the
temporal frequency ω are unknowns to be found through their
Taylor expansions:

“s expansion” : ω(γ ) = −i

∞∑
n=1

ω(n)(iγ )n and

“t expansion” : γ (ω) = −i

∞∑
n=1

γ (n)(iω)n. (5)
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By substituting one expansion into another, the coefficients of
the two expansions (5) are inter-related [15]:

ω(1) = 1

γ (1)
, ω(2) = − γ (2)

γ (1)3 , ω(3) = −−2γ (2)2 + γ (1)γ (3)

γ (1)5
,

ω(4) = −5γ (2)3 − 5γ (1)γ (2)γ (3) + γ (1)2
γ (4)

γ (1)7 , . . . . (6)

Therefore, if one set is found, the other one can be computed
with Eq. (6). In order to relate {γ (n)} and {ω(n)} with the
moments, we note that, on the one hand, P̃(ω(γ ); r/ε)e−iω(γ )t

can be regarded as the space Fourier transform of the
concentration for given γ :

P̃(ω(γ ); r/ε) exp [−iω(γ )t] =
∫ ∞

−∞
C(r,t) exp(−iγ x)dx.

(7)

On the other hand, P̃(γ (ω); r/ε)eiγ (ω)x is the time Fourier
transform of the concentration:

P̃(γ (ω); r/ε) exp [iγ (ω)x] =
∫ ∞

−∞
C(r,t) exp(iωt)dt. (8)

It follows that whereas the set {ω(n)} defines the spatial
moments μn(t) for evolution of the Dirac delta function
C(r,t = 0) = δ(x − x0), the set {γ (n)} determines the temporal
moments μn(x) = ∫ ∞

−∞(t − t0)nP (x,t)dt of the resident time
distribution P (x,t) (RTD) for a suitable inlet boundary condi-
tion, such as the Heaviside step function C(x = 0,t) = H (t).
We obtain

μ1(t) = ω(1)t, μ�
2(t) = −2ω(2)t, μ�

3(t) = 6ω(3)t,

μ�
4(t) = 12t(−2ω(4) + ω(2)2

t), (9)

μ1(x) = x

γ (1)
, μ�

2(x) = 2γ (2)x, μ�
3(x) = 6γ (3)x,

μ�
4(x) = 12x(2γ (4) + γ (2)2

x). (10)

Since one may restore {ω(n)} from {γ (n)} with Eqs. (6), and
vice versa, one may also restore the moments set from each
other. In spatial dispersion, U , D, Sk(t), and Ku(t) in Eq. (3)
can be computed from ω(1)–ω(4):

U = 1

γ (1)
= ω(1), D = U3γ (2) = −ω(2),

Sk(t) = 3ω(3)t−1/2

√
2
∣∣ω(2)

∣∣3/2 , Ku(t) = −6ω(4)t−1

(ω(2))2
. (11)

As time increases, Sk(t) and Ku(t) tend to zero as t−1/2 and
t−1, respectively.

In dimensionless (primed) variables, obtained with the
characteristic length L, velocity U , and time L/U , solution
of Eq. (1) is looked in the form

C(r ′,t ′) = 1

2π
P̃(ω′,r ′) exp[i(γ ′x ′ − ω′t ′)],

γ ′ = Lγ, ω′ = L
U ω. (12)

By plugging ansatz (12) into Eq. (1), it reduces to steady-
stateADE with the mass source for P̃(ω′,r ′):

∇′ · (ŨP̃) − Pe−1�′P̃ = i[ω′ − γ ′Ũx]P̃ + 2iγ ′Pe−1 ∂P̃
∂x ′

− Pe−1γ ′2P̃,

with �′ = ∇′ · ∇′, ∇′ = L∇,

Ũ = U
U , Pe = UL

D0
. (13)

The key point of the EMM is that the two functions P̃(ω′,r ′)
and γ ′(ω′) in Eq. (13) are expanded into series over ω′ [cf.
Eqs. (5)]:

P̃(ω′,r ′) =
∞∑

n=0

B(n)(r ′)(iω′)n, γ ′(ω′) = −i

∞∑
n=1

γ ′(n)(iω′)n,

γ ′(n) = Unγ (n)

L(n−1)
, γ ′(1)

0 = 1. (14)

The EMM formulates the mathematical algorithm by sequen-
tially solving Eq. (13) with respect to the distribution {B(n)(r)},
called extended B fields, and the set of the coefficients {γ ′(n)},
under no-flux boundary condition imposed for {B(n)(r)} at
solid boundaries (the examples will be given below). In spatial
dispersion, the set {ω′(n) = ω(n)

UL(n−1) } is restored with Eqs. (6)
from the obtained solution {γ ′(n)}. This allows to compute
the dimensionless time-independent coefficients kT , Sk�,
and Ku�:

kT = D

D0
− 1 = γ ′(2) UL

D0
− 1 = −ω′(2) UL

D0
− 1,

Sk� =
√
U t

L Sk(t) = 3ω′(3)

√
2|ω′(2)|3/2

,

Ku� = U t

L Ku(t) = − 6ω′(4)

(ω′(2))2
. (15)

TABLE I. This table gives dimensionless coefficients ω′(2)–ω′(4) for spatial dispersion in the parabolic velocity profile imposed in cylindrical
capillary (L = R, Pe = 2RU

D0
) and straight channel (L = H , Pe = HU

D0
). The coefficients of the dispersivity kT , skewness Sk�, and kurtosis Ku�

are expressed from ω′(2)–ω′(4) with Eq. (15).

Shape ω′(2)
ω′(3)

ω′(4)
kT Sk� = Sk × √

tU/L Ku� = Ku × tU/L

Circular −( 2
Pe + Pe

96 ) Pe2

11520
41Pe3

20643840
Pe2

192
1
10

√
3
√

Pe7

(Pe2+192)3 − 123Pe5

1120(Pe2+192)2

Channel −( 1
Pe + Pe

210 ) −Pe2

69300
Pe3

2252250
Pe2

210 − 1
22

√
21
5

√
Pe7

(Pe2+210)3 − 84Pe5

715(Pe2+210)2
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FIG. 2. This figure compares the averaged concentration profiles of solute advected by the parabolic velocity field in cylindrical capillary
of R = 10 (l.u.) when Pe ≈ 9.5 (left diagram) and Pe ≈ 95 (right diagram). The profiles are restored (dashed-dotted line, black) from the
predicted values for U , k

(c)
T , Sk�, and Ku� in Table II. They are compared to Gaussian distribution (solid line, magenta) where Sk� = Ku� = 0.

The profiles are monitored at t ′ = D0/R
2t ∈ [ 2

√
3

9 ,
√

3
3 ,

√
3

2 , 2
√

3
3 ].

Notice that U and kT are the same for spatial and temporal
dispersions but Sk� and Ku� [defined by replacing t by x for
RTD in Eq. (15)] differ in this respect. The two dispersions
were analytically and numerically illustrated [15] in a series
of examples, such as the Darcy flow in heterogeneous
stratified soil, the parabolic flow in stratified channel and
double-porosity cylindrical capillary, the power-law fluid in
cylindrical tube, and shallow flow in differently shaped pipes.
In particular, the four nondimensional components {γ ′(n)}
have been reported [15] for Poiseuille flow in a capillary
and straight channel [see, respectively, Eqs. (97)–(103) and
(107) there]. The corresponding solutions for {ω′(n)} and kT ,
Sk�, and Ku� from Eq. (15) are reported in Table I. Notice
that in a capillary, we apply L = R in EMM following [15],
but all our final results are reexpressed via Péclet number
Pe = 2RU/D0, as adopted in this work. The dispersivity
coefficient kT takes the well-known Taylor-Aris values, labeled
as k

(s)
T in straight channel and k

(c)
T in cylindrical capillary. Given

U , kT , Sk�, and Ku�, one may visualize the profiles with the
help of the entropy-maximization reconstruction procedure
[16].

Figure 2 compares the reconstructed profiles in the capillary
of radius R = 10 (grid nodes) relative to the Gaussian
distribution, at Pe ≈ 9.5 and Pe ≈ 95. The reconstruction
is performed from the first four moments. These and other
numerical simulations apply the parameter range from Table II
for molecular-diffusion value D0 (l.u.) and mean velocity

U (l.u.). The Gaussian distribution obeys Eq. (2) with D =
D0(1 + k

(c)
T ). It has therefore the same values for the two

first moments as the EMM, but zero skewness and kurtosis
in the case of the spatial spreading of the Dirac plume. The
difference with the Gaussian profiles is observable for Pe ≈ 95
where, according to Table II, the nonzero (physical values) are
Sk� ≈ 1.63 and Ku� ≈ −9.99, so that the physical distribution
is skewed right and slightly more flat than the normal one.
The visual “asymmetric” effects are stronger at shorter time
but the higher are these effects the greater is the number
of moments required for the reliable reconstruction [15].
Additionally, the reconstruction procedure may manifest the
presence of instabilities in sharp profiles. In this work, the
numerical moments, rather than the profiles, will be compared
to their physical values predicted by the EMM from Eq. (1)
and reported in Table II. The comparison of the moments is
much more sensitive to the quality of the numerical solutions,
especially in open flow, where Sk� and Ku� are relatively
weak and the truncation or boundary effect may compete with
them.

B. Two-relaxation-time TRT-ADE scheme

The TRT schemes [28,34,35] assume the d-dimensional
discrete-velocity set consisting of zero-amplitude vector c0

and Qm = Q − 1 vectors cq connecting cuboid-grid nodes r .
Each vector cq has the opposite one: cq̄ = −cq , and the pair of

TABLE II. This table gives parameters for four numerical experiments with the parabolic profile imposed in capillary of radius R = 5 × 2n,
n = 0,1,2. The molecular diffusion coefficient is D0 = ce�

−, Pe = 2RU
D0

. The mean velocity U = |U |max/2 is set with |U |max(n = 0) =√
ce|ce=1/30 = 2 × 0.091287. The Sk� and Ku� apply their solutions from Table I. These two coefficients are equal to zero in Gaussian

distribution.

Expt. Pe = 2RU
ce�− U ce (�−)2 k

(c)
T = Pe2

192 Sk� = Sk × √
tU/R Ku� = Ku × tU/R

I 2.47461 0.091287/2n 1
3

√
3
2 3.19 × 10−2 1.48 × 10−3 −2.6 × 10−4

II 9.48682 0.091287/2n 1
3

1
12 4.687 × 10−1 9.62 × 10−2 −1.06 × 10−1

III 24.74612 0.091287/2n 1
30

√
3
2 3.19 5.72 × 10−1 −1.58

IV 94.8682 0.091287/2n 1
30

1
12 46.87 1.63 −9.99
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two opposite velocities {cq,cq̄} is called link. Accordingly, the
two populations per link fq(r,t) and fq̄(r,t) are decomposed
into their symmetric and antisymmetric components: f ±

q =
(fq ± fq̄)/2. The TRT scheme updates them with the help of
the two relaxation parameters s± ∈]0,2[:

fq(r + cq,t + 1) = fq(r,t) + g+
q + g−

q ,

g±
q = −s±(f ±

q − e±
q ), q = 0, . . . ,

Qm

2
,

fq̄(r − cq,t + 1) = fq̄(r,t) + g+
q − g−

q , q = 1, . . . ,
Qm

2
.

(16)

The two eigenfunctions �± = 1
s± − 1

2 are positive. The
generic equilibrium distribution {eq = e+

q + e−
q } for the

modeling of the isotropic or anisotropic ADE can be found
in [45] [see Eq. (26) there]. It operates with the minimal
coordinate discrete-velocity sets dDQ(2D + 1), as the d2Q5
and d3Q7, and the “hydrodynamic” ones, as the d2Q9,
d3Q13, d3Q15, and d3Q19. This work focuses on the linear
isotropic schemes d2Q9 in 2D and d3Q15 in 3D. A special
attention will be paid to their respective coordinate subsets,
the d2Q5 and d3Q7. The common form for equilibrium
distribution of d2Q9 (2D) and d3Q15 (3D) schemes, {e±

q (r,t)}
is computed with the local mass value C(r,t) = ∑Qm

q=0 fq

and prescribed velocity U(r,t) = {Uα,α = 1, . . . ,d}:

e+
q (r,t) = C

[
t (m)
c ce + t (u)

c Ū 2 + 1

2

(
U 2

α − Ū 2
)]

,

e−
q = t (a)

c CUαcqα, if cqα 
= 0, cqαcqβ |α 
=β = 0

(17a)

e+
q (r,t) = C

⎛
⎝t

(m)
d ce + t

(u)
d Ū 2 + 1

Nd

∑
α 
=β

UαUβcqαcqβ

⎞
⎠,

e−
q = t

(a)
d CU · cq, if cqαcqβ |α 
=β 
= 0 (17b)

e+
0 (r,t) = C(r,t) − 2

Qm
2∑

q=1

e+
q (r,t), e−

0 = 0,

with Ū 2 = U 2

d
, U 2 =

d∑
α=1

U 2
α . (17c)

In these relations, Eq. (17a) applies on the subset of 2d “coor-
dinate” discrete velocities, with 2d = 4 in d2Q9 and 2d = 6
in d3Q15, Eq. (17b) operates on the Nd = 4 “diagonal” links
in d2Q9 and 8 “diagonal” links in d3Q15; the last equation
for immobile population assures local mass conservation by
the TRT operator (16). The three independent, non-negative,
isotropic weight families t (·)

q = {t (m)
q ,t (a)

q ,t (u)
q } obey the same

constraint:
∑Qm

q=1 t (·)
q cqαcqβ = δαβ , that is the coordinate t (·)

c

and the diagonal t
(·)
d weight values are related as

t
(·)
d = 1 − 2t (·)

c

Nd

, t (·)
c ∈

[
0,

1

2

]
,

with Nd =
Qm∑
q=1

c2
qαc2

qβ, α 
= β,

Nd = 4 (d2Q9), Nd = 8 (d3Q15). (18)

Minimal schemes. The coordinate schemes dDQ(2D + 1)
lack the diagonal links, Eq. (17b) vanishes in them whereas
Eq. (17a) reads as

d1Q3,d2Q5,d3Q7 : t (·)
c = 1

2 , t
(·)
d = 0,

e+
q = 1

2C(ce + U 2
αc2

qα), e−
q = 1

2CUαcqα, if cqα 
= 0, q = 1, . . . ,Qm = 2d. (19)

In the absence of external mass source, the exact mass-
conservation equation of the TRT scheme (16) reads as

Qm∑
q=0

g+
q (r,t) = 0, ∀ r, ∀ t. (20)

We will not apply any mass source but the prescribed
local mass-source quantity S(r,t) can be readily included,
e.g., by adding its distribution Sq(r,t)/s+ to e+

q for

q 
= 0, and [S(r,t) − ∑Qm

q=1 Sq]/s+ to e0(r,t), resulting in∑Qm

q=0 g+
q (r,t) = S(r,t) in Eq. (20). In this way, the trunca-

tion [35] and recurrence equations based bulk and boundary
analysis [42] will keep their form, automatically providing
the spatial and temporal corrections due to the source dis-
tribution, similar to flow schemes [52–54]. The macroscopic
concentration value should be redefined: C(r,t) → C(r,t) +
S(r,t)/2, in order to properly parametrize the solution by the
nondimensional numbers of the problem [42].

Second-order-accurate approximation. In this work, we
limit ourselves to either constant velocity U = Ux = U or

the streamwise-invariant parabolic profiles Ux(y) and Ux(r)
in straight channel and cylindrical capillary, respectively.
The Chapman-Enskog expansion [34,45] and the recurrence-
equations-based analysis [35,41] show that the quadratic
velocity terms UαUβ in Eq. (17) are sufficient to remove the
entire second-order numerical-diffusion tensor in streamwise-
invariant flows, at least. We further confirm this result by
numerical computation in cylindrical capillary. The second-
order-accurate approximation of Eq. (20) fits Eq. (1) with
the molecular diffusion coefficient D0 = ce�

− (in lattice
units). A comparison with the analytical or physical results
requires to set the same Péclet numbers. Thereby, whereas
�− = 1

s− − 1
2 determines D0, the �+ = 1

s+ − 1
2 , and hence

their product � = �−�+, is free tunable. When � is fixed,
the two relaxation rates are linked through simple relation:
s+ = 2(2−s−)

2−s−+4s−�
.

Stability. The diffusion-coefficient scale parameter ce ∈
]0,c(max)

e ] can be freely selected inside its stability inter-
val [35,43], with c(max)

e = 1
d

in minimal models, c(max)
e = 1

4t
(m)
c

in d2Q9, and c(max)
e = 1

1+4t
(m)
c

in d3Q15. Therefore, the diagonal
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mass weight allows to increase c(max)
e and reach large diffusion

coefficients with relatively small and more accurate �−; this
property is important in highly nonlinear ADE macroscopic
flow and transport problems, e.g., [55]. In d-dimensional con-
stant velocity field U , the square of velocity amplitude U 2 =∑d

α=1 U 2
α is restricted in d2Q5 and d3Q7 to the simple stability

condition [35,43]: U 2 � min{1 − dce,
d

d−1ce}. The first con-
dition is enforced by “diffusion-dominant” stability branch,
where U 2 � 1 − dce guarantees the positivity of the immobile
weight e0/C. The condition e0/C > 0 is also necessary in
the d3Q15 where the “diffusion branch” then dictates: U 2 �
min{1 − ce,3(1 − ce/c

(max)
e )/(1 + 4t (u)

c )} when t (u)
c = 1

2 ; when
t (u)
c 
= 1

2 , the d3Q15 has the additional stability constraint
U 2 � 6t (m)

c ce/(1 − 2t (u)
c ). This last condition noticeably re-

stricts the efficiency of the model at high Pe when ce → 0;
thereby, we adopt t (u)

c = 1
2 in d2Q9 and d3Q15. In d2Q9,

e0/C > 0 is not necessary and the “diffusion branch” imposes
U 2 � min{1 − ce,1 − 4t (m)

c ce/(2t (u)
c ), t (u)

c 
= 0}. The neces-
sary “advection-dominant” stability branch [43] of the minimal
sets is U 2 � d

d−1ce. It is too restrictive when ce → 0 and
it can be in principle relaxed in d2Q9 and d3Q15 schemes
thanks to the (mixed) anti-numerical-diffusion terms UαUβ ,
α 
= β in Eq. (17b). However, this stability bound effectively
vanishes only for several (optimal) combinations of � and
weights, typically, when � = 1

4 and t (a)
c = t (m)

c = 1
4 , ∀ t (u)

c in
d2Q9 and t (a)

c = t (m)
c = 1

4 , t (u)
c = 1

2 in d3Q15 [in more detail,
see [35]: Eqs. (3.19) and (3.20) and Eqs. (3.23) and (3.24) for

(anisotropic) factor aα = 0 and isotropic diffusion tensor, and
Eq. (3.7) for optimal weights].

The OTRT subclass. The case � = 1
4 , where the

arithmetical-mean value of two relaxation rates is equal to one,
that is s+ = 2 − s−, is referred to as the “optimal subclass”
OTRT due to its distinguished stability properties [43]. The key
point is that, except for � = 1

4 , the effective stable velocity
amplitude depends on �− [43,44]. By respecting necessary
stability conditions, the � = 1

4 should allow to reach any Pe by
decreasing �−. The necessary and sufficient stability criteria,
in parameter space {ce,�

−,�, max[U (y)]} of the d2Q5, are
examined [41] for maximum velocity amplitude in straight
Poiseuille flow. The results [41] confirm the theoretical pre-
dictions for � = 1

4 and demonstrate that the smaller � values
(� = 1

6 and, especially, � = 1
12 ) affect the stable velocity

amplitude noticeably as ce or �− reduce to 0. In work [12],
Pe is adjusted with ce while mean velocity amplitude and
�− = 0.0625 are fixed [we note that the convergence towards
the Taylor regime may improve when �− increases, whereas
ce can be decreased by respecting |U |max(ce) OTRT stability
line [43]]. The effective stable parameter space of the full
stencils is only partly examined numerically [41].

Fourth-order-accurate approximation. The exact form of
the nonequilibrium post-collision component g±

q in Eq. (16) is
provided by the recurrence equations [35,41,42] [we signalize
a typo in [35], Eq. (2.2), where (�± − 1

4 ) should be replaced
by (� − 1

4 )]:

g±
q (r,t) = [

�̄t e
±
q + �̄qe

∓
q − �∓(

�̄2
q − �̄2

t

)
e±
q + (

� − 1
4

)(
�̄2

q − �̄2
t

)
g±

q − 1
2 �̄2

t g
±
q − (�± + �∓)�̄tg

±
q

]
(r,t),

q = 0, . . . Qm, � = �−�+. (21)

They are expressed via the temporal and spatial central-difference operators. In time, �̄tψ(r,t) = 1
2 [ψ(r,t + 1) − ψ(r,t −

1)] and �̄2
t ψ(r,t) = ψ(r,t + 1) − 2ψ(r,t) + ψ(r,t − 1). In space, the central differences apply link wisely: �̄qψ(r,t) =

1
2 [ψ(r + cq,t) − ψ(r − cq,t)] and �̄2

qψ(r,t) = ψ(r + cq,t) − 2ψ(r,t) + ψ(r − cq,t), ∀ ψ = {e±
q ,g±

q }. The mass-conservation
equation (20) becomes [35,41]⎡

⎣�̄t

Qm∑
q=0

e+
q +

Qm∑
q=1

�̄qe
−
q

⎤
⎦(r,t) =

⎡
⎣�−

⎛
⎝ Qm∑

q=1

�̄2
qe

+
q −

Qm∑
q=0

�̄2
t e

+
q

⎞
⎠ −

(
� − 1

4

) Qm∑
q=1

�̄2
qg

+
q

⎤
⎦(r,t). (22)

Equations (21) and (22) are exact for the TRT scheme (16)
with any equilibrium {e±

q } provided that (i) the two relaxation
functions are space-time independent and (ii) all populations
in grid node r are issued from the propagation step, i.e.,
r is a bulk node. In Appendix A, we resume the fourth-
order-accurate approximation [35,41] of Eq. (22) in the
form ∂tC(r,t) = [R1 + R2 + R3 + R4]C(r,t), as given by
Eq. (A1). This approximation assumes any mass-conserving
equilibrium distribution e±

q = E±
q C,

∑Qm

q=0 E+
q = 1, linear

with respect to the concentration distribution C(r,t) (it is
equal to local mass for homogeneous soil but differs from it in
heterogeneous soil porosity [15]). The first- and second-, third-
, and then fourth-order terms are specified by Eqs. (A3), (A4),
and (A6), respectively. In them, all differential operators are
expressed via the two families of the even-order and odd-order
operators (A2): [S2k]C = [

∑Qm

q=1 ∂2k
q E+

q ]C and [S2k−1]C =

[
∑Qm

q=1 ∂2k−1
q E−

q ]C: they apply the directional derivatives ∂q =
(∇ · cq) to symmetric or antisymmetric equilibrium factors
E±

q (r,t). The presented fourth-order approximation is valid
from one to three dimensions; its truncation coefficients
are all specified by relaxation eigenfunctions, via �− and
�. The pure-diffusion fourth-order equation is given by
Eqs. (A7) and (A8). The apparent fourth-order equations
will be exemplified for channel and cylindrical capillary. The
derivation [35,41] of the fourth-order approximation is exem-
plified in Appendix B for OTRT subclass. The distinguished
properties of the OTRT subclass are all due to the vanishing
of the last term in Eq. (22).

Extensions. Our truncation approach readily extends to
source terms and nonlinear equilibrium functions because Eqs.
21 and (22) remain valid for them (see examples in [54]).
In case of the discontinuous collision components, the bulk
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equations are linked through implicit interface conditions [28],
as demonstrated for steady-state problems [28,29,54] and
transient analysis in heterogeneous soil [15].

The most-accurate relaxation rates. It is well understood
that the free collision parameter � controls the trunca-
tion [35,41], boundary, and interface accuracy [28,29,32,47],
on top of stability [35,43–45]. The two particular values, such
as � = 1

12 and 1
6 , provide, respectively, the third- and fourth-

order accuracy at steady state by vanishing the coefficients of
the relevant spatial truncation corrections (A5) and (A8). In

addition, one should fix �− =
√

1
12 to vanish the third- and

fourth-order truncation coefficients completely in transition.
This explains our particular interest for this choice in Table II.
However, the third- and fourth-order corrections cannot vanish
simultaneously, except for some particular ce and U parameter
choices [15,35]. Thereby, we focus on the interval � ∈ [ 1

12 , 1
4 ].

Hydrodynamic weights. The usually used “hydrodynamic”
mass weight which satisfies the second constraint Sd (t (·)

q ) =∑
q:α 
=β t (·)

q c2
qαc2

qβ = 1
3 [with Sd (t (·)

q ) = t
(·)
d

∑
q:α 
=β c2

qαc2
qβ =

1 − 2t (m)
c and t (m)

c = 1
3 in d2Q9 and d3Q15] is not the

most stable [35,43,44], but it maintains the isotropy of the
fourth-order linear diffusion form, as shown for d2Q9 in
details [35] [Eq. (5.8) there], and discussed in this work
for d3Q15. Since the second-order numerical diffusion of
the scheme is dominated by its numerical dispersion as Pe
increases [41], the third- and fourth-order truncation terms
related to the anti-numerical-diffusion correction UαUβ in
Eq. (17) are believed to be not relevant for this study, except
perhaps in plug flow (see also [36,56,57] for similar terms).
The isotropy of these terms can be explored on the supplied
truncation form. As has been said, we operate them in all
analytical and numerical results with the coordinate stencil
t (u)
c = 1

2 , for its better stability in d3Q15, rather then with its
“hydrodynamic” choice (adopted in flow models) provided
in work [43]. In turn, the “hydrodynamic” velocity weight
t (a)
c = 1

3 assures the isotropy of the third-order linear advection
correction in d2Q9 model [Eqs. (5.12)–(5.14) in [35]], but
this property is irrelevant for the coordinate-axis-aligned,
streamwise-invariant velocity profile examined here.

Finite differences. When � = 1
4 , the last term vanishes

in Eq. (22) and, despite the explicit marching in time,
the apparent OTRT time scheme matches the discretiza-
tion of the three-level time difference [35]. In this case,
the exact mass-conservation equation is similar to leap-
frog central-convective Du Fort–Frankel–diffusion (LFC-
CDF) scheme [58], which combines the leap-frog differ-
ence (LF) for the time term, here �̄t

∑Qm

q=0 e+
q = �̄tC =

1
2 [C(r,t + 1) − C(r,t − 1)], the central difference (CC)

for the convective term, here:
∑Qm

q=1 �̄qe
−
q = ∇̄ · UC, and

the Du Fort–Frankel–type (DF) three-time-level diffusion

term [59], like D
f d

0 �2C ≈ D
f d

0
δ2
x

[C(x + δx,t) − C(x,t + δt ) −
C(x,t − δt ) + C(x − δx,t)] in 1D. In OTRT, the three-
time-level diffusion term takes the form �−[ce�

2C(r,t) −
�̄2

t C(r,t)]; it produces the DF form with D
f d

0 = �−
d

δ2
x

δt
on

the coordinate stencil in stability limit ce = 1
d

where e0 =
0 (in 1D, the d1Q3 with ce = 1 reduces to d1Q2 which
is intensively compared with the finite-difference schemes

[60–62]). In OTRT, both coefficients ce and �− can be
adjusted under Pe constraint. In particular, �− = �+ = 1

2
reduces the OTRT to the particular BGK model (τ = 1), which
is well known to be equivalent with the forward-time cen-
tral differences (FTCS) scheme [63], using �̄tC + 1

2 �̄2
t C =

C(t + 1) − C(t) in Eq. (22). Further details on this issue
and the mapping of the isotropic and anisotropic equilibrium
weights, and anti-numerical-diffusion equilibrium term, to
finite-difference spatial stencils and Lax-Wendroff (modified)
MFTCS scheme [63] can be found in [35]; their stability
criteria are compared [43] for the OTRT and FTCS-MFTCS
on the minimal stencils. It follows that all present derivations
can be readily extended to the LFCCDF and FTCS-MFTCS
schemes at the same Péclet and in a cuboid grid.

C. Physical, truncation, and numerical moments

We will construct bulk predictions for the coefficients of
dispersivity k

(tr)
T , skewness Sk(tr)

� , and kurtosis Ku(tr)
� given by

Eq. (15). They will be derived from the fourth-order-accurate
ADE of the TRT scheme. Although the truncation coefficients
in Eqs. (A4)–(A6) are all set by the relaxation functions
�− and �, their high-order differential operators depend on
ce and weights, altogether making the fourth-order-accurate
equations be fixed by Pe, �, and weights only at steady
state. Thereby, it should be expected that, for fixed diffusion
value D0 = ce�

− and Pe, the numerical distributions and their
transport characteristics depend on the individual values ce

and �−. The derived solutions k
(tr)
T , Sk(tr)

� , and Ku(tr)
� will be

compared to their reference (physical) solutions from Table I.
Their relative differences are measured as follows:

err(tr)
D = 1 + k

(tr)
T

1 + kT

− 1, err(Sk) = Sk(tr)
�

Sk�

− 1,

err(Ku) = Ku(tr)
�

Ku�

− 1. (23)

In simulations, we compute C̄(x,t) = 〈C(r,t)〉 via the arith-
metical averaging of the grid-node solution over the cross
section normal to the x axis. The apparent velocity U (num) is
extracted from the first raw moment and then it is employed
in the computation of the central spatial moments μ�

n(t). The
ω(2)–ω(4) are derived with the help of Eqs. (9) from the set
{μ�

n(t)} separated by the time interval δt :

U (num) = μ1(t + δt ) − μ1(t)

δt

,

D(num) = −ω(2,num) = μ�
2(t + δt ) − μ�

2(t)

2δt

,

ω(3,num) = μ�
3(t + δt ) − μ�

3(t)

6δt

,

ω(4,num) = −μ′
4(t + δt ) − μ′

4(t)

24δt

,

μ′
4(t) = μ�

4(t) − 12(ω(2,num))2t2. (24)

When the Taylor regime is reached, these values become time
independent and the numerical values of the coefficients k

(num)
T ,

Sk(num)
� , and Ku(num)

� are computed with Eqs. (11) from Eq. (24).
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FIG. 3. The first diagram displays together two distribution profiles computed by the d3Q15 BB with � = 1
4 (black, dotted-dashed line)

and � = 1
12 (blue, dotted line) in the same simulations as in Fig. 2 but at earlier time t ′ =

√
3

6 . The d3Q15 BB is applied with t (a)
c = t (u)

c = 1
2 ,

t (m)
c = 1

3 , � = 1
4 , Pe ≈ 95. The Gaussian distribution (kT = k

(c)
T , Sk� = Ku� = 0) is plotted by solid line (magenta). Three next diagrams plot

the relative differences of the numerical dispersion, skewness, and kurtosis with respect to their reference values from Table I, with � = 1
4

(black, dotted-dashed line) and � = 1
12 (blue, dotted line).

Their relative differences with predictions in Table I are
measured as given in Eq. (23). In 3D we will apply the d3Q15
scheme combined with the bounce-back rule on impermeable
walls, referred to as d3Q15 BB. The first diagram in Fig. 3
shows that the numerical profiles in cylindrical capillary are
nearly the same for � = 1

12 and 1
4 , even at the relatively early

time t . At the same time, the three last diagrams in Fig. 2 show
that the corresponding values of errD , err(Sk), and err(Ku),
computed with Eqs. (23) for k

(num)
T , Sk(num)

� , and Ku(num)
� ,

noticeably differ for the two � values. This illustrates the
premise that the profiles alone are not sufficient to characterize
the numerical accuracy and parameter dependency.

D. Boundary-layer effects

The validation of the truncation analysis requires the
consideration of the distinct additional error sources, namely,
summation, discretization, and boundary-layer components
in the obtained numerical values. The two first effects are
studied in this work. The principal boundary-layer effects of
the bounce-back rule were recently quantified for channel [50]
and extended for cylindrical capillary in the conjoined inves-
tigation [51]. These results are briefly resumed in this section.

In straight channel, the specular-forward nonlocal reflection
(SNL hereafter), involved to compute incoming populations
in boundary nodes along the flat impermeable wall, presents
an ideal no-flux mass-conserving boundary rule, free from
the spurious effects for any equilibrium weights [47,50]. The
bounce-back reflection (BB hereafter) and SNL coincide in
straight channel for minimal schemes. Otherwise, on the diag-
onal weight stencil, the bounce back constrains to zero not only
the normal but also the tangential advection-diffusion flux [47].
This artifact modifies the advective velocity, diffusion, and
dispersion coefficients, depending on the diagonal-weight
values. Due to this reason, the SNL is mainly employed in this
work to verify truncation analysis in straight channel. These
results are compared [51] with the bounce-back simulations,
with the purpose to validate and reduce boundary-layer effects.

The situation in cylindrical capillary is similar: it is
found [51] that only the d3Q7 BB scheme produces the
prescribed velocity U and diffusion coefficient D0 correctly.
However, the d3Q7 lacks the isotropic fourth-order accurate
diffusion form, required for the truncation estimate (see
below), while the SNL does not apply well in the staircase dis-
cretization of the cylindrical pipe. Because of this, we apply the

d3Q15 BB scheme with full (free) mass and velocity stencil,
but account for boundary-layer diffusion and advection effects.

Pure diffusion. In the absence of the boundary effects in
straight channel and cylindrical pipe, the apparent diffusion
coefficient D(num) in Eq. (24), derived from the second moment
in pure diffusion simulations, is equal to the imposed molecular
diffusion value D0. In particular, that agreement is assured
either by the SNL in straight channel (for any equilibrium
weights) or by the d3Q7 BB scheme in cylindrical capillary
otherwise. Using the bounce-back rule, D(num) = D0 only
on the coordinate mass-weight stencil t (m)

c = 1
2 ; a retardation

of the spreading takes place with the d2Q9 and d3Q15 BB
schemes due to the diminution of the effective diffusion
coefficient when t (m)

c 
= 1
2 . This effect will be quantified via

err(bb)
D (with kT = 0 in pure diffusion and plug flow):

t (m)
c = 1

2
, t

(m)
d = 0 : D(num) ≡ D0 if U = 0,

t (m)
c 
= 1

2
, t

(m)
d 
= 0 : err(bb)

D

(
t (m)
c ,�,L

)

= D(num)(U = 0) − D0

D
,

D = D0(1 + kT ). (25)

The functional dependency err(bb)
D (t (m)

c ,�,L) is provided by
the exact solution [50] in straight channel and approximate
solution [51] in cylindrical capillary. The err(bb)

D linearly
depends on t

(m)
d , but its dependency on � is nonlinear. When

� = 1
4 , it takes a simple form in straight channel: err(bb)

D (� =
1
4 ) = − 1−2t

(m)
c

H
. Since err(bb)

D is independent of the velocity
amplitude, it can be measured in a pure-diffusion simulation
at fixed �. This strategy is adopted in this work for the
cylindrical capillary. Once measured in a given discretization,
the relative correction (25) (linear with t

(m)
d ) is accounted in

entire dispersion error [see Eq. (27)].
Velocity. Similarly, in the absence of the boundary effects

in straight channel and cylindrical capillary, the apparent
velocity U (num), derived from the first moment in Eq. (24),
is equal to U (sum), which is the arithmetical mean value
of the grid-velocity values per cross section. Again, that
is assured either by the SNL in straight channel for any
weights or by the d3Q7 BB scheme in cylindrical capillary.
Using the bounce-back rule, U (num) = U (sum) only on the
coordinate velocity-weight stencil t (a)

c = 1
2 . Otherwise, the
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deviation err(bb)
U (t (a)

c ,�,L)U from U (sum) takes place with the
d2Q9 and d3Q15BB schemes:

t (a)
c = 1

2
, t

(a)
d = 0 : U (num) ≡ U (sum),

t (a)
c 
= 1

2
, t

(a)
d 
= 0 : err(bb)

U (t (a)
c ,�,L) = U (num) − U (sum)

U .

(26)

The err(bb)
U is linear proportional to t

(a)
d but it is independent

of the velocity amplitude and D0. The two functional depen-
dencies err(bb)

U (t (a)
c ,�,L) in plug flow and errD(t (m)

c ,�,L) in
pure diffusion are identical by exchanging t (a)

c and t (m)
c , with

err(bb)
U (� = 1

4 ) = − 1−2t
(a)
c

H
in straight channel. Similarly with

the pure diffusion correction, the dependency err(bb)
U (�) can be

measured in a given geometry prior to a series of computations
with different Pe, U , and D0.

Dispersion. The bounce-back no-flux rule not only de-
creases the averaged velocity value when t

(a)
d 
= 0, but it also

modifies the prescribed velocity profile. This boundary-layer
velocity correction is superposed with the advective profile
and the transverse velocity gradient creates the associated
dispersion correction, say err(bb,U )

D D, to Taylor dispersion
kT D0. In order to verify the truncation analysis in cylindrical
capillary, err(bb,U )

D (t (a)
c ,�,L) will be accounted in numerical

values D(num) in its approximate form [51]. Altogether, the
relative correction errD of the measured dispersion value
D(num) in Eq. (24) to its Taylor value D0(1 + kT ) is predicted
as

errD = D(num)

D0(1 + kT )
− 1 ≈ err(bulk)

D + err(bb)
D + err(bb,U )

D ,

err(bulk)
D = err(tr)

D + err(sum)
D . (27)

The truncation (err(tr)
D ) and discretization (err(sum)

D ) components
are due to the bulk contributions, whereas the err(bb)

D and
err(bb,U )

D are bounce-back diffusion and dispersion corrections,
respectively. While the err(bb)

D vanishes on the coordinate mass
weight, the err(bb)

U and err(bb,U )
D both vanish on the coordinate

velocity weight. It follows that in cylindrical capillary, the
spurious boundary-layer effects all vanish only with the
d3Q7 BB scheme.

III. STRAIGHT CHANNEL: DISPERSION, SKEWNESS,
AND KURTOSIS

Section III A formulates the fourth-order-accurate apparent
transport equation of the d2Q9 TRT scheme; Sec. III B derives
the expression for Ku(tr)

� in pure diffusion simulations and
provides the optimal solution for two relaxation functions �±
which assures its zero value; Sec. III C extends the EMM
approach to the fourth-order equation in a straight channel;
Sec. III D derives k

(tr)
T , Sk(tr)

� , and Ku(tr)
� in plug flow and

provides the optimal solutions �± to assure their reference
Gaussian zero values, then numerically validates the truncation
estimate with the help of the specular-forward reflection
and illustrates impact of the bounce-back diffusion boundary
layer [50] due to the rotated mass weight; Sec. III E provides
similar results for Poiseuille profile, takes into account the

discretization effect, establishes an asymptotic behavior of the
truncation corrections with the mesh resolution and Pe. Unlike
in plug flow, the truncation corrections to three transport
coefficients will depend on the equilibrium weights, unless
for one specific � value. The numerical validation (Sec. III F)
applies the specular-forward reflection in full weight space.
The effects of the bounce-back rule for these simulations
are addressed in joined work [51] where the double-�
scheme makes the first four moments quasi-identical for both
specular-forward and bounce-back reflections. The parameter
guidelines and comparison with the MFTCS scheme [63] are
summarized in Sec. III G.

A. Fourth-order-accurate advection-diffusion equation

We apply the d2Q9 TRT-ADE scheme (17) with the plug
or parabolic advective profile U = Ux(y). In straight channel,
the fourth-order pure-diffusion equation (A7) takes the form
∂tC = (�−[S2] + c4,1[S2

2 ] + c4,3[S4])C, with

[S2]C = ce

(
∂2
xC + ∂2

yC
)
,

[
S2

2

]
C = c2

e

(
∂2
xC + ∂2

yC
)2

,

[S4]C = ce

[
∂4
xC + 6Sd

(
t (m)
q

)
∂2
x ∂2

yC + ∂4
yC

]
,

Sd

(
t (m)
q

) =
∑

q:α 
=β

t (m)
q c2

qαc2
qβ,

[S4]C = ce

(
∂2
xC + ∂2

yC
)2

, if Sd

(
t (m)
q

) = 1

3
. (28)

By dropping first U 2
x , U 3

x , and U 4
x terms in third- and fourth-

order corrections [they come from the anti-numerical-diffusion
correction in Eq. (17)], the fourth-order-accurate equation
given by Eqs. (A1)–(A6) takes the following form with the
help of Eq. (28):

∂tC + Ux(y)∂xC = D0
(
∂2
xC + ∂2

yC
) + A1Ux(y)∂x∂

2
yC

+A2Ux(y)∂3
xC + A3∂

4
xC

+A4∂
2
x ∂2

yC + A0∂
4
yC,

D0 = ce�
−, A0 = A3 = c4,1c

2
e + c4,3ce,

A2 = c3,1ce − c3,2,

A1 = c3,1ce − 3c3,2Sd

(
t (a)
q

)
,

A4 = 2c4,1c
2
e + 6c4,3ceSd

(
t (m)
q

)
,

Sd (t (·)
q ) =

∑
q:α 
=β

t (·)
q c2

qαc2
qβ . (29)

This tells us that the fourth-order diffusion form is isotropic
only for hydrodynamic mass weight. The coefficients c3,1,
c3,2, and c4,1–c4,4 are given by Eqs. (A4) and (A6), respec-
tively. They are problem and weight independent, but they
depend upon the two relaxation functions, via �− and �.
At the same time, the coefficients A1 and A4 are weight
dependent via c3,2Sd (t (a)

q ) and c4,3Sd (t (m)
q ), respectively: the

two functions vanish on the minimal stencil t (a)
c = t (m)

c = 1
2 .

The two coefficients c3,2(�) = � − 1
12 and c4,3 = �−(� − 1

6 )
play then a special role because, for � = 1

12 and 1
6 , they

allow to vanish the principal dependency of the truncation
corrections over the velocity weight {t (a)

q } and the mass weight
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{t (m)
q }, respectively. These two solutions are also known as the

“optimal advection” and “optimal diffusion” solutions [35]:
they vanish respectively the entire truncation coefficients of
the third- and fourth-order corrections at the steady state. The
U 2

x , U 3
x , and U 4

x truncation terms can be restored by adding
correction B(Ux) to the right-hand side in Eq. (29):

B(Ux) = (B1 + B2)U 2
x (y)∂4

xC + (B3 + B4)U 2
x (y)∂2

x ∂2
yC

+B5U
3
x (y)∂3

xC + B6U
4
x (y)∂4

xC,

t (u)
c = 1

2 : B1 = B3 = c4,2ce, B2 = −c4,4,

B4 = 3B2Sd (t (a)
q ), B5 = c3,2, B6 = c4,4. (30)

Note that the term of B4 may make the truncation results
slightly dependent on {t (a)

q } for � = 1
12 . According to the anal-

ysis [41], as Pe increases, the numerical dispersion dominates
numerical diffusion. In other words, within the intermediate
and high Pe range, the presence of U 2

x (anti-numerical-
diffusion) terms in Eq. (17) does not impact accuracy much.
Thereby, we do not expect the terms (30) to be relevant in
our study, except in plug flow where there is no numerical
diffusion, in agreement with the numerical simulations below.

B. Pure diffusion: Truncation prediction for kurtosis

Theoretical prediction. When the velocity is set equal
to zero, Eq. (17) becomes e+

q = cet
(m)
q C, e−

q ≡ 0, q =
1, . . . ,Qm, e0 = C(1 − ce

∑Qm

q=1 t (m)
q ), and the fourth-order-

accurate pure-diffusion equation (29) reads in one dimension
[see Eq. (A7) for general form]

∂tC = D0∂
2
xC + A3∂

4
xC,

A3(ce,�
−,�) = c4,1c

2
e + c4,3ce

= ce�
−(

� − 1
6

) − c2
e�

−[
(�−)2 + � − 1

4

]
.

(31)

This equation is independent of the equilibrium weights.
Notice that A3 is not set by D0 = ce�

− and �, meaning
that the numerical results are expected to differ for any
two different choices {ce,�

−} with the same D0 because of
the (transient) truncation term of c2

e�
−. This correction is

especially significant as �− � 1, i.e., for very large diffusion
coefficients, where |A3| increases as c2

e (�−)3. In the absence

of the truncation correction (A3 = 0), one expects the initial
Dirac δ function to spread with the Gaussian distribution
where Ku(t) = 0, Ku� ≡ 0. However, by substituting the
solution in the form C(x,t) = exp[i(γ x − ωt)] into Eq. (31),
its characteristic relation reads as ω = −i(γ 2D0 − A3γ

4).
It fits the fourth-order accurate “s expansion” in Eq. (5):
ω = −i[ω(2)(iγ )2 + ω(4)(iγ )4], with

ω(2) = −D0, ω(4) = −A3. (32)

In pure diffusion, according to Eq. (11), we define the apparent
solution of the scheme Ku(tr)

� as [cf. Eq. (15)]

Ku(tr)
� = Ku(t)t = − 6ω(4)

(ω(2))2
= 6A3

D2
0

,

Ku(tr)
� = 0 if � = 1

6
, (�−)2 = 1

12
. (33)

It follows that the truncation correction creates nonzero numer-
ical kurtosis, except for the “optimal diffusion” choice (A8):
� = 1

6 , (�−)2 = 1
12 where A3 = 0. This constrains D0 to the

interval ]0,

√
1

12ce], with ce ∈]0,c(0)
e (t (m)

c )]. Since A3 is mass

weight independent, Ku(tr)
� is {t (m)

q } independent. Furthermore,
Ku(tr)

� is independent of the space resolution and it is set
by ce, �−, and �. The first diagram in Fig. 4 plots the
predicted solution (33) for Ku(tr)

� versus � with four different
parameter sets, where Ku(tr)

� = 0 for � = 1
6 with (a) and

(c) configurations. This diagram illustrates that although the

diffusion coefficients are equal, e.g., (a) {ce,�
−} = { 1

3 , 1
2

√
1
3 }

and (d) {ce,�
−} = { 1

6 ,

√
1
3 }, their apparent kurtosis coefficients

Ku� differ.
Numerical validation. The second and third diagrams in

Fig. 4 verify the validity of Eq. (33) in the pure-diffusion
numerical simulations for the spreading of the Dirac plume
with two parameter sets (a) and (d). The simulations are run in
a channel of H = {2,4,8,20,40} with the d2Q9 SNL scheme.
The D(num) and Ku(num)

� = Ku(num)(t)t [Eqs. (11)] are computed
with Eq. (24) and respectively compared with the D0 and Ku(tr)

� .
In agreement with the expectations and results [41], D(num) ≡
D0 for any value assigned to the mass weight. Furthermore, we
observe that Ku(num)

� reproduces Ku(tr)
� exactly, or quasi-exactly

with the relative difference being less than 10−7 (which is,
typically, the order of our post-processing procedure). The

1
6

1
4

5

5

Ku

2 4 8 20 40
H

2

0

2

4

6

8

Ku

2 4 8 20 40
H

6

4

2

0

Ku

FIG. 4. Pure diffusion in straight channel. First diagram plots predicted solution (33) for Ku� = Ku(t)t = 6A3
D2

0
versus � with four parameter

sets {ce,(�−)2}: (i) { 1
3 , 1

12 } (solid line, red), (ii) { 1
3 , 1

3 } (dotted-dashed line, blue), (iii) { 1
6 , 1

12 } (dotted line, black), and (iv) { 1
6 , 1

3 } (dashed line,
magenta). This prediction is {t (m)

q } and H independent. In two next diagrams, the horizontal lines plot this prediction in cases (a) and (d) where

D0 = 1
3

√
1
12 , when � = { 1

12 , 1
6 , 1

4 } [dotted line (black), dotted-dashed line (blue), solid line (red)], and compare it with the numerical results
(“filled” symbols). The predicted solution is quasi-exact.
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numerical results confirm that Ku(num)
� is {t (m)

q −} independent
and H independent.

Summary. The apparent truncation solution for the kurtosis
coefficient Ku(tr)

� in the pure-diffusion simulations is given by
Eq. (33). Numerical computations with the d2Q9 SNL scheme
confirm this result quasi-exactly. In a channel, the Ku(tr)

� is H

and mass weight independent. The “optimal diffusion” choice
� = 1

6 , (�−)2 = 1
12 is the most accurate and it provides the

expected pure-diffusion Gaussian solution.
Extension to the bounce-back rule. The numerical

study [51] shows that replacing the specular reflection by the
bounce-back rule, D(num) and Ku(num)

� are modified when the
diagonal mass-weight value t

(m)
d is different from zero. The

boundary-layer diffusion correction [50] [err(bb)
D (t (m)

c ,�,L) in
Eq. (25)] is then extended [51] to the fourth order providing
the boundary-layer correction in kurtosis. This joined result

shows that the bounce-back correction in the kurtosis remains
asymptotically constant with the space resolution on the
flat wall when t

(m)
d 
= 0. This suggests that the numerical

measurements of kurtosis in the pure-diffusion simulations
are especially sensitive to the effective tangential constraint
of the Neumann flux schemes. However, this diffusion-
coefficient dependency is expected to be negligible at high Pe
range.

C. Extended method of moments

In this section, the EMM is generalized to derive the
apparent solutions of the TRT scheme for kT , Sk�, and
Ku� in channel-type flow U = Ux(y). After multiplication by
L/U , Eq. (29) reads as, in dimensionless variables x ′ = x/L,
y ′ = y/L, t ′ = tU/L,U = 〈Ux(y)〉,

∂t ′C + Ũx(y ′)∂x ′C = Pe−1
(
∂2
x ′C + ∂2

y ′C
) + a1Ũx(y ′)∂x ′∂2

y ′C + a2Ũx(y ′)∂3
x ′C + a3Pe−1∂4

x ′C + a4Pe−1∂2
x ′∂

2
y ′C + a0Pe−1∂4

y ′C,

with Ũx(y ′) = Ux(y)

U , Pe = UL
D0

, a1 = A1

L2
, a2 = A2

L2
, a3 = A3

D0L2
, a4 = A4

D0L2
, a0 = A0

D0L2
. (34)

We look for a solution of Eq. (34) in the form (12) where P̃(ω′,r ′) becomes x ′ independent:

C(x ′,y ′,t ′) = 1

2π
P̃(ω′,y ′) exp[i(γ ′x ′ − ω′t ′)]. (35)

Consequently, the term of Pe−1 ∂P̃
∂x ′ in Eq. (13) vanishes. Due to our extension from the second to the fourth order in Eq. (34), B(n)

in Eq. (14) is decomposed into two components:

B(n) = B(n)
1 + B(n)

2 , (36)

where B(n)
2 accounts for the fourth-order correction a0Pe−1∂4

y ′C in Eq. (34). The normalization convention holds:

〈B(0)〉 = 1, 〈B(n)〉 ≡ 0, n � 1. (37)

After substituting Eqs. (35) and (14) into Eq. (34) and equating the terms of the same order (iω′)n, one obtains for B(n)
1 (y ′) and

B(n)
2 (y ′)

∂2
y ′B(n)

1 (y ′) = −PeM(n), M(n) = M (n) − Ũx(y ′)γ ′(n)
, n � 1

∂2
y ′B(n)

2 (y ′) = −a0∂
4
y ′B(n)

1 (y ′), then B(n)
2 (y ′) = a0PeM(n) + C, n � 1. (38)

The integration constant C is dictated by the normalization condition (37). The convective term Ũx(y ′)∂x ′C in Eq. (34) contributes
to the left-hand side of Eq. (34) Ũx(y ′)γ ′(n) + Ũx(y ′)

∑n−1
k=1 γ ′(k)B(n−k)(y ′), and the source term M (n) takes the following form for

the first four orders of our interest:

M (1) = 1, M (2) = [1 − γ ′(1)
Ũx(y ′)]B(1) + Pe−1γ ′(1)2B(0) + a1γ

′(1)
Ũx(y ′)∂2

y ′B(1)
1 ,

M (3) = [1 − Ũx(y ′)](γ ′(1)B(2) + γ ′(2)B(1)) + Pe−1
(
2γ ′(1)

γ ′(2)B(0) + γ ′(1)2B(1)
) + a1Ũx(y ′)

(
γ ′(1)

∂2
y ′B(2)

1 + γ ′(2)
∂2
y ′B(1)

1

)
+ a2Ũx(y ′)γ ′(1)3B(0) + Pe−1a4γ

′(1)2
∂2
y ′B(1)

1 ,

M (4) = [1 − Ũx(y ′)](γ ′(1)B(3) + γ ′(2)B(2) + γ ′(3)B(1)) + Pe−1
(
γ ′(2)2B(0) + 2γ ′(1)

γ ′(3)B(0) + 2γ ′(1)
γ ′(2)B(1) + γ ′(1)2B(2)

)
+ a1Ũx(y ′)

(
γ ′(3)

∂2
y ′B(1)

1 + γ ′(2)
∂2
y ′B(2)

1 + γ ′(1)
∂2
y ′B(3)

1

) + a2Ũx(y ′)γ ′(1)2(
γ ′(1)B(1) + 3γ ′(2)B(0)

)
+ Pe−1

[
a4γ

′(1)(γ ′(1)
∂2
y ′B(2)

1 + 2γ ′(2)
∂2
y ′B(1)

1 ) + a3γ
′(1)4B(0)

]
. (39)

When all truncation coefficients an vanish B(n)
2 ≡ 0 ∀ n, and

Eqs. (38) and (39) reduce to the previous result [15] [see Eqs.
(86)–(91) there for scale factor h(r ′) = 1 in straight channel].

We apply only approximate (second-order) zero-flux condition
in the form ∂y ′B(n)

1 |y ′=± 1
2

= 0 for n � 0. This implies the

solvability condition in Eq. (38) in the form 〈 PeM(n)〉 = 0
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and allows to find γ ′(n) sequentially, starting from M (1) = 1 in
Eqs. (39):

γ ′(n) = 〈 M (n)〉
〈Ũx(y ′)〉 , n � 1 with γ ′(1) = 〈Ũx(y ′)〉−1 = 1.

(40)

Then, B(0)
1 (y ′) = 1, B(0)

2 (y ′) = 0, B(0)(y ′) = B(0)
1 + B(0)

2 = 1,
and the procedure develops by sequentially employing Eq. (39)
for M (n) and Eq. (40) for γ ′(n), then solving Eq. (38) for B(n):

B(n−1) → M (n) → γ ′(n) → M(n) → B(n) . . . .

Using (39), the solvability conditions in Eq. (40) give

γ ′(2) = Pe−1 − 〈Ũx(y ′)B(1)〉 − a1Pe〈Ũx(y ′)M(1)〉,
γ ′(3) = 2γ ′(2)Pe−1 − 〈Ũx(y ′)(B(2) + γ ′(2)B(1))〉 − a1Pe〈Ũx(y ′)(M(2) + γ ′(2)M(1))〉 + a2,

γ ′(4) = (
γ ′(2)2 + 2γ ′(3))Pe−1 − 〈Ũx(y ′)(B(3) + γ ′(2)B(2) + γ ′(3)B(1))〉 − a1Pe[〈Ũx(y ′)(γ ′(3)M(1) + γ ′(2)M(2) + M(3))〉]

+ a2[〈Ũx(y ′)B(1)〉 + 3γ ′(2)] + a3Pe−1. (41)

The Ũ 2
x –Ũ 4

x truncation terms from Eq. (30) can be included
into Eqs. (39) by adding the nondimensional correction b(U ′)
to the right-hand side in Eq. (34):

b(U ′) = Pe−1[(b1 + b2)Ũ 2
x ∂4

x ′C + (b3 + b4)Ũ 2
x ∂2

x ′∂
2
y ′C

+ b5Ũ
3
x ∂3

x ′C
] + b6Pe−2Ũ 4

x ∂4
x ′C,

bi = U2Bi

D0L2
, i = 1,2,3,4, b5 = U2B5

L2
, b6 = U4B6

D0L2
.

(42)

When the set {γ ′(n)} is computed, the set {ω′(n) = ω(n)

UL(n−1) } is

derived from it with Eqs. (6). This gives us k
(tr)
T , Sk(tr)

� , and
Ku(tr)

� with Eqs. (15). It follows that k
(tr)
T , Sk(tr)

� , and Ku(tr)
� are

expected to depend on the velocity weight {t (a)
q } because of

the coefficient a1 for γ ′(2) in Eq. (41). When b(U ′) is omitted,

the dependency on the velocity weight vanishes for � = 1
12 .

The dependency on the mass weight {t (m)
q } is only expected for

Ku� via a4 in expression of M (3) in Eqs. (39). The constructed
solution for plug and parabolic flows is presented in the two
next sections.

D. Constant velocity field

Theoretical prediction. The Taylor dispersion is absent in
the plug flow and, therefore, starting from the ADE, the EMM
would prescribe the Gaussian solution with zero kT , Sk, and
Ku. Let us examine the truncation result for these coefficients.
When Ux = const, then Ũx(y ′) ≡ 1 and the correction b(U ′)
from Eq. (42) is easy to include into Eqs. (39)–(41): replace
a2 by a2 + b5 and a3 by a3 + b1 + b2 + b6. Then, Eqs. (38)
and (41) give

B(n) = M(n) = 0, γ ′(n) = M (n), with γ ′(1) = 1, γ ′(2)Pe = 1,

γ ′(3)Pe2 = 2 + (a2 + b5)Pe2, γ ′(4)Pe3 = 5 + [5(a2 + b5) + (a3 + b1 + b2 + b6)]Pe2. (43)

When the truncation coefficients vanish, this solution reduces to the Gaussian solution [15] γ ′(n) = {1,Pe−1,2Pe−2,5Pe−3} where
kT = Sk� = Ku� = 0. We compute ω′(n) from γ ′(n) with Eqs. (6), and finally k

(tr)
T , Sk(tr)

� , and Ku(tr)
� with Eqs. (15):

{ω′(n)} =
{

ω(n)

ULn−1

}
= {1, − Pe−1, − (a2 + b5), − (a3 + b1 + b2 + b6)Pe−1}, n = 1,2,3,4

U (num) = U , k
(tr)
T = 0, Sk(tr)

� = −3(a2 + b5)Pe3/2

√
2

, Ku(tr)
� = 6(a3 + b1 + b2 + b6)Pe. (44)

As could be expected, the third- and fourth-order truncation
corrections do not modify either the mean velocity or the
zero-valued dispersivity in plug flow. However, they prescribe
nonzero values for Sk(tr)

� and Ku(tr)
� . Since Sk(tr)

� and Ku(tr)
�

do not depend upon a1, a4, and b4, they are independent
from equilibrium weights. The Gaussian solution Sk(tr)

� = 0
is only assured when a2 = b5 = 0 on the “optimal-advection”

solution (A5): �− = �+ =
√

1
12 . Whereas in contrast, when

the velocity is small and the b terms can be neglected, Ku(tr)
� ≈

0 on the “optimal-diffusion” solution (A8) where a3 = 0,

similarly to the pure-diffusion solution (33). The result (44)
formally applies for pure diffusion with Sk(tr)

� ≡ 0, Ku(t) =
Ku(tr)

�
H
U

t−1 = 6a3PeH
U

t−1 = 6 A3Pe
D0H 2

H
U

t−1 = 6 A3

D2
0
t−1. This re-

sult coincides with Eq. (33).
Numerical validation. As has been reported [41,50],

the d2Q9 SNL produces the exact solution in plug
flow: U (num) = U and D(num) = D0. Table III shows a
very good agreement between the numerical results and
prediction (44) for Sk� and Ku�. The computations are
run with the d2Q9 SNL in straight channel of width
H = 20, with (�−)2 = 1

12 , ce|Pe≈9.5 = 1
3 , and ce|Pe≈95 = 1

30 .
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TABLE III. This table shows the relative differences of the numerical values computed with the d2Q9 SNL for D(num), Sk(num)
� , and Ku(num)

�

to their prediction in Eq. (44) for plug flow in straight channel.

Expt. I, Pe ≈ 9.5 Expt. IV, Pe ≈ 95

� errD (%) err(Sk) (%) err(Ku) (%) � errD (%) err(Sk) (%) err(Ku) (%)

1
12 1.4 × 10−7 Na 1.93 × 10−3 1

12 1.4 × 10−7 Na 1.93 × 10−3

1
6 1.4 × 10−7 2.85 × 10−4 3.49 × 10−1 1

6 1.4 × 10−7 3.41 × 10−5 −7.04 × 10−1

1
4 1.4 × 10−7 −6.56 × 10−4 −1.24 × 10−3 1

4 1.4 × 10−7 −4.17 × 10−4 −3.02 × 10−2

The EMM truncation predictions are D(num) = D0,
Sk(tr)

� |Pe≈9.5 ≈ −0.18 + 2.16�, Ku(tr)
� |Pe≈9.5 = −6.89 +

(41.7 − 3.1�)�, and Sk(tr)
� |Pe≈95 = −8.2454 + 98.9448�,

Ku(tr)
� |Pe≈95 = −91.28 + (639.05 − 451.1�)�, with

Sk(tr)
� |�= 1

12
= 0, Sk(num)

� |�= 1
12

= −4.24 × 10−8 for Pe ≈ 9.5,

and Sk(num)
� |�= 1

12
= 1.4 × 10−7 for Pe ≈ 95. In these

simulations, the truncation results noticeably improve
their accuracy by including truncation terms (30) because
high-order numerical diffusion becomes important for them
in the absence of the numerical dispersion. In agreement with
Eq. (44), the numerical results confirm that the d2Q9 SNL
produces weight-independent solutions for Sk(num)

� and
Ku(num)

� in plug flow. These solutions are therefore the same
as with the d2Q5 BB scheme.

Impact of the diffusion boundary layer. To illustrate the dif-
ference between the SNL and BB rules, Table IV reports results
of similar simulations with the d2Q9 BB scheme. Namely, it
displays the worst-possible scenario for diffusion boundary
layer, due to the “rotated” mass weight: {t (m)

c = 0,t
(m)
d = 1

4 }.
The results confirm that errD = err(bb)

D (t (m)
c ) where the bounce-

back correction err(bb)
D (t (m)

c ) is exactly specified by Eq. (19)
from work [41]: it varies from ≈ 3% to 5% from � = 1

12 to
1
4 . Since (�−)2 = 1

12 , we deal with the “optimal advection”
choice (A5), when � = 1

12 Sk(tr)
� = 0. Using the bounce back,

the numerical results give relatively small values, as Sk(num)
� =

−1.72 × 10−2 for Pe ≈ 9.5 and Sk(num)
� = −5.44 × 10−3 for

Pe ≈ 95. That means the skewness is only slightly affected by
the diffusion boundary layer when � = 1

12 . At the same time,

we observe a large discrepancy with the truncation prediction
for Sk(num)

� when � 
= 1
12 and, especially, for Ku(num)

� , ∀ �. In
particular, when � = 1

6 , Ku(tr)
� = −0.02, Ku(num)

� = 3.95 for
Pe ≈ 9.5, while Ku(tr)

� = 2.7, Ku(num)
� = 43.15 for Pe ≈ 95.

Thereby, these results show that except for Sk� with � = 1
12 ,

the boundary-layer diffusion correction due to the diagonal
mass weight modifies not only diffusion coefficients, but, in
much larger extent, the measured skewness and kurtosis.

Summary. The numerical simulations with the d2Q9 SNL
entirely confirm the EMM truncation predictions relative to
the weight-independent coefficients Sk� and Ku� in plug flow.
The “optimal advection” choice (A5) yields the expected
physical solution Sk� = 0, while Ku� = 0 is approached with
the “optimal diffusion” choice (A8), provided that velocity
amplitude is small. Yet, the bounce back with zero-valued
mass-weight value t (a)

c = 0 (“rotated” coordinate stencil)
produces relatively large numerical corrections to truncation
result in both skewness and kurtosis. Finally, we note that
the d2Q9 BB with the nonzero diagonal velocity weight was
not considered here because of its huge retardation effect
demonstrated [50] in plug flow.

E. Poiseuille profile: Predictions

In straight Poiseuille flow with mean velocityU = 〈Ux(y)〉,
U ′(y) = Ux(y) − U , the dimensionless dispersivity k

(s)
T in

Eq. (2) is derived with the Taylor ansatz [4]:

k
(s)
T = −〈U ′(y)α(y)〉

D2
0

= Pe2

210
, α(y) =

∫ y

−H/2

[∫ y

−H/2
U ′(y ′)dy ′

]
dy ′, 〈U ′(y)〉 = 0, Pe = UH

D0
. (45)

Numerically, this solution is modified by the quantity δk
(tr)
T derived [41] with the Taylor ansatz from the third- and fourth-order

truncation corrections A1Ux(y)∂x∂
2
yC and A0∂

4
yC. The apparent dispersivity k

(tr)
T of d2Q9 scheme reads as

k
(tr)
T ≈ k

(s)
T + δk

(tr)
T , δk

(tr)
T = Kk

(1,s)
T , K =

(
A1 + A0

D0

)
=

[
ce(�−)2 + � − 1

6

]
− 3Sd

(
t (a)
q

)(
� − 1

12

)
,

k
(1,s)
T = 〈U ′(y)Ux(y)〉

D2
0

= 〈U ′2〉
D2

0

= Pe2

5H 2
, Sd

(
t (a)
q

) =
∑

q:α 
=β

t (a)
q c2

qαc2
qβ, (46)

δk
(tr)
T |ce(�−)2→0 = 0 if � = 1 − 6t (a)

c

24
(
1 − 3t

(a)
c

) if t (a)
c ∈

[
0,

1

6

[
or t (a)

c ∈
]

1

3
,
1

2

]
, then �

(
t (a)
c = 1

2

)
= 1

6
. (47)

This result further confirms that the truncation errors to the transport coefficients are not set by Pe and � alone. This deficiency
is the most pronounced at large values of �−. When Pe increases [ce(�−)2 → 0], δk

(tr)
T is set by � and the velocity weight t (a)

c .
The optimal parameter space where δk

(tr)
T vanishes via �(tc) is then given by Eq. (47) [we apply here Sd (t (a)

q ) = 1 − 2t (a)
c in d2Q9
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TABLE IV. This table illustrates the effect of the diffusion boundary layer due to the “rotated” mass weight: {t (m)
c ,t

(m)
d } = {0, 1

4 } in d2Q9 BB,
to be compared with the d2Q9 SNL results in Table III. The third and eighth columns: the relative diffusion-coefficient correction errD coincides
with the predicted value [50] for err(bb)

D [cf. Eq. (25)].

Expt. I, Pe ≈ 9.5 Expt. IV, Pe ≈ 95

� errD (%) errD − err(bb)
D (%) err(Sk) (%) err(Ku) (%) � errD (%) errD − err(bb)

D (%) err(Sk) (%) err(Ku) (%)

1
12 −2.89 1.53 × 10−7 Na −7.75 × 101 1

12 −2.89 −9.33 × 10−8 Na −7.75 × 101

1
6 −4.08 1.53 × 10−7 7. −1.83 × 104 1

6 −4.08 1.53 × 10−7 6.49 1.5 × 103

1
4 −5. 1.09 × 10−5 1.07 × 101 1.55 × 102 1

4 −5. 1.09 × 10−5 8.18 1.26 × 102

and d3Q15]. This solution is not defined for the most interesting stability interval t (a)
c ∈ [ 1

6 , 1
3 ] [43,44]. On the coordinate velocity

stencil t (a)
c = 1

2 , the most accurate choice is � = 1
6 .

Now, let us derive δk
(tr)
T , Sk(tr)

� , and Ku(tr)
� with the EMM method. Solution for {γ ′(n)} from Eq. (41) reads as (with L = H )

γ ′(2)Pe = 1 + Pe2

210
[1 + 42(a1 + a0)],

γ ′(3)Pe2 = 2 + Pe2

[
2

105
+ 4

5
(a1 + a0) + a2

]
+ Pe4

[
29

485100
+ (a1/6) − 11a2

1 + a0 + 13a1a0 + 24a2
0

175

]
,

γ ′(4)Pe3 = 5 + Pe2

[
1

14
+ 3(a1 + a0) + 5a2 + a3

]
+ Pe4

[
20 + 462a0(4 + 93a0 + 63a2 − 21a4) + 693a2 − 231a4

48510

+ a1

70
(1 + 54a0 + 56a2 − 14a4) − 4a2

1

35

]
+ Pe6

{
97 + 7a0[2797 + 42120a0(4 + 77a0)]

220720500

+ a1

[
− 139

4504500
+ 2a0(−5 + 231a0)

13475

]
− a1

2

(
107

80850
+ a0

25

)
+ a1

3

35

}
,

Pe = UH

D0
. (48)

We compute {ω′(n)} from {γ ′(n)} with Eqs. (6), and finally k
(tr)
T , Sk(tr)

� , and Ku(tr)
� with Eqs. (15). Namely, γ ′(2) predicts k

(tr)
T with

the help of Eq. (11) as

k
(tr)
T = Peγ ′(2) − 1 = k

(s)
T + δk

(tr)
T , δk

(tr)
T = (a1 + a0)Pe2

5
=

(
A1 + A0

D0

)
Pe2

5H 2
. (49)

This solution coincides with the truncation result [41] recalled by Eq. (46). Therefore, the Taylor-type analysis [41] of truncation
corrections and the EMM agree for apparent correction δk

(tr)
T to predicted coefficient k

(s)
T .

Thus, γ ′(2) (and then k
(tr)
T ) depend on {a0,a1}; γ ′(3) (and then Sk(tr)

� ) depend on {a0,a1,a2}; γ ′(4) (and then Ku(tr)
� ) depend upon

all truncation coefficients a0 − a4. The following observations are interesting. First, k
(tr)
T , Sk(tr)

� , and Ku(tr)
� depend on the velocity

weight {t (a)
q } ∀ �, except for � = 1

12 where c3,2 = 0. Second, Ku(tr)
� depends on the mass weight {t (m)

q } via a4, except for � = 1
6 .

Third, when �− → 0, k
(tr)
T dependency on ce vanishes, and this is valid for Sk(tr)

� and Ku(tr)
� only when � = 1

4 . Fourth, when
ce → 0, dependency on �− vanishes in three transport coefficients.

Alike for kT , expansion of err(Sk) and err(Ku) into series shows their second-order decrease with H−2. In the limit �− → 0,
we get

err(Sk)|�−→0 ≈ H−2

4Pe2(210 + Pe2)
[−330ce(−1 + 4�)(−44100 + Pe4) − 9240(−525 + 6300� + 4Pe2)

+ Pe2(332640� − 307Pe2 + 3408�Pe2) − 18Pe2(−1 + 12�)t (a)
c (4620 + 29Pe2)], (50)

err(Sk)|�−→0,Pe→∞ ≈ H−2

4
[−307 + 330ce(1 − 4�) + 3408�] + 261H−2

2
(1 − 12�)t (a)

c , (51)

err(Sk)|�−→0,ce→0 ≈ 0 if � = 1

6
− 87(2t (a)

c − 1)

8(261t
(a)
c − 142)

∀ t (a)
c ∈

[
0,

1

2

]
, �

(
t (a)
c = 1

2

)
= 1

6
, �

(
t (a)
c = 1

3

)
≈ 1

10
(52)
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and, for Ku

err(Ku)|�−→0 ≈ H−2

56Pe4(210 + Pe2)
[195ce(−1 + 4�)(161700 + Pe4)(210 + Pe2) − 441441 × 104(−1 + 6�)

− 280(1333 + 573�)Pe4 + 2(107 − 1398�)Pe6 + 42042000(−2 + 9�)Pe2]

+ 9H−2(−1 + 12�)t (a)
c (1190 + Pe2)

(210 + Pe2)
− 21450H−2(−1 + 6�)t (m)

c

Pe2 , (53)

err(Ku)|�−→0,Pe→∞ ≈ H−2

56
[214 − 2796� + 195ce(−1 + 4�)] + 9H−2(−1 + 12�)t (a)

c , (54)

err(Ku)|�−→0,ce→0 ≈ 0 if � = 1

6
− 21(2t (a)

c − 1)

(504t
(a)
c − 233)

, t (a)
c ∈

]
107

252
,
1

2

]
, then �

(
t (a)
c = 1

2

)
= 1

6
. (55)

Equations (50) and (53) allow to observe easily the aforemen-
tioned properties: (i) velocity-weight dependency vanishes for
� = 1

12 , (ii) the dependency on ce vanishes for � = 1
4 , and

(iii) the mass-weight dependency in err(Ku) vanishes when
� = 1

6 . Therefore, only when �− and ce are sufficiently
small, the truncation errors become controlled by Pe inde-
pendently of the diffusion coefficient; � = 1

4 improves for
this property. Further, Eqs. (51) and (54) show that in the
limit Pe → ∞, err(Sk) and err(Ku) become asymptotically
Pe independent, and the err(Ku) dependency on t (m)

c vanishes.
The asymptotic relations (51) and (54) can be used for the
parameter optimization at sufficiently small �−. We exemplify
two solutions for �(t (a)

c ) given by Eqs. (52) and (55) where
err(Sk) and err(Ku), respectively, vanish in the limit �− → 0,
ce → 0. Unlike for kT and Ku, �(t (a)

c ) in Eq. (52) is defined
for any weight value and �(t (a)

c = 1
3 ) ≈ 10−1. The err(Ku)

vanishes with �(t (a)
c ) in Eq. (55) only in very narrow weight

interval, when t (a)
c ≈ 1

2 . Remarkably, the optimal solution
� = 1

6 is valid on the coordinate stencil t (a)
c = 1

2 for all three
transport coefficients [cf. Eqs. (47), (52), and (55)]. This choice
provides the most accurate solutions for the three transport
coefficients in the limit of high Pe with the d2Q5 and d3Q7
schemes.

Figure 5 illustrates the relative differences err(Sk) and
err(Ku) in Eq. (23). They are estimated on the predicted
solution (48) for Sk(tr)

� and Ku(tr)
� in the limit ce → 0. The

predictions are displayed versus Pe for H = 20 (the two first
diagrams in row) and versus H for Pe = 102 (the two last
diagrams in row). The two weight families are addressed for
the “coordinate” t (a)

c = t (m)
c = 1

2 in the top row and for the
“hydrodynamic” t (a)

c = t (m)
c = 1

3 in the bottom row. Since Sk(tr)
�

is mass weight independent, the difference for err(Sk) at the
top and bottom rows is uniquely due to the velocity weight t (a)

c ;
when � = 1

12 , the err(Sk) is the same for t (a)
c = 1

2 (top) and
t (a)
c = 1

3 (bottom). The results show that, alike the dispersion
correction errD , the err(Sk) and err(Ku) both become Pe inde-
pendent as Pe � ≈102 (two first diagrams in row). Even with
the relatively fine resolution of H = 20, err(Sk) still noticeably
depends on �. A very rapid increase of the amplitude in
err(Sk) and err(Ku) occurs when Pe decreases to zero. Notice,
on the one hand, the assumption ce → 0 does not apply in
this limit. On the other hand, a large increase in err(Sk) and
err(Ku) for small Pe will be detected systematically because
the reference values are very small. The two last diagrams in

Fig. 5 allow for examination of the resolution dependency in
err(Sk) and err(Ku) at Pe = 102 (and, hence, for higher Pe).
These predictions tell us that the coordinate velocity weight
t (a)
c = 1

2 (the top row) gains one order magnitude in accuracy
on coarse grids against the “hydrodynamic” weight t (a)

c = 1
3

(bottom row) when � ∈ [ 1
6 , 1

4 ]. The “optimal diffusion” choice
� = 1

6 is clearly the most accurate when t (a)
c = 1

2 for all H ,
alike errD with Eq. (46). The � = 1

12 is the most accurate for
skewness and kurtosis on the hydrodynamic stencil (bottom
row), especially, when H is small, but err(Ku) remains negative
in the whole interval � ∈ [ 1

12 , 1
4 ]. These observations agree

with the predicted solution for err(Sk): �(t (a)
c = 1

3 ) ≈ 1
10 in

Eqs. (52), and with Eq. (55), because there is no positive root
for err(Ku) = 0 with t (a)

c = 1
3 . The optimal numerical choice

might be also guided by isotropy and stability arguments,
which are more favorable for the diagonal velocity stencil on
the one hand, and for � = 1

4 on the other [35,43,44]. However,
this combination requires finer grids to achieve the same level
of accuracy as with � = 1

6 and t (a)
c = 1

2 , or with � = 1
12 and

t (a)
c = 1

3 , unless the summation effect further modifies these
predictions.

Summation effect. It has been recognized [41] that the
exact (or quasi-exact) agreement for k

(tr)
T with the numerical

measurements requires to account for the summation errors.
Principally, starting from the first moment, U should be
replaced in the predicted moments by U (sum):

U (sum) = 1

H

H∑
i=1

Ux(yi) = U
(

1 + 1

2H 2

)
. (56)

We find that the EMM is able to account for the summation
errors automatically. This is achieved by replacingU viaU (sum)

for all terms in Eq. (34), meaning that Ũx(y ′) is set equal
to Ux(y)/U (sum) and Pe → Pe(sum) = U (sum)H

D0
. Accordingly, the

averaged values are all computed with the summation of the
grid values, namely, for 〈M (n)〉 in Eq. (40). Such summation
procedure modifies k

(tr)
T from Eq. (49) to k

(tr,sum)
T :

k
(tr,sum)
T = γ ′(2)(sum)

Pe(sum) − 1

=
(

H 2

42
+ 1

28
+ A1 + A0

D0

)
k

(1,sum)
T ,
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FIG. 5. Poiseuille flow in straight channel by d2Q9 scheme. This figure displays the predicted differences in Eq. (23) for truncation
result Sk(tr)

� and Ku(tr)
� relative to the physical values Sk� and Ku� from Table I. This prediction is derived with Eqs. (48) and it is plotted

in the limit ce → 0 for � = { 1
12 , 1

6 , 1
4 } [dotted line (black), dotted-dashed line (blue), solid line (red)]. Top row: t (a)

c = t (m)
c = 1

2 . Bottom row:
t (a)
c = t (m)

c = 1
3 . The two first diagrams are plotted for H = 20, when Pe ∈ [20,3 × 102]. The two last diagrams are displayed for Pe = 102, when

H ∈ [10,40].

Pe(sum) = Pe

(
1 + 1

2H 2

)
,

k
(1,sum)
T = Pe2

5H 2

(
1− 5

H 2
+ 4

H 4

)
,

k
(1,sum)
T |H→∞ = Pe2

5H 2
, k

(tr,sum)
T |H→∞ → k

(s)
T = Pe2

210
. (57)

This result coincides with the truncation-summation esti-
mate [41] [see Eqs. (72)–(76) there] if we write k

(tr,sum)
T as

k
(tr,sum)
T = k

(s)
T + δk

(tr,sum)
T ,

δk
(tr,sum)
T = Ksumk

(1,sum)
T + (20 − 21H 2)Pe2

210H 6
,

Ksum =
(

A1 + A0

D0
− 1

12

)

= ce(�−)2 + � − 1

4
− 3

(
1 − 2t (a)

c

)(
� − 1

12

)
.

(58)

Therefore, the bulk dispersion error in Eq. (27) reads as

err(bulk)
D = err(tr)

D + err(sum)
D = δk

(tr,sum)
T

1 + k
(s)
T

. (59)

Notice that as Pe increases, err(bulk)
D ≈ δk

(tr,sum)
T /k

(s)
T becomes

Pe independent and, because of the summation shift of Ksum

by − 1
12 , the most accurate choice Ksum = 0 is achieved when

� = t (a)
c /[4(3t (a)

c − 1)] with t (a)
c ∈ [0, 1

3 [. This gives � = 1
4 on

the coordinate stencil t (a)
c = 1

2 [and not � = 1
6 as predicted by

result (46)]; further details on the optimal parameter choice
where Ksum = 0 can be found in [41].

Further remark. The EMM may incorporate Eq. (42) by
adding b(U ′) to the right-hand side of Eq. (34) and then
applying the procedure (39). The k

(tr)
T in Eq. (49) remains

independent of the coefficients b1–b6. At the same time, Sk(tr)
�

depends on {b3,b4,b5} and Ku(tr)
� depends upon all coefficients

b1–b6. Because of b4 [and then B4 in Eq. (30)], the numerical
dependency on the velocity weight {t (a)

q } may not vanish
exactly for � = 1

12 . However, the effects presented by the
higher-order velocity corrections are found negligible in the
simulations below.

F. Poiseuille profile: Numerical validation

We study the evolution of the initial Dirac delta function
C(x,y) = δ(x − x0) in Poiseuille profile Ux(y) imposed in
straight channel of H = 20. The d2Q9 TRT model (17)
is combined with the specular-forward boundary reflection
(SNL) for no-flux condition at the horizontal boundaries. We
first measure the apparent velocity U (num) with Eq. (24). In
agreement with the results [41,50],U (num) = U (sum) withU (sum)

given by Eq. (56). Therefore, the boundary-layer velocity cor-
rection err(bb)

U from Eq. (26) is absent from these computations.
The error estimate for k

(num)
T , Sk(num)

� , and Ku(num)
� is computed

with Eq. (23) relative to their prediction in Table I. This error
estimate is compared with the predicted result (23) for k

(tr)
T ,

Sk(tr)
� , and Ku(tr)

� . Note: All predicted values are computed
by replacing Eqs. (48) with their summation counterparts,
using Eq. (57) for k

(tr,sum)
T . Figures 6–9 display the numerical

results (symbols) obtained with the d2Q9 SNL for Pe ≈
{6.3,9.5,95,95}, respectively. The two (limit) velocity-weight
values t (a)

c = 1
2 and t (a)

c = 0 are displayed together. The two
first diagrams in row show errD and err(Sk). The two last
diagrams show err(Ku) for t (m)

c = 1
2 and t (m)

c = 0. Figure 6
displays results for the three parameter sets {ce,�

−,U} at
fixed Pe ≈ 6.3, when � ∈ [ 1

12 , 1
4 ]. The numerical parameters

for Pe ≈ 9.5 (Expt. II) and Pe ≈ 95 (Expt. IV) are given in
Table II for n = 2. The results for Pe ≈ 95 in Figs. 8 and 9
differ for ce and the velocity amplitude.

A very good agreement is demonstrated between the
theoretical predictions and the numerical results. They confirm
the velocity-weight independence of all truncation errors for
� ≈ 1

12 [a very small shift from � = 1
12 can be explained

by the truncation term B4U
2
x (y)∂2

x ∂2
yC in Eq. (30), which
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FIG. 6. Numerical results (symbols) for Poiseuille profile in channel of width H = 20 are compared to truncation predictions (lines)
when velocity weight t (a)

c = 1
2 [dashed lines (blue), “circles”] and t (a)

c = 0 [dotted line (magenta), “triangles”]. The errD and err(Sk) in two
first columns are independent of the mass weight {t (m)

q }. The err(Ku) is plotted for t (m)
c = 1

2 (in the third column) and t (m)
c = 0 (in the fourth

column). The d2Q9 SNL is applied for Pe ≈ 6.3 with the three parameter sets: top: (�−)2 = 1
3 , ce = 1

4 ; middle: (�−)2 = 1
3 , ce = 1

40 ; bottom:
(�−)2 = 1

300 , ce = 1
4 . The velocity is reduced by a factor of 10 from top diagram to middle and bottom diagrams.

is neglected in these predictions]. Also, in agreement with
the predictions, k

(num)
T and Sk(num)

� are both mass weight
independent, whereas Ku(num)

� depends on it. As expected, this
dependency is very significant when Pe is small in Figs. 6
and 7, but it almost vanishes when Pe is sufficiently large (the
two last diagrams almost coincide in Fig. 8). Let us discuss
now these results more in detail.

Dispersion correction errD . Applying the d2Q9 SNL or
d2Q5 BB, the k

(tr,sum)
T predicted by Eq. (59) is found to be

exact [41] for any parameters ce and �− in the three following
families of schemes: (i) the d2Q5, ∀ �; (ii) the d2Q9, with
t (a)
c = 1

2 , ∀ �, and (iii) the d2Q9 with � = 1
4 , ∀ t (a)

c ∈ [0, 1
2 ].

In d2Q5, � = 1
4 becomes the most accurate choice where

Ksum ≈ 0 as ce(�−)2 → 0. We confirm conclusions of [41]
which are observable in the first diagrams in Figs. 6–8. Namely,
as Pe increases, Fig. 8 confirms that errD ≈ 0 for � = 1

4 in
d2Q5 (see results for t (a)

c = 1
2 ). Furthermore, this happens

even when Pe ≈ 6.3 for sufficiently small ce(�−)2 [see Fig. 6,
middle and bottom rows]. Additionally, the results in Fig. 6
show that the variation of the truncation dispersion correction

with ce and �− (from the top to the bottom row) is relatively
small even at small Pe number, and it practically vanishes as
c2
e�

− → 0 in Eq. (59). The stable parameter choices for high
Pe are examined in [41]; they agree with the von Neumann
necessary conditions [43] for |U |max(ce), and clearly confirm
the superiority of � = 1

4 over � = 1
6 and 1

12 , both for stability
and reliability of the necessary estimate [43,44] for stable
velocity amplitude.

Skewness and kurtosis. In contrast with the truncation
dispersion, the err(Sk) and err(Ku) noticeably differ in three
parameter sets {ce,�

−,U} at fixed Pe ≈ 6.3 in Fig. 6. As
one example, by reducing the velocity and ce by factor
of 10, err(Sk) varies from [20,80]% to [−80,10]% for the
two respective choices: {(�−)2,ce} = { 1

3 , 1
4 } and {(�−)2,ce} =

{ 1
3 × 10−2, 1

4 }, when t (a)
c = 1

2 . Besides, when Pe is small, the
reference values Sk� and Ku� tend to zero then err(Sk) and
err(Ku) become very significant, in agreement with the very
abrupt behavior, in the limit Pe → 0, of err(Sk) and err(Ku) in
Fig. 5. Usually, a considerably larger variation with � happens
for t (a)

c = 0. This disparity in errors at small Pe is due to the
truncation coefficients dependency on ce(�−)2. Figures 8 and 9

FIG. 7. Expt II. Similarly as in Fig. 6 but for Pe ≈ 9.5 modeled with �− =
√

1
12 , ce = 1

3 .
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FIG. 8. Expt. IV. Similarly as in Figs. 6 and 7 but for Pe ≈ 95 modeled with �− =
√

1
12 , ce = 1

30 .

confirm that such a dependency of err(Sk) and err(Ku) over
�− (almost) disappears as Pe increases. Further, Figs. 8 and 9
confirm that |err(Ku)| decreases by one order of magnitude
for Pe ≈ 95 against Pe ≈ 9.5 in Fig. 7. This is also true for
|err(Sk)| with t (a)

c = 1
2 , whereas the “rotated” velocity stencil

t (a)
c = 0 displays a (relatively) large variation in err(Sk) with �

for small and intermediate (and hence, high) Pe, in agreement
with the predictions for t (a)

c = 1
2 and t (a)

c = 1
3 in the two first

diagrams in Fig. 5.

G. Poiseuille profile: Summary

The apparent solutions for dispersion, skewness, and
kurtosis are derived with the help of the EMM approach. Their
coefficients k

(tr)
T , Sk(tr)

� , and Ku(tr)
� are computed with Eqs. (15)

using the obtained solution given by Eqs. (48). Replacing U
by U (sum) in Eqs. (48), and computing all averaged values via
summation, the EMM properly accounts for the summation
errors due to the discrete integration of moments. The EMM
results for k

(tr)
T then coincide with the analysis in [41] developed

by applying the Taylor argument to truncation terms. The
constructed relative corrections in dispersion, skewness, and
kurtosis are predicted to behave with second-order accuracy.
They are validated in the whole parameter space with the
d2Q9 SNL scheme. We expect them to be helpful for the
free-parameter optimization in three groups: {ce,�

−,U} at
fixed Pe, {t (m)

q ,t (a)
q }, and �.

In agreement with our predictions, the numerical values
of dispersion and skewness depend on the velocity-weight
value t (a)

c , while the kurtosis depends on both velocity- and
mass-weight values. Concerning the first parameter group
{ce,�

−,U}, the accuracy of all transport coefficients strongly
depends on �− at small Pe where Sk� and Ku� may obtain
huge relative truncation errors. However, since these transport
coefficients are small within this range, the truncation errors
do not modify the profiles noticeably (this is demonstrated
in [51] still for larger relative boundary-layer diffusion errors
at small Pe). Further, the truncation result dependency on ce

and �− almost vanishes when Pe � ≈102, and the dependency
of err(Sk) and err(Ku) on ce vanishes when � = 1

4 in the limit
of high Pe.

Concerning the weights and �, we notice that the d2Q5, or
at least the coordinate velocity stencil t (a)

c = 1
2 , produces rela-

tively small dependency upon � for all transport coefficients at
any Péclet number. The d2Q5 model with � = 1

4 then presents
a very stable, efficient, and sufficiently accurate choice,
although � = 1

6 is the most accurate for all three transport
coefficients with the minimal schemes (without summation
effect). Further, � = 1

12 makes all truncation results velocity
weight independent. The results of the diagonal stencils are
very sensitive to the individual choice of � on coarse grids. The
hydrodynamic weights in combination with � = 1

12 present
another interesting choice for the isotropy of the high-order
corrections and improved accuracy, but this combination is
generally less stable than the d2Q5 with � = 1

4 (see [41,44])
and produces nonzero asymptotic errors in all three transport
coefficients.

Finally, we also computed solutions with the (modified)
MFTCS Lax-Wendroff scheme [63], where the second-order
numerical diffusion is suppressed similar to Eq. (17), e.g., by
adding U 2

x correction to modeled diffusion coefficient Dxx

in one-dimensional velocity profile. The periodic conditions
were applied on the flat walls because, due to symmetry, they
produce the same solutions in straight channel as the specular-
forward reflection. We find the same steady-state solutions for
k

(num)
T , Sk�, and Ku� with the MFTCS scheme and OTRT-BGK

scheme (�± = 1
2 , t (u)

c = 1
2 ) on the coordinate and diagonal

stencils. Their transport coefficients are related via Uf d = U δx

δt

and D
f d

0 = 1
2ce

δ2
x

δt
. Due to the freedom in the selection of ce in

OTRT(�± = 1
2 ), and δt in MFTCS, the two schemes operate

with equivalent stability conditions [43]. Otherwise, based on
the stability criteria [43] the underlying time step of the OTRT
becomes more advantageous against the MFTCS in advection-
dominant regime when �− < 1

2 . In diffusion-dominant zone,
reversely, �− > 1

2 is more advantageous.

FIG. 9. Expt. IV. Similarly as the second and third diagrams in Fig. 8 but with �− =
√

1
3 , ce = 1

60 in the two first diagrams, and

�− = 1
8 ×

√
1
3 , ce = 2

15 in the two last diagrams.
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IV. CYLINDRICAL CAPILLARY

Section IV A recalls the derivation of the Taylor
longitudinal dispersion coefficient kT for parabolic profile
prescribed in a cylindrical capillary; Sec. IV B formulates
the corresponding fourth-order accurate equation of the
d3Q15 TRT scheme and derives the truncation coefficient k

(tr)
T

following [41]; Sec. IV C produces the closed-form truncation
estimates for k

(tr)
T , Sk(tr)

� , and Ku(tr)
� using the EMM approach,

discusses their behavior with Pe, and compares the optimal
parameter combinations with the channel strategies; Sec. IV D
numerically addresses the effective velocity, diffusion,
numerical diffusion, dispersion, skewness, and kurtosis, where
the boundary-layer diffusion, due to the isotropic mass weight
t (m)
c = 1

3 , and boundary-layer dispersion, due to the diagonal

velocity weight t
(a)
d ∈]0, 1

4 ], is subtracted from the numerical
values. A comparison of the minimal and full equilibrium
stencils, an extension for other duct flows and a reduction of the
bounce-back effects with the double-� scheme, is outlined in
Sec. IV E.

A. Taylor dispersion

Assume the parabolic profile U(x,y,z) = Ux(r) = 2U(1 −
r2

R2 ) to be prescribed along the x axis in a cylindrical capillary
of radius R, for r2 = y2 + z2 � R2. Since the flow is invariant
along the streamwise direction, the anti-numerical-diffusion
correction in Eq. (17) reduces to 1

2 t (u)
q U 2

x C and it is sufficient to
eliminate the entire second-order numerical-diffusion accord-
ing to Eq. (A3) [which reads as [S1]C = Ux(r)∂xC, [D2]C =
ce(∂2

xC + ∂2
yC + ∂2

z C)]. The modeled second-order-accurate
ADE for isotropic distribution C(x,r,t) reads as in cylindrical
coordinates (x,r)

∂tC + Ux(r)∂xC = ceD0
(
∂2
xC + �rC

)
,

�rC(x,r) = 1

r
∂r (r∂rC(x,r)). (60)

This equation is subject to the impermeability condition
∂rC|r=R = 0. Following Taylor [4], C(x,r,t) and Ux(r) are

decomposed around their cell-averaged values C̄(x,t) and U ,
respectively:

C(x,r,t) = C̄(x,t) + C ′(x,r,t),

C̄(x,t) = 〈C(x,r,t)〉 = 2π

πR2

∫ R

0
C(x,r,t)r dr,

∂rC
′|r=R = 0,

Ux(r) = U + U ′(r), U=〈Ux(r)〉= 2π

πR2

∫ R

0
Ux(r)r dr.

(61)

The averaged concentration C̄(x,t) is expected to obey Eq. (2),
that is, to propagate with the mean velocity U and to spread
with the longitudinal dispersion coefficient D = (1 + k

(c)
T )D0.

Originally, k(c)
T is derived with the help of the Taylor ansatz [4]:

D0�rC
′(x,r,t) ≈ U ′(r)∂xC̄(x,t),

then C ′(x,r,t) ≈ α(r)

D0
∂xC̄(x,t),

α(r) = U
16

(
r2 − r4

2R2

)
. (62)

The averaged-flux component 〈U ′(r)∂xC
′〉 then modifies the

molecular-diffusion flux −D0∂xC̄ by a quantity −k
(c)
T D0∂xC̄,

with

k
(c)
T = −〈U ′(r)α(r)〉

D2
0

= − 2π

πR2D2
0

∫ R

0
U ′(r)α(r)r dr = Pe2

192
,

with Pe = 2UR

D0
. (63)

B. Truncation prediction for numerical dispersion

In three dimensions, the fourth-order diffusion truncation
correction (A7) reads as with the following component:

[S4]C(x,y,z,t) =
Qm∑
q=1

∂4
q e+

q = ce

Qm∑
q=1

t (m)
q [(∂xcqx + ∂ycqy + ∂zcqz)

4]C(x,y,z,t)

= ce

[
∂4
x + ∂4

y + ∂4
z + 6Sd

(
∂2
x ∂2

y + ∂2
x ∂2

z + ∂2
y ∂2

z

)]
C(x,y,z,t), Sd (t (m)

q ) =
∑

q:α 
=β

t (m)
q c2

qαc2
qβ,

[S4]C(x,y,z,t) = ce

[
∂2
x + �r

]2
C(x,y,z,t), if Sd

(
t (m)
q

) = 1

3
. (64)

The diffusion form [S4]C is isotropic only with the “hydrodynamic” mass weight where Sd (t (m)
q ) = 1

3 . The third- and fourth-order
truncation corrections given by Eqs. (A4)–(A6) then read as (dropping in them Uα

x terms for α � 2)

[R3]C(x,r,t) ≈ A1Ux(r)[∂x�r ]C + A2Ux(r)∂3
xC,

[R4]C(x,r,t) ≈ A3∂
4
xC + A4∂

2
x�rC + A0

[
�2

r

]
C, if Sd

(
t (m)
q

) = 1
3 , �2

r = [�r ]�rC. (65)

The fourth-order-accurate equation becomes

∂tC + Ux(r)∂xC = ceD0
(
∂2
xC + �rC

) + A1Ux(r)∂x�rC + A2Ux(r)∂3
xC + A3∂

4
xC + A4∂

2
x�rC + A0�

2
rC, if Sd

(
t (m)
q

) = 1
3 .

(66)

The coefficients A0–A4 are the same as in Eq. (29).
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The following derivation of the numerical dispersion from the truncation corrections follows [41]. Substitution of the Taylor
ansatz (62), A0�

2
rC in Eq. (66) becomes equal to (A0/D0)�rU

′(r)∂xC̄. This suggests the numerical correction to Taylor
ansatz (62), as

D0�rC
′ ≈ U ′(r)∂xC̄ − (A0/D0)�rU

′(r)∂xC̄, then C ′(r) = α(r) − (A0/D0)U ′(r)

D0
∂xC̄. (67)

In this relation, α(r) is given by Eq. (62). By averaging Eq. (60), the advective component 〈U ′(r)∂xC
′〉 then complements the

Taylor dispersion form by the truncation term (A0/D
2
0) < U ′(r)U ′(r) > ∂2

xC. A similar correction originates from the truncation
term A1Ux(r)∂x�rC by plugging Taylor ansatz (62) there. The apparent dispersivity of the scheme k

(tr)
T then consists of the

Taylor coefficient k
(c)
T and the truncation correction δk

(tr)
T :

k
(tr)
T ≈ k

(c)
T + δk

(tr)
T , δk

(tr)
T = Kk

(1,c)
T , K =

(
A1 + A0

D0

)
=

[
ce(�−)2 + � − 1

6

]
− 3Sd

(
t (a)
q

)(
� − 1

12

)
,

k
(1,c)
T = 〈U ′(r)U ′(r)〉

D2
0

= 2π

πR2D2
0

∫ R

0
U ′2(r)r dr = Pe2

12R2
, Pe = 2UR

D0
. (68)

Its relative contribution err(tr)
D reads as

err(tr)
D = δk

(tr)
T

1 + k
(c)
T

, err(tr)
D |Pe→∞ = 16K

R2
, with K|Pe→∞ =

(
� − 1

6

)
− 3Sd

(
t (a)
q

)(
� − 1

12

)
,

t (a)
c ∈

[
0,

1

6

]∥∥]
1

3
,
1

2

]
: K|Pe→∞ = 0 if � = 1

12

2 − 3Sd

(
t (a)
q

)
1 − 3Sd

(
t

(a)
q

) ,

t (a)
c = 1

2
: K|Pe→∞ = � − 1

6
, K|Pe→∞ = 0 if � = 1

6
,

t (a)
c = 1

3
or � = 1

12
: K|Pe→∞ = − 1

12
. (69)

The coefficient K is the same as for straight channel in Eq. (46).
However, rigorously, this result is only expected to be valid in a
capillary when Sd (t (m)

q ) = 1
3 , that is, for {t (m)

c = 1
3 ,t

(m)
d = 1

24 } in

d3Q15 and {t (m)
c = 1

6 ,t
(m)
d = 1

12 } in d3Q19, excluding the d3Q7
model. In other words, unlike in straight channel, the truncation
dispersion is expected to depend on the mass weight {t (m)

q }, on
top of the velocity weight {t (a)

q }. The notable exception happens
with � = 1

6 where the coefficient c4,3 of [S4]C vanishes [see
Eqs. (A6) and (A8)]. The validity of Eq. (68) for t (m)

c = 1
3

and t (m)
c = 1

2 , in combination with different velocity-weight
values, is examined in Sec. IV D 3. As has been suggested
in [41], the parameter configuration allowing to vanish err(tr)

D

via K ≈ 0, as given by second and third lines in Eq. (69), is
flow and dimension independent. However, the discretization
corrections further modify this optimal-dispersion parameter

space, as predicted by Eq. (58) for channel and will be
predicted by Eq. (78) for capillary.

C. Truncation dispersion, skewness, and kurtosis
by the EMM

Our purpose is to construct the EMM solutions for
k

(tr)
T , Sk(tr)

� , and Ku(tr)
� from the fourth-order-accurate mass-

conservation equation (66). These truncation predictions are
to be compared with the EMM physical result in Table I. Since
the solution constructed here should reduce to result [15] for
the case of zero truncation coefficients, we adopt notations [15]
in this section, with L = R, PeR = UR/D0, to be distin-
guished from Pe = 2UR/D0. In dimensionless coordinates
x ′ = x/L,r ′ = r/L, t ′ = tU/L, Eq. (66) becomes (multiplied
by L/U)

∂t ′C + Ũx(y ′)∂x ′C = Pe−1
R

(
∂2
x ′C + �r ′C

) + a1Ũx(y ′)∂x ′�r ′C + a2Ũx(y ′)∂3
x ′C + a3Pe−1

R ∂4
x ′C + a4Pe−1

R ∂2
x ′�r ′C + a0Pe−1

R �2
r ′C,

with Ũx(r ′) = Ux(r)

U , a1 = A1

L2
, a2 = A2

L2
, a3 = A3

D0L2
, a4 = A4

D0L2
, a0 = A0

D0L2
. (70)

Similar to Eq. (35), the solution of Eq. (70) is presented as

C(x ′,r ′,t ′) = 1

2π
P̃(ω′,r ′) exp[i(γ ′x ′ − ω′t ′)]. (71)

Further analysis makes use of Eqs. (14) with Eqs. (39) by sequentially replacing there y ′ by r ′, ∂2
y ′C by �r ′C, and ∂4

y ′C by
�2

r ′C. These equations are first solved for �r ′B(n)(r ′) and then integrated twice to obtain B(n)(r ′). The averaging 〈ψ ′(r ′)〉 =
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2
∫ 1

0 ψ ′(r ′)r ′dr ′ is applied. When all coefficients an vanish, this procedure reduces to Eqs. (86)–(91) in [15] [for their scale factor

h(r ′) = r ′ and uniform porosity φ = 1]. Solution for γ ′(2) gives the numerical dispersivity k
(tr)
T :

γ ′(2)PeR = 1 +
(

1

48
+ a0 + a1

3

)
Pe2

R, then

k
(tr)
T = PeRγ ′(2) − 1 = k

(c)
T + δk

(tr)
T , k

(c)
T = Pe2

192
, δk

(tr)
T = A1 + A0/D0

12R2
, Pe = 2PeR = 2UR

D0
. (72)

This solution coincides with the truncation result presented in Eq. (68). Further, as in straight channel, γ ′(2) depends only
on a0 and a1, γ ′(3) depends, in addition, on a3, while γ ′(4) depends on all coefficients a1–a4. The dimensionless coefficients
Sk(tr)

� = Sk(t) × √
tU/R and Ku(tr)

� = Ku(t) × tU/R are derived with the help of Eq. (15):

Sk(tr)
� = 3ω′(3)

√
2
∣∣ω′(2)

∣∣3/2 = A(Sk)

10B(tr)
, Ku(tr)

� = − 6ω′(4)

(ω′(2))2
= A(Ku)

1120B(tr)
,

A(Sk) =
√

3
√

Pe[−23040a2 + (1 + 60a1)(1 + 16a1 + 16a0)Pe3],

A(Ku) = −743178240a2 + 123863040Pe(3a2 + a3) − 5160960a2Pe2(1 + 16a1 + 16a0) + Pe4{645120[−a4 − 16a4(a1 + a0)

+ a2(2 + 48a1 + 32a0)]} + Pe6
(−123 + 3776a1 + 32

{
102144a3

1 + 448a1a0(5 + 24a0)

+ 224a2
1(41 + 528a0) − a0[155 + 112a0(17 + 48a0)]

})
,

B(tr) = [192 + (1 + 16a1 + 16a0)Pe2]2. (73)

When all truncation coefficients are set equal to zero, Sk(tr)
� and Ku(tr)

� reduce to their Sk� and Ku� values in Table I. The truncation
corrections in kT , Sk�, and Ku� all decay with second-order accuracy [cf. Eqs. (74) and (75)], alike in straight channel. They also
keep the same four principal properties: (i) k

(tr)
T , Sk(tr)

� , and Ku(tr)
� depend on the velocity weight {t (a)

q } ∀ �, except for � = 1
12 ;

(ii) Ku(tr)
� depends on the mass weight {t (m)

q } via a4, except for � = 1
6 . Asymptotically, when �− → 0, (iii) the dependency of

Sk(tr)
� and Ku(tr)

� on ce vanishes with � = 1
4 ; in turn, (iv) the dependency on �− vanishes in all three transport coefficients when

ce → 0. For illustration, let us substitute coefficients into Eq. (73) and consider limit �− → 0. The leading R−2 term in err(Sk)
takes the form [an expression for err(Ku) is lengthy]

err(Sk)|�−→0 = 15R−2(−384 + Pe3)(−1 + 4�)ce

Pe3 + 2R−2(−1 + 12�)(3648 + 13Pe2)t (a)
c

192 + Pe2

+ R−2

3

[
43 − 492� − 5760(1 − 12�)

Pe3 + 1152(1 − 24�)

(192 + Pe2)

]
, (74)

err(Sk)|�−→0,Pe→∞ = R−2

3

[
43 − 492� + 45ce(−1 + 4�) + 78(−1 + 12�)t (a)

c

]
, (75)

err(Sk)|�−→0,ce→0 ≈ 0 if � = 1

6
− 13

(
2t (a)

c − 1
)

4
(
78t

(a)
c − 41

) ∀ t (a)
c ∈

[
0,

1

2

]
, �

(
t (a)
c = 1

2

)
= 1

6
, �

(
t (a)
c = 1

3

)
= 17

180
. (76)

Similar to δk
(tr)
T in Eq. (68), the most accurate asymptotic solu-

tions, where err(Sk) = 0 or err(Ku) = 0 in the limit Pe → ∞,
are achieved with the specific distinguished functions �(t (a)

c ).
Like in straight channel, � = 1

6 then presents the most accurate
choice on the coordinate velocity stencil, both for kT and Sk
[cf. Eqs. (69), (52), and (76)]. Moreover, the two dependencies
�(t (a)

c ) in Eqs. (52) and (76) are very similar between channel
and capillary, with �(t (a)

c = 1
3 ) ≈ 1

10 . This suggests that the
hydrodynamic weight t (a)

c = 1
3 in combination with � = 1

12
presents a sufficiently accurate alternative to the combination
of the coordinate stencil t (a)

c = 1
2 with � = 1

6 or � = 1
4 . But,

� = 1
12 is much less stable [35,41,44].

Figure 10 illustrates the predicted relative differences
err(Sk) and err(Ku) from Eq. (23) in the limit ce → 0. They
are displayed versus Pe ∈ [20,3 × 102] for R = 20 (the two

first diagrams in row), and versus R for Pe = 100 (the two
last diagrams in row). The two weight families are employed:
t (a)
c = 1

2 , t (m)
c = 1

3 in the top row and t (a)
c = t (m)

c = 1
3 in the

bottom row. Notice, t (m)
c = 1

2 is not considered here because
of its fourth-order anisotropy in Eqs. (64)–(66). Overall, the
behavior in cylindrical capillary with �, velocity weight, and
space resolution is very similar to the channel results in Fig. 5.
Hence, the same previous conclusions hold. Namely, k

(tr)
T ,

Sk(tr)
� , and Ku(tr)

� are {t (a)
q −} independent for � = 1

12 . On the
coarse grid, the coordinate velocity weight t (a)

c = 1
2 produces

a much smaller sensitivity on �. With this weight choice,
� = 1

6 remains the most accurate solution for sufficiently
large Pe. By using the “hydrodynamic” stencil (at the bottom
row), � = 1

12 gains in accuracy within interval � ∈ [ 1
12 , 1

4 ], in
agreement with Eq. (74). However, like in straight channel, the
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FIG. 10. Poiseuille flow in cylindrical pipe. This figure displays predicted solution (73) for truncation corrections err(Sk) and err(Ku) in
the limit ce → 0 for three � values: � = 1

12 (black, dotted line), � = 1
6 (blue, dotted-dashed line), � = 1

4 (red, solid line). Top row: t (a)
c = 1

2 ,
t (m)
c = 1

3 . Bottom row: t (a)
c = t (m)

c = 1
3 . The two first diagrams are plotted for R = 20, when Pe ∈ [10,2 × 102]. The two last diagrams are

plotted for Pe = 102, when R ∈ [5,40].

three coefficients have nonzero truncation corrections with this
combination. When Pe increases, err(tr)

D , err(Sk), and err(Ku)
all become asymptotically Pe independent.

D. Numerical experiments

The numerical validation with the d3Q15 BB scheme
adopts the parameter range from Table II for the evolution
of the Dirac δ function C(x,t = 0) = δ(x − x0) in parabolic
streamwise-invariant flow Ux(r). The mean-velocity magni-
tude U(R = 5) is fixed by the stability line |U |max = 2U =√

ce for ce = 1
30 ; further, U(R) linearly reduces with the mesh

refining. Although the condition U 2 � ce is not necessary
in the presence of the U 2

x term in Eqs. (17), the necessary
condition, such as U 2 � 3/2ce in d3Q7, is in principle only
sufficient for � = 1

4 , whereas the smaller valued � have a
much lower velocity bound [35,44]. Besides, the condition
U 2 � ce becomes necessary for all velocity sets when the
UαUβ equilibrium terms are omitted. Therefore, we will first
verify the numerical-diffusion estimate in this configuration.
Because of the fourth-order isotropy, the focus is on the
“hydrodynamic” mass weight t (m)

q = { 1
3 , 1

24 } while the velocity
weight varies, t (a)

c ∈ [0, 1
2 ]. It is predicted by Eqs. (25)–(27)

that, while absent in d3Q7 BB, the d3Q15 BB produces
diagonal weight dependent corrections to the mean velocity,
diffusion, and dispersion. We will account for all these effects
in order to quantify their respective roles and verify truncation
predictions.

1. Apparent velocity

In computations, the apparent velocity U (num) is extracted
from the first moment with Eq. (24) and its relative correction is
measured via errU = U (num)/U − 1. The summation correction
err(sum)

U (R) = U (sum)/U − 1 is specified in Table VI: U (sum)

is computed as the arithmetical mean value of grid velocity
values in the discretized circular pipe. It is interesting that
the decay of err(sum)

U (R) is not monotonous with R. Fig-
ure 11 presents results for the relative mean-velocity error
err(bb)

U (t (a)
c ,�,R) = errU − err(sum)

U (R) in cylindrical capillary

of radius R = {5,10,20} for three � values, versus the coordi-
nate weight value t (a)

c . The presented results confirm Eq. (26):
that is, (i) U (num) = U (sum) for t (a)

c = 1
2 ; (ii) the error amplitude

|err(bb)
U | increases with �; and (iii) it linearly grows with the

diagonal weight t
(m)
d . We confirm that err(bb)

U is set by �, {t (a)
q },

and R, independently of the velocity amplitude and the other
model parameters. The computations in Fig. 11 are run with
the parameters of Expt. II from Table II, but err(bb)

U is velocity
and Pe independent. The work [51] compares the presented
results to theoretical estimate for the err(bb)

U constructed there.

2. Numerical diffusion

Prior to the validation of the numerical dispersion, we verify
that the averaged second-order equation (2) is achieved with
Eq. (17) without numerical diffusion. When the U 2

x term is
omitted in Eq. (17), the prescribed coefficient D0 = ce�

− in
Eq. (2) is expected to diminish by the (averaged) quantity
of the numerical diffusion −〈U 2

x 〉�−. Its relative contribution
||errD|| reads as on the parabolic profile

||errD|| = errD|U 2
x →0 − errD

≈ −
〈
U 2

x

〉
ce

(
1 + k

(c)
T

) = − 4U2

3ce

(
1 + k

(c)
T

) ,

||errD||
k

(c)
T �1 ≈ −4 × 192U2

3cePe2 = −64ce(�−)2

R2
. (77)

Note that the numerical diffusion is negative in duct flow.
Table V displays the d3Q15 BB results without and with
the U 2

x term in Eq. (17), for Expts. I and IV from Table II
when R = 5. The two families of the equilibrium weights
and the three distinguished values of � are examined to
verify that the difference of the results ||err(num)

D || is mainly
due to the second-order numerical diffusion. The results
confirm that, although err(num)

D |U 2
x →0 and err(num)

D are both �

and weight dependent through their truncation corrections,
their difference ||err(num)

D || is independent of these parameters
and it is principally set by {ce,�

−,U}. The numerical results
for ||err(num)

D || at R = 5 from Table II are found in very good
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FIG. 11. This figure presents numerical results (lines with symbols) for the relative velocity error errU (t (a)
c ,�) − err(sum)

U versus t (a)
c ,

errU = U (num)/U − 1 due to the bounce-back retardation of the Poiseuille profile in cylindrical pipe on the diagonal velocity stencil {t (a)
q } for

R = {5,10,20} from the left to the right. The results are plotted for uniform distribution � = { 1
12 , 1

6 , 1
4 } [dotted line (black), dotted-dashed line

(blue), solid line (red)]. The theoretical prediction for err(bb)
U is constructed in work [51].

agreement with Eq. (77). The small discrepancy between them
can be attributed to discretization effects, not accounted for in
Eq. (77). The results from Table II confirm that when Pe,
and hence the longitudinal dispersion increases, the numerical
diffusion becomes insignificant in errD because, typically,
ce(�−)2 in Eq. (77) decreases rapidly. However, by omitting
the U 2

x term in Eq. (17) at high Pe, the model becomes
less stable and it should satisfy a more restrictive stability
condition [43], such as |U |max � √

ce for any equilibrium
weight stencil. Therefore, the U 2

x term with t (u)
c = 1

2 is included
for all computations below.

3. Apparent dispersion

The entire numerical correction to dispersivity k
(c)
T is pre-

dicted by Eq. (27) as the sum of the three principal components:
err(bulk)

D (bulk), err(bb)
D (boundary-layer diffusion), and err(bb,U )

D

(boundary-layer dispersion). The mass weight t (m)
c = 1

3 is first
applied for validity of the truncation estimate. Figure 12 dis-
plays the four distinguished dispersion-correction components
in Eq. (27). They are plotted versus velocity weight t (a)

c in four
numerical experiments from Table II (one experiment per row).
The numerical values err(num)

D = D(num)/(D0(1 + k
(c)
T )) − 1

and err(bb)
D are displayed in the two first diagrams, respectively.

The third diagram plots the analytical prediction err(bb,U )
D .

The fourth diagram compares err(bulk)
D = err(num)

D − err(bb)
D −

err(bb,U )
D to its analytical prediction err(bulk)

D = err(tr)
D + err(sum)

D ,
predicted by Eqs. (69) and (78).

Summation effect. The component err(sum)
D is, principally,

due to the difference between U and U (sum)(R) (specified in
Table VI). The key point is that the k

(sum)
T (R) in Eq. (63)

is computed with U (sum)(R) by employing the arithmetical
averaging over the cross section:

k
(sum)
T (R) = −〈(Ux(r) − U (sum))α(sum)(r)〉

D2
0

,

�rα
(sum)(r) = Ux(r) − U (sum)(R),

err(sum)
D (R) = 1 + k

(sum)
T

1 + k
(c)
T

− 1 = k
(c)
T

1 + k
(c)
T

δk
(sum)
T (R),

δk
(sum)
T (R) = k

(sum)
T (R)

k
(c)
T

− 1. (78)

The relative summation correction δk
(sum)
T (R) is tab-

ulated in Table VI. The correction err(sum)
D accounts

for the discretization effect in the predicted coefficient
k

(c)
T . It is independent of model parameters and set

by space resolution R. These results in Table VI il-
lustrate that δk

(sum)
T (R) does not decay monotonously

with R. Moreover, its amplitude, e.g., δk
(sum)
T (R = 5) ≈

4.6%, is comparable with the numerical-diffusion contribution

TABLE V. This table compares the difference in relative dispersion error ||err(num)
D || = err(num)

D |U2
x →0 − err(num)

D due to the numerical diffusion
with its prediction ||errD|| in Eq. (77). The computations are run with the d3Q15 BB scheme for R = 5, Expts. I and IV from Table II. The
data are in percents.

Expt. 1, Pe ≈ 2.5 Expt. IV, Pe ≈ 95

t (a)
c = t (m)

c = t (u)
c = 1

2 t (a)
c = t (m)

c = t (u)
c = 1

2

� err(num)
D |U2

x →0 err(num)
D ||err(num)

D || ||errD|| � err(num)
D (U 2

x → 0) err(num)
D ||err(num)

D || ||errD||
1
12 −2.274 8.963 × 10−1 −3.17 −3.23 1

12 1.775 2.458 −6.833 × 10−1 −6.963 × 10−1

1
6 −2.138 1.032 −3.17 −3.23 1

6 6.075 6.759 −6.833 × 10−1 −6.963 × 10−1

1
4 −2.003 1.167 −3.17 −3.23 1

4 10.34 11.02 −6.833 × 10−1 −6.963 × 10−1

t (a)
c = t (m)

c = 1
3 , t (u)

c = 1
2 t (a)

c = t (m)
c = 1

3 , t (u)
c = 1

2
1
12 −6.013 −2.842 −3.17 −3.23 1

12 4.701 5.384 −6.833 × 10−1 −6.963 × 10−1

1
6 −7.139 −3.969 −3.17 −3.23 1

6 7.262 7.945 −6.833 × 10−1 −6.963 × 10−1

1
4 −7.984 −4.814 −3.17 −3.23 1

4 9.494 10.18 −6.833 × 10−1 −6.963 × 10−1
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FIG. 12. This figure displays four different components (in row) of the dispersion correction in parabolic flow prescribed in cylindrical
capillary of R = 20, in four numerical experiments Expts. I–IV (from the top to the bottom), when � = { 1

12 , 1
6 , 1

4 } [dotted line (black),

dotted-dashed line (blue), solid line (red)]. First diagram: numerical result err(num)
D = D(num)/[D0(1 + k

(c)
T )] − 1 versus velocity weight t (a)

c .
Second diagram: numerical value of the boundary-layer diffusion correction err(bb)

D given by Eq. (25). Third diagram: predicted [51] boundary-
layer dispersion err(bb,U )

D . Fourth diagram: numerical result for err(bulk)
D = err(num)

D − (err(bb)
D + err(bb,U )

D ) (solid lines) and prediction err(bulk)
D =

err(tr)
D + err(sum)

D (dashed lines) are plotted together. Further details are given in Table VII; the mass weight t (m)
c = 1

3 in all simulations.

at small Pe, as ||err(num)
D || ≈ −3.17% in Table V for Pe ≈ 2.5,

and err(sum)
D exceeds the numerical diffusion at Pe ≈ 95.

Truncation effect. The truncation component err(tr)
D =

δk
(tr)
T /(1 + k

(c)
T ) in err(bulk)

D is predicted by Eq. (68). In the
numerical validation, k

(1,c)
T = 〈U ′(r)U ′(r)〉

D2
0

is also computed via

the arithmetical averaging, with U ′(r) = Ux(r) − U (sum), but
this effect is very small compared to the principal summation
error in Eq. (78). The two effects are captured automatically
by the EMM when computing γ ′(2) in Eq. (72) with U (sum) and
applying the averaging summation procedure in the discretized
circular shape.

Boundary-layer diffusion effect due to mass weight t (m)
q .

When t (m)
c 
= 1

2 , the measured diffusion coefficient differs from

the imposed value D0 by the quantity err(bb)
D (t (m)

c ,�,R)D0

[cf. Eq. (25)]. The analytical estimate for err(bb)
D in the

capillary is developed in [51]. However, in order to avoid
extra discretization corrections, we apply the numerical value
err(bb)

D (t (m)
c ,�,R). It is extracted from the pure-diffusion

simulation, as err(bb)
D = D(num)(U=0)−D0

D
with given R, �, and

t (m)
c . This result is velocity weight and velocity amplitude

independent. It can be adjusted for any nonzero diagonal mass
weight t

(m)
d since it scales linearly with it. The err(bb)

D vanishes
in d3Q7.

Boundary-layer dispersion effect due to velocity weight t (a)
q .

The bounce back modifies the parabolic velocity profile in the
effective advection process. This manifests in the decrease
of mean velocity U displayed in Fig. 11. The modification
results in extra numerical dispersion, due to the superposition
of the parabolic and boundary-layer profiles. This deficiency

TABLE VI. This table provides in the first line the relative mean-velocity correction err(sum)
U (R) = U (sum)/U − 1 for parabolic velocity

profile in the discretized circular shape. In the second line, this table provides the corresponding values δk
(sum)
T (R) for discrete Taylor-dispersion

effect in Eq. (78). The data are in percents.

R 5 10 20 40 80 160

err(sum)
U (%) −1.6 −0.54 −0.58 5.3 × 10−2 −8.9 × 10−3 −3.4 × 10−2

δk
(sum)
T (%) 4.61 1.61 1.74 −1.63 × 10−1 2.68 × 10−2 1.01 × 10−1
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TABLE VII. This table provides coefficients c1–c4 by fitting err(bulk)
D − err(sum)

D to err(tr)
D = (c1 + c2t

(a)
c + c3� + c4t

(a)
c �)

k
(1,c)
T

1+k
(c)
T

in four

experiments from Table II. The coefficients are predicted by Eq. (68). Their numerical values are built from four (arbitrarily selected)
simulations, with {t (a)

c ,�} = {(0, 1
4 ),( 1

3 , 1
6 ),( 1

2 , 1
12 ),( 1

2 , 1
6 )}. The results are illustrated in Fig. 12 for R = 20, t (a)

c = 1
3 .

Expt. I Expt. II Expt. III Expt. IV

R c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

5 0.53 −0.49 −1.7 5.6 0.19 −0.59 −2.4 7.0 0.21 −0.61 −2.5 7.2 0.18 −0.62 −2.6 7.3
10 0.52 −0.51 −2 6.1 0.16 −0.54 −2.2 6.5 0.18 −0.55 −2.2 6.6 0.14 −0.56 −2.2 6.6
20 0.49 −0.47 −2.1 6.2 0.12 −0.48 −2.1 6.3 0.13 −0.48 −2.1 6.3 0.092 −0.48 −2.1 6.4
Theory 0.49 −0.5 −2 6 0.11 −0.5 −2 6 0.12 −0.5 −2 6 0.086 −0.5 −2 6

is accounted for in Eq. (27) and analytically estimated in [51]:
this result is demonstrated in the third column diagrams in
Fig. 12.

Dispersion results with t (m)
c = 1

3 . On the whole, the nu-
merical results and predictions agree well in Fig. 12 relative to
their dependency upon Pe, t (a)

c , and �. Namely, the bulk results
become almost t (a)

c independent for � = 1
12 , in agreement with

Eq. (72) (see the horizontal line in diagrams displayed in the
last column). In these bulk results, the “hydrodynamic” choice
t (a)
c = 1

3 is the common point for all �. This agrees with

the predictions since err(tr)
D and, hence, err(bulk)

D becomes �

independent when t (a)
c = 1

3 in Eq. (72). Table VII confirms the

convergence with the space resolution for err(bulk)
D − err(sum)

D

towards err(tr)
D , by fitting this difference to Eq. (72). Note,

however, the convergence is not monotonous. This is similar
with the discretization corrections in velocity and Taylor-
dispersion coefficient in Table VI.

It is interesting to examine the evolution of the different
components with Pe in Fig. 12. At small Pe ≈ 2.5 (the top
row), err(num)

D is almost t (a)
c independent (first diagram). This

is because err(num)
D ≈ err(bb)

D at small Pe (second diagram) and
err(bb)

D is t (a)
c independent. In turn, the err(bb)

D linearly increases
with the diagonal mass weight t

(m)
d ∈ [0, 1

8 ] [see Eq. (25)];

note, in our computations with t (m)
c = 1

3 , the t
(m)
d is relatively

small, t
(m)
d = 1

24 . On the positive side, the err(bb)
D decreases

as Pe−2. At the same time, as Pe increases, err(bb,U )
D (t (a)

c )
(boundary-layer dispersion) becomes asymptotically constant
[cf. err(bb,U )

D for Pe ≈ 25 (third row) and Pe ≈ 95 (fourth row)].
Asymptotically, the err(tr)

D behaves similar to err(bb,U )
D since the

nondimensional truncation correction δk
(tr)
T in Eq. (68) scales

as Pe2. Finally, since err(sum)
D ≈ δk

(sum)
T is Pe independent, the

deviation of the numerical result err(num)
D from the physical

value becomes asymptotically constant and mainly caused by
err(bb,U )

D and err(sum)
D . In these simulations, err(num)

D ∈]0,2%]
at Pe ≈ 95 while δk

(sum)
T (R = 20) = 1.74% (cf. Table VI).

Finally, we suggest that the relatively slight difference between
the numerical result and prediction is mainly due to the
err(bb,U )

D estimate [51] which does not account for the entire
discretization effect.

Dispersion results with t (m)
c = 1

2 . Figure 13 addresses the
same four numerical experiments as in Fig. 12 but applying
the mass weight t (m)

c = 1
2 . This choice is predicted to give

the anisotropic fourth-order diffusion correction in Eq. (64),
except for � = 1

6 . At the same time, numerical computa-
tions in the pure-diffusion case confirm that D(num)(t (m)

c =
1
2 ) ≡ D0 and, hence, err(bb)

D = 0, err(bulk)
D = err(num)

D − err(bb,U )
D .

Figure 13 compares err(bulk)
D to its prediction in Eq. (27). We

observe that an agreement deteriorates against the case with
t (m)
c = 1

3 in Fig. 12 (see the last column there), except for

� = 1
6 where prediction err(tr)

D remains valid with t (m)
c = 1

2 .
When � = 1

12 and 1
4 , the deviation from the theoretical result

in Fig. 12 has a similar form in four experiments. The fitting
of these numerical data to err(tr)

D , similar to Table VII, gives
c3(t (m)

c = 1
2 ) = −2.4 in the four experiments, against c3(t (m)

c =
1
3 ) = −2.1 and theoretical estimate cth

3 = −2. These results
suggest that the anisotropic fourth-order effect is present and
observable in the apparent dispersion.

Dispersion results with d3Q7. In d3Q7, the bounce-back
boundary effects vanish and it is expected that errD = err(bulk)

D .
The results above indicate that although the truncation re-
sult given by Eq. (68) is less accurate when t (m)

c 
= 1
3 , it

provides the reasonable estimate. Moreover, Fig. 13 shows
a very good agreement in all four experiments in case of
t (m)
c = t (a)

c = 1
2 for � = 1

4 . We confirm this observation on
the independent recent results [12]. The investigation [12]

FIG. 13. This figure demonstrates the effect of the anisotropic (except for � = 1
6 ) truncation dispersion component in numerical results,

when � = { 1
12 , 1

6 , 1
4 } [dotted line (black), dotted-dashed line (blue), solid line (red)]. The four diagrams are similar to the last column in Fig. 12

but the (anisotropic) coordinate mass weight t (m)
c = 1

2 is applied in computations.

013304-27



IRINA GINZBURG PHYSICAL REVIEW E 95, 013304 (2017)

FIG. 14. Cylindrical pipe of R = 20, Expt. IV, t (m)
c = 1

3 , t (a)
c = 1

2 , uniform-� distribution. The first diagram compares numerical results
in the form of Eq. (24) (symbols) to their truncation predictions for ω2 [solid line (red), “lozenges”], ω3 [dashed line (blue), “triangles”], and
ω4 [dotted line (black), “square”]. The predictions are obtained with the EMM using either summation in given geometry with U → U (sum)

(thick lines) or integration over the exact circular shape (the thin lines bisecting at � = 1
6 ). The second diagram displays numerical and EMM

summation results for Sk� [dashed line (blue), “triangles”] and Ku� [dotted line (black), “squares”].

applies the d3Q7 TRT-ADE scheme with � = 1
4 in the

Herschel-Buckley velocity profile prescribed in the cylindrical
capillary, and reports a very good accordance between the
numerical and analytical results for the Taylor-dispersion
coefficients predicted there. In detail, in case of the Newtonian
(parabolic profile) at Pe = 50, where the steady-state value
of the Taylor-dispersion coefficient was reached (see Fig. 8
and Table I [12], with ce = 0.08, �− = 0.0625, � = 1

4 ,
U = 5 × 10−3, R = 25.5), the obtained velocity and disper-
sion errors are, respectively, errU = 0.524026% and errD ≈
−1.22378% (private communications). We note that errU ≡
err(sum)

U (R = 25.5), which has been predicted for d3Q7, and our
estimate (27) gives errD ≈ −1.262% [with err(tr)

D ≈ 0.1897%,
err(sum)

D ≈ −1.45175%, δk(sum)
T ≈ −1.5589% in Eq. (78)]. This

confirms that Eq. (68) works quite satisfactorily in d3Q7
with � = 1

4 . Again, these results clearly demonstrate that the
summation component may dominate the truncation one, even
for relatively large R.

4. Skewness and kurtosis

Our last objective is to verify the truncation prediction for
Sk(tr)

� and Ku(tr)
� in Eq. (73). It is observed that the diffusion

boundary-layer effect due to the isotropic mass weight t (m)
c = 1

3

destroys the truncation results for Sk(tr)
� and Ku(tr)

� at relatively
small Pe, similarly as in Table IV for plug flow. At the
same time, fine validation fails for t (m)

c = 1
2 because of the

anisotropic effects, similar to Fig. 13 for numerical dispersion.
Due to these reasons, we only present results for Pe ≈ 95
with t (m)

c = 1
3 . In order to avoid boundary-layer velocity effect,

we restrict this analysis to t (a)
c = 1

2 where U (num) = U (sum).
Figure 14 compares (in the first diagram) numerical solutions
for ω(2,num), ω(3,num), and ω(4,num), computed with Eq. (24),
against their symbolic solutions derived in Sec. IV C. Notice
that the analysis of the set {ω(n)} excludes their superposition
effect presented in Sk� and Ku�. The velocity amplitude is
increased by the factor of 4 in Fig. 15 towards |U |max = √

ce =√
1

30 . The two sets of the EMM predictions are examined:
either by using integration procedure with predicted velocity
U or by using the discrete-summation procedure with the actual
velocity distribution U (num)(t (a)

c = 1
2 ) = U (sum). We observe

that the amplitude of the difference between the two average
procedures is quite comparable with the truncation error.
The numerical results agree very well with the summation-
based EMM prediction. However, unlike for the “integration”
prediction, the optimal choice �(t (a)

c = 1
2 ) = 1

6 is not the
most accurate because of the summation effect; actually, the
numerical and predicted (summation) errors have no optimal
positive root for �.

The relative differences err(Sk) and err(Ku) (with respect
to Sk� and Ku� from Table I at Pe ≈ 95) are compared for
numerical results {Sk(num)

� ,Ku(num)
� } and theoretical predictions

{Sk(tr)
� ,Ku(tr)

� } in the second diagrams in Figs. 14 and 15.
They depend differently on � because of two distinguished
values ce. Here, the summation-based EMM estimate replaces
Eq. (73). First, we note that the entire numerical and truncation
corrections are relatively small for {Sk�,Ku�} at this regime of
Pe: their magnitude is less than 1% over the entire interval
� ∈ [ 1

12 , 1
4 ]. In agreement with Figs. 8 and 9 for channel

FIG. 15. Cylindrical pipe of R = 20, Expt. IV, t (m)
c = 1

3 , t (a)
c = 1

2 . Similarly as in Fig. 15 but increasing U by factor of 4 at fixed Pe.
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at the same Pe, the present simulations confirm that the
coordinate velocity weight t (a)

c = 1
2 assures good accuracy

in numerical measurements of skewness and kurtosis. The
results confirm that their principal dependency on ce, �−, �,
and weights is matched well. A very small (parallel) shift
from the prediction in Figs. 14 and 15 is probably related to
some further summation effect. These results confirm that the
diffusion boundary-layer effect err(bb)

D becomes negligible for
skewness and kurtosis, same way as for dispersion, already at
intermediate Péclet number.

E. Summary

In this section, the effective bulk solutions for dispersion,
skewness, and kurtosis were predicted by Eqs. (72) and (73) for
Poiseuille flow in the cylindrical capillary. This is achieved by
extending the EMM approach [15] to the three-dimensional,
fourth-order-accurate equation of the TRT scheme. The EMM-
based estimate of the numerical dispersion coincides with the
Taylor argument based truncation result presented in Eq. (68).
The isotropic mass weight, which is t (m)

c = 1
3 in d3Q15, is

required (except for � = 1
6 ) for the fourth-order isotropy and

the rigorous validity of the truncation analysis. The truncation
dispersion estimate approximately applies when t (m)

c 
= 1
3 ,

and in particular for d3Q7. It can be applied for any open-
tabular flow, Newtonian or non-Newtonian, by computing
k

(1,c)
T = 〈U ′(r)U ′(r)〉

D2
0

in Eq. (68) for the actual velocity field

U ′(r) = Ux(r) − U (sum), U (sum) = 〈Ux(r)〉. The coefficient K

in Eq. (68), and hence the functional dependency of truncation
dispersion over model parameters ce, �−, �, and weights is
flow independent. Therefore, similar conclusions as in straight
channel apply for the optimal dispersion parameter choice in
the cylindrical capillary. Namely, the isotropic velocity weight
t (a)
c = 1

3 makes the truncation dispersion δk
(tr)
T in Eq. (68)

� independent but nonvanishing. On the other side, when
t (a)
c ∈ [0, 1

6 ] or when t (a)
c ∈] 1

3 , 1
2 ], one may vanish δk

(tr)
T in the

limit ce(�−)2 → 0 with the specific solution �(t (a)
c ) given by

Eq. (69). When t (a)
c = 1

2 , � = 1
6 (best), but also � = 1

4 , support
good truncation accuracy for all transport coefficients within
the intermediate and high Pe range. Also, � = 1

4 makes Sk and
Ku independent of ce when �− decreases to zero [cf. Eq. (74)].
The � = 1

12 makes the three transport coefficients velocity
weight independent but has relatively poor stability even
with the most stable weight stencils and the hydrodynamic
weights [35,44].

It has been verified that the second-order numerical dif-
fusion is removed in duct flow with Eq. (17). For numerical
validation, the EMM predictions were all computed in a given
pipe geometry, with account for actual velocity U (sum)(R). The
truncation dispersion was complemented by the summation
and discretization correction k

(sum)
T in Eq. (78). The boundary-

layer, velocity and dispersion, bounce-back corrections both
vanish for t (a)

c = 1
2 . The boundary-layer diffusion correction

vanishes for t (m)
c = 1

2 . All bounce-back spurious effects vanish
for the d3Q7 scheme, and this property is suggested [51]
to be valid in grid-aligned ducts of different cross section.
Otherwise, the bulk dispersion estimate should be summed
with the boundary-layer diffusion and dispersion corrections.
In this work, the numerical estimate for the boundary-layer

diffusion and analytical estimate [51] for boundary-layer
dispersion have been employed. The boundary-layer diffusion
has strong effect in dispersion, skewness, and kurtosis at small
Pe, but it becomes insignificant as Pe increases. In turn, the
relative contribution of the truncation and boundary-layer
dispersion is asymptotically constant. The double-� TRT
scheme [51] allows to restore correct velocity and to (almost)
vanish boundary-layer dispersion, for any velocity weight and
without any modification of the bounce-back rule. It will
allow [51] us to extend numerical validation of Sk� and Ku�

truncation analysis in a capillary for t (a)
c 
= 1

2 and smaller Pe.

V. CONCLUDING REMARKS

A mathematical algorithm for the prediction of the second-,
third-, and fourth-order moments of the solute distribution
has been proposed. We start with the fourth-order-accurate
truncation form of the modeled advection-diffusion equation
and apply the idea of the extended method of moments
(EMM) [15]. The analytical procedure was worked out for
pure diffusion, plug and parabolic flows in straight channel,
and extended for parabolic profile in cylindrical capillary. The
closed-form results were derived for the apparent coefficients
of the Taylor dispersivity kT , skewness Sk�, and kurtosis
Ku� in the full parameter space of the given numerical
scheme. Further, the summation effect in the effective velocity
and transport coefficients due to the collocated grid and
the staircase approximation of the shaped boundary was
accounted by performing all average EMM operators over
the discretized cross section. This procedure readily extends
to other (Newtonian or non-Newtonian) advective profiles in
pipes of general cross section [14]. We believe that the duct
geometry is sufficient to determine the principal dependency
of the numerical moments upon the adjustable parameters,
Péclet number, and mesh resolution. Being exemplified with
the two-relaxation-times TRT-ADE scheme, where the generic
form of the truncation corrections has been derived [35,41],
our approach readily applies for any other numerical scheme
providing its truncation terms are specified. In particular, we
believe that after constraining the procedure and results to
� = 1

4 , the fourth-order-accurate approximation and the bulk
EMM predictions apply for the LFCCDF finite-difference
schemes [58], and perhaps, also for their finite-volume or
finite-elements counterparts on regular grid.

It has been established that the relative truncation effect
diminishes with the second-order accuracy in all three coeffi-
cients. Their role in kT , Sk�, and Ku� becomes Pe independent
as Pe increases: the results demonstrated in this work for
Pe ≈ 102 apply for higher Pe. In the limit �− → 0, Sk�

and Ku� become independent of the diffusion coefficient
with � = 1

4 , in relation to the advanced stability of this
choice [35,43,44]. The closed-form result for the truncation
correction δk

(tr)
T to the Taylor-dispersivity coefficient kT

in straight channel and cylindrical capillary confirms the
suggestion in [41] that its principal dependency upon the
equilibrium and relaxation parameters [given by function K

in Eqs. (46) and (68)] is flow and dimension independent.
Formally, this truncation result requires the hydrodynamic
mass weight in cylindrical capillary for the isotropy of the
fourth-order diffusion form. However, we have shown that
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it describes rather accurately the numerical dispersion of the
coordinate mass-weight stencil and can be readily extended for
the estimation of the truncation and discretization corrections
in dispersion measurements [12] in Herschel-Bulkley capillary
profile, operated with the d3Q7 TRT bounce-back scheme at
� = 1

4 . We confirm that the combination of the coordinate
velocity weight with � = 1

4 is quite suitable in straight channel
and cylindrical capillary, and it is supported by reliable stability
criteria [41,43]; however, the most accurate choice on the
coordinate velocity stencil for kT , Sk�, and Ku� is � = 1

6 .
On the other hand, the hydrodynamic velocity weight releases
δk

(tr)
T from the � dependency; however, this property does not

extend to the skewness and kurtosis. In turn, � = 1
12 makes

the three transport coefficients velocity weight independent
and avoids their very strong increase (on coarse mesh) with
the diagonal weight value. Yet, the choice � = 1

12 has poor
stability properties at high Pe [44]. The mass-weight stencil
can be prescribed independently of the velocity weight, but Ku
depends on it except with the “optimal diffusion” choice � =
1
6 ; this dependency is, however, weak at high Pe and vanishes
asymptotically. At small Pe, the apparent coefficients are not
set by Pe, �, and weights because, in addition, they noticeably
depend on two individual parameters ce and �−, at fixed
molecular-diffusion coefficient D0 = ce�

−. However, since
the physical values of the high-order moments are small, even
the relatively significant truncation corrections do not impact
noticeably the distribution profiles within small Pe range.

In straight channel, a quasi-exact validation of the trunca-
tion predictions through first four numerical moments becomes
possible thanks to the specular-forward reflection on solid
walls. However, in the advection-diffusion spread through
the open-tubular conduit, the nonequilibrium boundary layers
of the bounce-back no-flux rule affect the two primary
characteristics of the averaged solute distribution, its diffusion
coefficient and mean-velocity, in proportion to the diagonal
mass and velocity weight, respectively. Consequently, the
numerical values of the transport coefficients are especially
affected by the velocity weight at intermediate and high
Pe, while at small Pe, they become very sensitive to the
mass-weight choice, on top of the truncation dependency.
We emphasize that only the d3Q7 scheme is free from these
spurious boundary effects in grid-aligned conduits. In order
to verify the dispersion truncation prediction in cylindrical
capillary in full weight space, the boundary-layer diffusion
and dispersion were subtracted from the numerical results. The
relative boundary-layer diffusion component was extracted
from the independent pure-diffusion simulation in a given
geometry; the symbolic estimate [51] was called as boundary-
layer dispersion. Because of the spurious bounce-back effects,
we could verify the truncation predictions for skewness
and kurtosis in cylindrical capillary only for the coordinate
velocity weight and relatively high Pe. The double-� scheme,
developed in the conjoined work [51], allows to preserve the
advection profile in duct flow and to further extend the Pe
range and weight interval of the numerical assessment.

This work was restricted to isotropic advection-diffusion
equation. The TRT-ADE schemes [29,34,35] create the
anisotropy with the help of the anisotropic full-weight mass

stencil. This feature allows the TRT-ADE to operate with
the anisotropy-independent relaxation rates and to fix �

for the sake of accuracy or stability [35,45]. Since the
truncation coefficients are expressed via the relaxation rates
alone, we expect their preselected optimal solutions to be
valid in anisotropic TRT-ADE schemes for the same pur-
pose. This also concerns the TRT-ADE schemes [15,29]
for heterogeneous porous soil; in these schemes, while �−
varies with the heterogeneity, the � remains free. However,
future work is required to estimate impact of the implicit or
explicit interface conditions on the Taylor dispersion and the
high-order moments. Further, the MRT-ADE schemes with
the multiple-relaxation-times operators [34,37,49,64,65] for
isotropic-diffusion inherit the present results by reducing their
free relaxation rates to the TRT configuration. We note that
the exact von Neumann stability analysis [45] shows that
their additional degrees of freedom only marginally enlarge
the stable isotropic-diffusion parameter space, but they may
degrade it drastically for an improper choice. Moreover, their
necessary stability conditions are expected to be sufficient
mostly only for � = 1

4 , thus reducing the MRT to TRT. On the
other hand, the anisotropic relaxation approaches [29,34,49]
operate with the disparate � combinations and can hardly
improve for stability or accuracy with their help [29,45].

Finally, although only illustrated on spatial dispersion, our
methodology also applies for the resident time distributions
of a tracer because the two systems of moments, spatial and
temporal, are easily interconnected [15]. When comparing the
numerical results to experimental data, one has to bear in mind
three possible pitfalls, namely, numerical error, deficiency
of the model, and experimental noise. This work suggests
that the optimized TRT scheme is a suitable candidate for
predictions of the dispersion and higher-order moments at
intermediate and high Pe range and, therefore, it allows for
experimental model refinement and assessment of the accuracy
of the measurements.
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APPENDIX A: SUMMARY ON TRUNCATION ANALYSIS

1. Fourth-order-accurate advection-diffusion equation:
Generic form

We assume linear equilibrium distribution with respect
to the local mass value C(r,t): e±

q = E±
q C,

∑Qm

q=0 E+
q = 1,

E+
q = E+

q (ce,U), and E−
q = E−

q (U), q = 0, . . . ,Qm. The dis-
tribution {E+

q } can be either isotropic or anisotropic [35] and,
in particular, given by Eq. (17) for modeling of the isotropic
ADE. The exact form of the mass-conservation equation of
the TRT scheme is given by Eq. (22). Its fourth-order-accurate
d-dimensional approximation is derived [35,41] in the form

∂tC(r,t) = [R1 + R2 + R3 + R4]C(r,t). (A1)
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In this relation, the four operators [Rk]C are expressed via the two families of the differential operators [S2k]C and [S2k−1]C:

[S2k]C =
⎡
⎣ Qm∑

q=1

∂2k
q E+

q

⎤
⎦C, [S2k−1]C =

⎡
⎣ Qm∑

q=1

∂2k−1
q E−

q

⎤
⎦C, with ∂q = (∇ · cq) =

d∑
α=1

∂αcqα, k = 1,2. (A2)

Hereby, ∂n
q C denotes the nth-order directional derivative; [Sn

k ]C means that the operator Sk applies n times to C(r,t). At the
second order, Eq. (A1) reads as

[R1]C = −[S1]C, [S1]C = ∇ · UC, [R2]C = �−[D2]C, [D2]C = [S2]C − [S2
1 ]C. (A3)

The third-order truncation correction [R3]C reads as

[R3]C = c3,1[S1D2]C + c3,2
[
S3

1 − S3
]
C, c3,1(�−,�) = 2(�−)2 + � − 1

4
, c3,2(�) = � − 1

12
, (A4)

c3,1 = 0, c3,2 = 0 if (�−)2 = � = 1

12
, or �− = �+ =

√
1

12
. (A5)

Thus, the most accurate advection scheme where the entire third-order truncation correction vanishes is presented by the
single-relaxation-time combination (A5). The fourth-order truncation term [R4]C reads as [we signalize a typo in Eq. (2.10)
from [35] for c4,4]

[R4]C = c4,1
[
D2

2

]
C + c4,2

[
S2

1D2
]
C + c4,3[S4 − S1S3]C + c4,4

[
S4

1 − S1S3
]
C,

c4,1(�−,�) = −�−
[

(�−)2 + � − 1

4

]
, c4,2(�−,�) = �−

[
4(�−)2 + � − 3

4
+ �(4� − 1)

4(�−)2

]
,

c4,3(�−,�) = �−
(

� − 1

6

)
, c4,4(�−,�) = �−

4

[
8� − 1 + �(4� − 1)

(�−)2

]
. (A6)

In the pure-diffusion case, the odd-order operators vanish and the modeled fourth-order-accurate equation reads as

∂tC = �−[S2]C + [R4]C, with [R4]C = c4,1
[
S2

2

]
C + c4,3[S4]C, (A7)

c4,1 = 0, c4,3 = 0 if � = 1
6 , (�−)2 = 1

12 . (A8)

Hence, the most accurate pure-diffusion scheme is presented by the two-relaxation-times TRT combination (A8). There exist the
intrinsic relations [35] between the truncation corrections and advanced stability revealed in [44].

APPENDIX B: DETAILED DERIVATION OF TRUNCATION CORRECTIONS FOR � = 1
4

When � = 1
4 , Eq. (22) takes the form of the finite-difference scheme:

� = �−�+ = 1

4
: �̄tC + �−�̄2

t C = −
Qm∑
q=1

�̄qe
−
q + �−

Qm∑
q=1

�̄2
qe

+
q . (B1)

Let us illustrate the procedure [35,41] for generic derivation of Eqs. (A1)–(A6) in case of the channel advective flow U =
Ux(y) and the d2Q5 scheme with � = 1

4 . In channel flow, the d2Q5 scheme (19) reads as e+
q (r,t) = 1

2 (ce + U 2
x c2

qx)C(r,t) and
e−
q = 1

2Ux(y)C(r,t)cqx . Assume that scale parameter ce is space and time independent. We make use of the following auxiliary
functions applied to grid solution C(r,t) within the d2Q5 scheme:

�̄tC = ∂tC + 1

6
∂3
t C, �̄2

t C = ∂2
t C + 1

12
∂4
t C,

Qm∑
q=1

�̄qe
−
q = Ux(y)�̄xC ≈ Ux(y)

(
∂xC + 1

6
∂3
xC

)
,

�−
Qm∑
q=1

�̄2
qe

+
q = �−

⎛
⎝ Qm∑

q=1

∂2
q e+

q + 1

12

Qm∑
q=1

∂4
q e+

q

⎞
⎠, with

Qm∑
q=1

∂2
q e+

q = ce�
2C + U 2

x ∂2
xC, ∂2

q = (∂xcqx + ∂ycqy)2, �2C = [
∂2
x + ∂2

y

]
C,

Qm∑
q=1

∂4
q e+

q = ce�
4C + U 2

x ∂4
xC, ∂4

q = (∂xcqx + ∂ycqy)4, �4C = [
∂4
x + ∂4

y

]
C. (B2)
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With their help, the fourth-order-accurate spatial component in the right-hand side of Eq. (B1), [R(S)]C reads as

[R(S)]C = −
Qm∑
q=1

�̄qe
−
q + �−

Qm∑
q=1

�̄2
qe

+
q =

4∑
i=1

[
R

(S)
i

]
C, with

[
R

(S)
1

]
C = −Ux(y)∂xC,

[
R

(S)
2

]
C = �−(

ce�
2C + U 2

x ∂2
xC

)
,

[
R

(S)
3

]
C = −1

6
Ux(y)∂3

xC,
[
R

(S)
4

]
C = �−

12

(
ce�

4C + U 2
x ∂4

xC
)
. (B3)

In what follows, we express all time derivatives ∂k
t C via the spatial derivatives, with the help of the previous order approximation

of Eq. (B1). The [∂k
t C](n) then denotes the nth-order component. The sequential approximations read as, with the help of

Eqs. (B3),

order 1 : ∂tC = [R1]C, [R1]C = [
R

(S)
1

]
C = −Ux(y)∂xC;

order 2 : ∂tC = [R1]C + [R2]C, [R2]C = [
R

(S)
2

]
C − [

�−∂2
t C

](2)
with ∂2

t C = U 2
x ∂2

xC, then [R2]C = ce�
−�2C;

order 3 : ∂tC = [R1 + R2 + R3]C, [R3]C = [
R

(S)
3

]
C − �−[

∂2
t C

](3) − 1

6

[
∂3
t C

](3)
, with

[
∂2
t C

](3) = [(R1 + R2)2](3)C = [2R1R2]C,
[
∂3
t C

](3) = 1

6
U 3

x ∂3
xC, then

[R3]C = −1

6
Ux(y)∂3

xC + 2(�−)2ceUx(y)∂x(�2C) + 1

6
U 3

x ∂3
xC;

order 4 : ∂tC = [R1 + R2 + R3 + R4]C where [R4]C = [
R

(S)
4

]
C − �−[∂2

t C](4) − 1

6

[
∂3
t C

](4) − �−

12
[∂4

t C](4), with

[
∂2
t C

](4) = [
R2

2 + 2R1R3
]
C = c2

e (�−)2[�2]2C − 2Ux(y)∂x

[
−1

6
Ux(y)∂3

xC + 2(�−)2Ux(y)∂x(ce�
2C) + 1

6
U 3

x ∂3
xC

]
,

[
∂3
t C

](4) = 3
[
R2

1R2
]
C = 3ce�

−U 2
x ∂2

x�2C,
[
∂4
t C

](4) = U 4
x ∂4

xC, then

[R4]C = �−

12
ce�

4C − �−c2
e (�−)2[�2]2C + U 2

x

[
�−

12
∂4
xC − �−

3
∂4
xC + 4�−(�−)2ce∂x�

2C − 1

2
ce�

−∂2
x�2C

]

+U 4
x

(
−�−

12
∂4
xC + �−

3
∂4
xC

)
. (B4)

Thus, Eqs. (B4) give the third-order ([R3]C) and fourth-order accurate ([R4]C) truncation forms

[R3]C = A1Ux(y)∂x∂
2
yC + A2Ux(y)∂3

xC + B5U
3
x (y)∂3

xC,

[R4]C = A3∂
4
xC + A4∂

2
x ∂2

yC + A0∂
4
yC + (B1 + B2)U 2

x ∂4
xC + (B1 + B4)U 2

x ∂2
x ∂2

yC + B6U
4
x ∂4

xC,

A1 = 2(�−)2ce, A2 = 2(�−)2ce − 1

6
, A0 = A3 = −�−[(�−)2]c2

e + 1

12
ce�

−, A4 = −2(�−)3c2
e ,

B1 = �−
[

4(�−)2 − 1

2

]
ce, B2 = −�−

4
, B4 = 0, B5 = 1

6
, B6 = �−

4
. (B5)

On the other side, the coefficients (A4)–(A6) become for � = 1
4

c3,1 = 2(�−)2, c3,2 = 1

6
, c4,1 = −(�−)3, c4,2 = �−

[
4(�−)2 − 1

2

]
, c4,3 = 1

12
�−, c4,4 = �−

4
. (B6)

The terms of c3,2Sd (t (a)
q ) and c4,3Sd (t (m)

q ) in Eq. (29) vanish in d2Q5 scheme, and Eqs. (29) and (30) read as

� = 1

4
,t (·)

c = 1

2
:

A1 = 2(�−)2ce, A2 = 2(�−)2ce − 1

6
, A0 = A3 = −�−[(�−)2]c2

e + 1

12
ce�

−, A4 = −2�−[(�−)2]c2
e ,

B1 = �−
[

4(�−)2 − 1

2

]
ce, B2 = −�−

4
, B4 = 0, B5 = 1

6
, B6 = c4,4 = �−

4
. (B7)

This solution coincides with Eq. (B5).
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