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Nonequilibrium temperature measurement in a thermal conduction process
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We identify the temperature being measured by a thermometer in a nonequilibrium scenario by studying heat
conduction in a three-dimensional Lennard-Jones (LJ) system whose two ends are kept at different temperatures.
It is accomplished by modeling the thermometer particles also with the LJ potential but with added tethers to
prevent their rigid body motion. These models of the system and the thermometer mimic a real scenario in which
a mechanical thermometer is “inserted” into a system and kept there long enough for the temperature to reach
a steady value. The system is divided into five strips, and for each strip the temperature is measured using an
embedded thermometer. Unlike previous works, these thermometers are small enough not to alter the steady state
of the nonequilibrium system. After showing initial transients, the thermometers eventually show steady-state
conditions with the subregions of the system and provide values of the different temperature definitions—kinetic,
configurational, dynamical, and higher-order configurational. It is found that their kinetic and the configurational
temperatures are close to the system’s kinetic temperature except in the two thermostatted regions. In the
thermostatted regions, where the system’s kinetic and the configurational temperatures are significantly different,
the thermometers register a temperature substantially different from either of these two values. With a decrease
in the system density and size, these differences between the kinetic and the configurational temperatures of the
thermometer become more pronounced.
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I. INTRODUCTION

A challenge in nonequilibrium thermodynamics is extend-
ing the meaning of equilibrium variables to nonequilibrium
scenarios [1–3]. Temperature is one such variable of in-
terest [4]. Defining temperature and its measurement using
thermometers relies upon the validity of the Zeroth Law of
thermodynamics [5]—the mutual thermal equilibrium of three
contacting bodies. It has been argued that this fundamental
principle may not be applicable to away-from-equilibrium
conditions [6,7]. To further complicate matters, almost every
process of interest falls under the domain of nonequilibrium
thermodynamics. Therefore, in this work, we ask the following
question: What variable does a thermometer measure in a
nonequilibrium process?

A nonequilibrium process may be either near-equilibrium
or far-from-equilibrium. For the former, it is usually assumed
that the local thermodynamic equilibrium (LTE) conditions
prevail, and consequently the concepts of equilibrium ther-
modynamics, including variables such as temperature, are
applicable locally [8–10]. However, thermometry even under
LTE conditions is not straightforward, as we will see in the
next section. Away from the local thermodynamic equilibrium
regime, thermometry is even more daunting as one faces the
problem of defining temperature. Consider, for example, the
thermodynamic temperature (T ) [11] that is expressed in terms
of the internal energy (E) and the entropy (S) by

T =
(

∂E

∂S

)
V

, (1)

where the partial derivative is performed at constant volume
V . The entropy itself is undefined in a nonequilibrium process
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because of the multifractal nature of the phase space and
the consequent divergence of log(f ), f being the probability
distribution function [7,12,13].

Apart from the thermodynamic definition, temperature
may be expressed in several different ways, with each
definition having its own sets of problems in nonequilibrium
settings. In molecular dynamics (MD), temperature has been
synonymously associated with the kinetic temperature [11],
TK , defined (in a three-dimensional system) as

3

2
NkBTK =

3N∑
i=1

1

2
mv2

i , (2)

where kB is the Boltzmann constant, N represents the total
number of particles, m is the mass of a particle, and vi is
the velocity of the ith particle. TK may also be viewed as
the standard deviation of the normally distributed velocity
distribution, making it possible to define higher-order kinetic
temperatures [14]. The kinetic temperature is based on
the instantaneous equilibration between the system and the
thermometer particles [7] along with the equipartition theo-
rem [5]—partitioning of the kinetic energy equally among the
kinetic degrees of freedom. In other words, TK is synchronous
with the ideal-gas thermometry. However, for a shock wave
propagating in a medium [15], where the equipartition theorem
is violated, TK shows directional dependence:

T xx
K �= T

yy

K �= T zz
K , (3)

T ii
K being the kinetic temperature along the ith direction.

The anisotropy in the kinetic temperature indicates that the
Zeroth Law may not be valid in a far-from-equilibrium process.
Nevertheless, a thermometer in such a scenario still registers
a single reading. While some previous studies have argued for
the equality between the ideal-gas thermometer and the local
instantaneous mechanical kinetic temperature [7,16], others
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have suggested that the kinetic temperature measured by a
near-equilibrium thermometer differs from the average kinetic
energy of the system [17,18]. Thus, again a question arises:
Which variable is measured by a mechanical thermometer?

From a computational perspective, the kinetic temperature
is both easy to calculate and has a local characteristic, unlike
its configurational counterpart, TC , which is expressed in terms
of the configurational variables [19,20] of the system:

kBTC = 〈∇rU · ∇rU 〉
〈∇2

r U 〉 . (4)

Here, the gradient operation on the potential energy, U , is
performed with respect to coordinate r of all particles, 〈· · · 〉
indicates average, and the dot in the numerator represents
the scalar product between two vectors. TC is relevant for
flowing nonequilibrium systems [20] as its evaluation does
not depend upon the a priori knowledge of the streaming
velocity. An accurate determination of TK , on the other hand,
requires the streaming velocity that makes its calculation more
complicated [21,22]. The control of TC is also deemed to be
useful for long-chain polymer molecules and proteins [20].
Unlike TK , TC does not have a basis in the ideal-gas
thermometry because (i) for perfect gases TC is undefined,
and (ii) TC has a nonlocal characteristic, i.e., its value in a
particular region is affected by its surroundings.

The definition of TC is a special case of a more general
relationship [23]:

kBTD = 〈∇E · ∇B〉
〈∇2B〉 , (5)

where E equals the total energy of the system, and the gradient
operation is performed with respect to both the coordinates
and the momentum of the particles. Equation (5) defines the
temperature, TD , of the system in terms of an arbitrary scalar
phase function B. Taking B as the kinetic energy gives Eq. (2),
while setting B = U provides Eq. (4). Alternatively, if we set
B = E, we get Rugh’s temperature [24], TR ,

kBTR = 〈∇E · ∇E〉
〈∇2E〉 . (6)

The higher-order configurational temperatures [14] are defined
by taking different variables for B:

B = U 2 ⇒ kBTC,2 = 〈U∇rU · ∇rU 〉〈∇rU · ∇rU + U∇2
r U

〉 . (7)

The statistical-mechanical theory of thermometry based on
TK and its derivatives relies on the instantaneous equilibration
between the system and the thermometer due to the rapid
elastic collisions between their constituents (kinetic theory of
gases). On the other hand, thermometry based on TC and its
derivatives does not allow equilibration through collisions,
as system particles interacting through realistic potentials
seldom collide with each other. The reason equilibrium
thermometry provides a unique value of temperature is because
in equilibrium all of the different expressions of temperature
are equal [25]:

T = TK = TC = TD = Thigher order. (8)

However, there is no guarantee that it will be so in far-from-
equilibrium processes, again raising a question on the variable

being measured by the thermometer in nonequilibrium set-
tings. The measurement of temperature also depends upon the
nature of interaction between the system and a thermometer.
Consider the case in which the thermometer and the system
particles are highly repulsive vis-á-vis the case in which
the particles are attractive. It is likely that the temperatures
measured by the same thermometer in the two cases will be
different.

In this article, we address (i) the merit of the statistical
mechanical theory of thermometry, including the Zeroth Law,
under LTE conditions by checking for the equality (and the
cross equality) between the different temperature metrics of
the system and the thermometer; (ii) whether this equality
depends on the properties of the system (i.e., the system size,
density, interaction, etc.); (iii) if the response at the boundaries
is different from that in the system interior; and (iv) does
a violation of LTE conditions (i.e., a disagreement between
TK and TC) have any bearing on the temperature of the
thermometer. We explore these concepts through numerical
simulations by considering the system and the thermometers
to be composed of Lennard-Jones (LJ) particles. We focus on
a near-equilibrium thermal conduction process engineered by
two Nosé-Hoover thermostats. For both the system and the
thermometer, we evaluate different measures of temperature,
and we see which of them are in agreement with each other.

The rest of this paper is organized as follows. In the next
section, we briefly review some of the previous attempts
at answering the above-mentioned questions. Section III
describes the simulation model and the methodology. After
discussing the results in Sec. IV, conclusions are summarized
in Sec. V.

II. PREVIOUS EFFORTS IN DETERMINING
NONEQUILIBRIUM TEMPERATURE

Nonequilibrium molecular dynamics (NEMD) enables one
to study the various aspects of nonequilibrium thermodynam-
ics and to provide fundamental insights. Employing NEMD,
Baranyai [17,18] explored nonequilibrium thermometry in
two-dimensional systems. The thermometer consists of hun-
dreds of firmly held fluid particles embedded in the system.
The thermometer is free to translate, vibrate, and rotate within
the system. The operational temperature, TO , measured by the
thermometer is taken to be its kinetic temperature. Baranyai
tested this thermometer on problems related to shear flow and
thermal conduction, and found that neither the system’s kinetic
temperature nor its configurational temperature equalled the
operational temperature of the thermometer, possibly due to
the thermometer size being a large fraction of the size of
the system. Within the thermometer, thermal gradients and
internal stresses exist [7], making it difficult to estimate the
local temperature of a subregion of the system. Additionally,
in a shear flow the local velocity changes with position, which
makes a global operational temperature unrealistic. Thus it is
not surprising to find that TO differs from both TK and TC of
the system.

Another model of nonequilibrium thermometry that has
been studied [6,26,27] is pictorially displayed in Fig. 1.
Consider a nonequilibrium system under thermal conduction
because of the applied temperature difference �T = T H − T C
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FIG. 1. The system on the left is in a nonequilibrium state whose
temperature at a certain location we wish to measure. The system
on the right is in equilibrium and behaves like a thermometer. A
heat flux, Q1, occurs in the nonequilibrium system because of the
applied hot and cold temperatures, TH and TC , respectively, at the
top and the bottom ends. The shaded region represents a conductor
that links the nonequilibrium system with the equilibrium system. If
the temperatures at the two ends of the conductor, TLTE and TO ,
are not the same, then there is a heat flux Q2. The operational
temperature [6,26,27] measured by the thermometer is defined as
the temperature TO for which Q2 = 0.

resulting in a finite heat flux Q1. For simplicity, we assume
that the system is in local thermodynamic equilibrium so that
the local temperature of the system may be defined. Consider
any location within the system having temperature TLTE.
We now bring an equilibrium system, characterized by the
temperature TO , in contact with the nonequilibrium system
by means of a conductor. The conductor, whose one end is
at TLTE and the other is at TO , encounters a heat flux Q2.
The essence of the idea shown in Fig. 1 lies in tuning the
equilibrium temperature TO such that Q2 = 0. This concept
of temperature measurement resembles the Zeroth Law based
ideal-gas thermometry where the system and the thermometer
are in equilibrium and the heat flux equals zero.

Hatano and Jou tested this idea using two single-harmonic
oscillators [6]—a forced single-harmonic oscillator repre-
senting the nonequilibrium system, and a single-harmonic
oscillator representing the system in equilibrium. The role
of the intermediate conductor is played by the quadratic and
bistable coupling potentials between the two systems. They
concluded that TO �= TC,LTE > TK,LTE �= TO with

TLTE − TO ≈ Q2
2. (9)

The “thermometer” gives a different reading depending upon
the coupling potential, highlighting the importance of the na-
ture of the interaction between the system and the thermometer
and the nonlocal characteristics of the measured temperature.
A similar concept was used by Ritort—a two-state spin system
being driven out of equilibrium by a sinusoidal force coupled
with an equilibrium oscillator—to show that TO reaches the
maximum value when there is resonance between the system
and the thermometer [28].

While conceptually simple and appealing, the model
can be improved upon. The description of the conductor
linking the system and the thermometer alters TLTE. In the
implementation by Jou et al. [3–6], the forced oscillator
may bring the second oscillator out of equilibrium and for

the forcing frequency different from the system frequency,
TC �= TK . Under such conditions, the basic tenets of the local
thermodynamic equilibrium are violated as the existence of
TLTE implies TC = TK . There could be spurious effects arising
due to the nonequilibrium temperature being controlled by
the Langevin thermostat [29,30]. Moreover, the results may
change depending upon the temperature control algorithm, as
recent studies have indicated that the dynamical properties of
a system depend upon the algorithm used [31,32].

The simplicity and the uniqueness of the method prompted
another investigation along similar lines. Rather than using
a forced oscillator, Hoover and Hoover [7] used a two-
dimensional heat conducting φ4 chain with one end particle
thermostatted at T H and the other at T C by means of two
Nosé-Hoover thermostats. The particles lying between the two
thermostatted particles evolve under the Newtonian dynamics.
The link between the hot and the cold thermostatted particle is
provided by a single intermediate particle to which the remain-
ing intermediate particles are connected, and it functions as the
thermometer. Under this nonequilibrium setting, the kinetic
and the configurational temperatures of the thermostatted
particles were found to be different, again suggesting that
the Zeroth Law of thermodynamics may not exist in such
nonequilibrium cases. The configurational temperature of the
hot (cold) particle was found to be consistently less (more)
than its kinetic counterpart. Despite the near equivalence of the
kinetic temperature with the local thermodynamic equilibrium
temperature, the kinetic and the configurational temperatures
measured by the thermometers were found to be different. We
conjecture that this could be due to an algorithmic artefact [25]
as the results may change if configurational thermostats were
used instead of the Nosé-Hoover thermostat.

III. THE PRESENT MODEL

Our proposed model collates the ideas discussed in the
previous section and brings computational thermometry closer
to real-life thermometry. The system studied is similar to that
employed by Baranyai [17,18], and the method of measuring
temperature is inspired by that depicted in Fig. 1. Rather
than having a single thermometer measure the temperature
of the entire nonequilibrium system, we employ multiple
thermometers embedded in the system that measure the local
temperature as shown in Fig. 2. In scenarios where the
system and the thermometer particles do not collide but
achieve equilibration by doing work, the merit of ideal-gas
thermometry may be tested by using this model. As the
thermometer particles constitute only a small fraction (6%)
of the system particles, this model of thermometry does not
alter the system state once the steady state sets in, unlike in
the previous studies. After initial transients have died out, the
thermometers achieve steady-state conditions with a subregion
of the system, and they enable one to find the temperature
according to the different definitions. Further, unlike previous
studies, the model does not treat any temperature definition
preferentially.

The details of the simulation are as follows. Each particle is
assigned a unit mass. We set kB = 1, employ nondimensional
standard LJ units throughout and do not distinguish between
the system and the thermometer particles at the beginning.
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FIG. 2. The present model for measuring temperature in a
nonequilibrium system. The model closely represents how we
measure the temperature of a real system. The gray particles (on
the left) are the system particles, while the red particles (on the right)
represent the thermometers. The thermometer particles are embedded
within the system and are tethered to their positions so that they can
measure the local temperature. Overall, the system is divided into
five equally spaced regions along the x direction, and a thermometer
is included in each region. The locations of the thermometers are
staggered to avoid any interaction among them. For a cube of side
length L, each thermometer has a dimension of (L/5,L/5,3L/10).
The approximate locations of the centroid of the thermometer
particles are as follows: (L/10,3L/10,L/4), (3L/10,7L/10,3L/4),
(L/2,3L/10,L/4), (7L/10,7L/10,3L/4), and (9L/10,3L,10,L/4).

The initial positions of all particles are randomly assigned
in the simulation domain, which is a cube with side lengths
determined by the desired number density, ρ. The nonperiodic
reflecting boundary conditions along the three axes are en-
forced; if a particle crosses a simulation edge, the appropriate
component of velocity is reversed, and the particle’s position
is updated within the simulation domain. All particles interact
with each other through the LJ potential,

Uij =
{

4εmn

[(
1
rij

)12 − (
1
rij

)6]
, rij � 2.5,

0, rij > 2.5,
(10)

where rij equals the relative position of particle j with respect
to that of particle i. If the ith particle corresponds to the
system, then m = 0, otherwise m = 1. Likewise, n equals 0 or
1 depending on if the j th particle represents the system or the
thermometer. We set ε11 = ε00 = 1, and ε01 = ε10 is assigned
a value between 0 and 1 that reflects the interaction between
the system and the thermometer particles.

Following a conjugate-gradient-based minimization and
50 000 equilibration time steps, the system and the thermome-
ter particles are tagged. In each region, 6% of the particles
are demarcated as the thermometer particles. Once tagged, the
system and the thermometer particles still interact according
to the LJ potential, however the interaction between the system
and the thermometer particles changes. The latter is also
modeled through Eq. (10), but with varying values of ε01 =
ε10—we investigate four cases with ε01 = 0.25, 0.50, 0.75, and
1.0—to gather insights into the effect of interaction between
the system and the thermometer particles. The simplicity of

the LJ potential, along with its long-range attraction and
short-ranged repulsion that mimics real-life systems, prompted
us to use it for modeling purposes. We choose a cutoff distance
of 2.5 where the truncation energy is −0.016 × εmn. Although
a discontinuity exists at this point, for the present study it is
expected not to significantly affect the results. Additionally,
the thermometer particles are tethered to their initially tagged
position by a harmonic potential:

V (ri) = 1
2 [ri(t) − ri(te)]2, (11)

where ri(t) denotes the instantaneous position of the ith
thermometer particle, and ri(te) denotes the initial tagged
position of the same particle after the 50 000 equilibration time
steps. The tethering potential serves two purposes: (i) it holds
the thermometer particles together tethered at one place, and
(ii) it prevents a rigid body motion of the tethered particles.
Thus our thermometer measures the local temperature of a
region, unlike that of Baranyai’s.

The simulation domain is divided into five regions of equal
size along the x axis, and each region has an embedded ther-
mometer that measures the “local” temperature of the region.
Thermometer particles are located in staggered positions in
the five regions to minimize their influence on each other. The
system particles of the leftmost and the rightmost regions are
thermostatted at temperatures T H and T C , respectively, which
drives heat flow through the system. Thermostatting is done
using two Nosé-Hoover thermostats [33]. It should be noted
that rather than thermostatting the system particles themselves,
we thermostat the regions so that as soon as a system particle
leaves or enters the thermostatted region, it is either devoid or
under the influence of the thermostat. The motion of the system
particles in the three intermediate regions is governed by the
Hamiltonian evolution equation. All thermometer particles are
free from any thermostat influence.

The evolution equations of motion are integrated using the
modified velocity-Verlet algorithm [34] for 1.5 × 106 time
steps, with each step size = 0.001. The thermostat masses
for both the cold and the hot reservoirs are taken to be 500. For
each region and thermometer, we separately compute TK , TC ,
TR , and TC,2 at every time step. While evaluating TC,2, we have
used the entire potential energy, U , of the system rather than the
potential energy of a particular region. The results presented
in this work are time averages of 1.45 million values. We have
investigated the effects of (i) �T = T H − T C ; (ii) number
density, ρ; (iii) interaction; and (iv) the system size, N , of the
number of particles on the computed temperature values. The
different configurations investigated are listed in Table I.

IV. RESULTS AND DISCUSSION

A. Temperature profile due to the NH thermostat

Thermal conduction studied using the Nosé-Hoover ther-
mostats has interesting temperature profiles [7,25] and may
be used to address the specific questions asked before. We
illustrate these features through Fig. 3, which shows the
temperature of the system particles present in the five regions
for εm�=n = 1, ρ = 0.728, N = 5000, and �T = 2.0. There is
a 4% difference between the kinetic and the configurational
temperatures of the hotter thermostatted region. All nonlocal
measures of temperature are almost identical—TC , TR , and
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TABLE I. Details of the simulation study. Overall, 144 simula-
tions were carried out to understand the effects of the system size,
the density, the interaction, and the temperature difference (�T =
T H − T C) on the temperature being measured by a thermometer. N

equals the total number of particles (system + thermometer).

ε = 0.25, 0.50, 0.75, 1.00
ρ 0.728 0.90 1.0

N = 1000
T H = 1.0, T C = 0.5

N = 2000
T H = 1.5, T C = 0.5

N = 5000
T H = 2.5, T C = 0.5

N = 8000

TC,2 do not have any appreciable differences among them.
Thus, for the remainder of this paper, we report only the
configurational temperature.

B. Existence of LTE

The nonequivalence of the kinetic and the configurational
temperatures at the hot thermostatted end poses a question
on whether the LTE conditions prevail within the system.
We therefore check for the LTE conditions before proceeding
further. If the system is in LTE, the momentum of the particles
follows locally the Maxwell-Boltzmann distribution:

fLTE(p1,p2, . . . ,p3N ′ ) ∝ exp

[
1

2TLTE

3N ′∑
i=1

p2
i

]
. (12)
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FIG. 3. The temperatures of the five regions with εm �=n = 1, ρ =
0.728, N = 5000, and �T = 2.0. Note that these results are only for
the system particles. There is a substantial difference between the
kinetic and the configurational temperatures at the hot thermostatted
region. A similar observation was found for all other systems as
well. As one approaches the colder region, the difference between
the kinetic and the configurational temperatures decreases.
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FIG. 4. The near equivalence of TLTE from the first (black bars)
and the second (gray bars) moments of kinetic energy. The system
under investigation corresponds to εm �=n = 1, ρ = 0.728, N = 5000,
and �T = 2.0. This figure shows that locally the momentum distri-
bution of the particles follows the Maxwell-Boltzmann distribution,
and hence the system is in local thermodynamic equilibrium. Local
thermodynamic equilibrium conditions prevail despite the small but
substantial difference between the kinetic and the configurational
temperatures, as seen in Fig. 3.

In other words, the linear momentum pi = mvi of the particles
in a particular region has a normal distribution with a variance
equal to TLTE. Consider a random variable Zi = pi/

√
TLTE.

It is evident that Zi follows a standard normal distribution.
Thus,

∑3N ′
i=1 Z2

i follows a χ2 distribution with 3N ′ degrees
of freedom. To see if the system is in local thermodynamic
equilibrium, we check for the near equivalence of the TLTE

as calculated from the first two central moments of the
resulting χ2 distribution. The equations to be solved are as
follows:

First moment → 〈Y 〉 = 3N ′TLTE,
(13)

Second moment → 〈Y 2〉 − 〈Y 〉2 = 6N ′T 2
LTE,

with Y = ∑3N ′
i=1 p2

i .
The LTE conditions prevailing within the system can be

gauged from the near-equivalence of the TLTE shown in Fig. 4.
A fundamental consequence of the existence of the LTE is
the applicability of postulates of equilibrium thermodynamics
locally, including the equality of the different temperature
measures. However, as is evident from Fig. 3, in our case a
situation arises where at the boundaries (i.e., the thermostatted
regions), the postulates of equilibrium thermodynamics are not
applicable despite the existence of the LTE, while away from
the boundaries the results are as expected. This simultaneous
violation and agreement with the tenets of the LTE hypothesis
enable us to judge the merits of the nonequilibrium ther-
mometry without looking at far-from-equilibrium situations
by checking whether the thermometers “sense” the kinetic
temperature or the configurational temperature of the system.
An agreement between the different temperature definitions
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FIG. 5. For εm �=n = 1, ρ = 0.728, N = 5000, and �T = 2.0, the
temporal evolution of the average kinetic temperature measured by
the thermometers embedded in the five regions. For each region, it is
evident that the thermometer has reached a steady state.

of the system and the thermometer indicates the compliance
of the Zeroth Law in the LTE situations. A disagreement,
on the other hand, suggests the violation of the Zeroth Law.
When immersed in the system, the energy is transferred to
the thermometers through their interaction with the system
particles. The interaction is nonlocal, i.e., the thermometer
particles feel effects of all the system particles lying within
the cutoff range. Consequently, it is not easy to predict what
temperature a thermometer would measure, especially when
the kinetic and the configurational temperatures are different
in the thermostatted regions.

C. Steady states exist within the thermometers

In real-life thermometry, after initial transients, a ther-
mometer attains equilibrium with the system and the corre-
sponding reading is ascribed the name “temperature.” The
reading does not show any appreciable fluctuations with time.
In the present model of nonequilibrium thermometry a similar
situation occurs, as can be seen from Fig. 5, in which we have
plotted the temporal evolution of the average kinetic tempera-
ture for the case εm�=n = 1, ρ = 0.728, N = 5000, and �T =
2.0. Upon coming in contact with the system, each locally
embedded thermometer shows transient thermal conduction,
and after 1.5 × 106 time steps it shows steady-state conditions
where the temperature does not significantly fluctuate. The rate
of approach to steady-state conditions depends on the region
where the thermometer is present—whereas for regions 4 and
5 the temperature reaches a steady-state value after 0.5 × 106

time steps, it takes nearly 1.5 × 106 time steps for the other
regions.

D. Temperature measured by the thermometers

Figure 6 shows the temperatures measured by the ther-
mometers as well as their difference from the LTE temperature
(TLTE) corresponding to εm�=n = 1, ρ = 0.728, N = 5000, and
�T = 2.0. Interestingly, at the thermostatted ends, there is a
substantial difference (around 10%) between TLTE and both
the kinetic and the configurational temperatures of the ther-
mometer (�TK and �TC , respectively). The thermometers in
these regions measure neither TK nor TC . The nonequivalence
of the temperatures with TLTE questions the existence of the
Zeroth Law in these regions. These results agree with those of
Jou and Hatano [6], where TK and TC of the oscillators are not
the same.

However, as we move inward from the ends, we see
that there is a negligible difference (�2%) between TK , TC ,
and TLTE, and the thermometer correctly identifies TLTE. The
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FIG. 6. Left: Comparison of the kinetic (black bars) and the configurational (red bars) temperatures measured by the thermometers with
the kinetic (gray bars) and the configurational (light red bars) temperatures of the system. This case corresponds to εm �=n = 1, ρ = 0.728,
N = 5000, and �T = 2.0. Right: The difference of the kinetic and the configurational temperatures from the local thermodynamic equilibrium
temperatures (�TK and �TC , respectively) in the five regions.
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FIG. 7. Absolute difference of the kinetic and the configurational
temperatures measured by the thermometer from the LTE tempera-
tures. This case corresponds to εm �=n = 1, ρ = 0.728, and N = 5000.
Like the results depicted in Fig. 6, we observe that there is a very small
difference between the kinetic (and the configurational) temperatures
and the LTE temperatures in the inner regions. The thermometers
accurately measure the LTE temperature of the system only in the
inner regions. However, at the thermostatted ends, the deviations
from the TLTE increase with an increase in �T .

difference between TK and TC of the thermometers in regions
2, 3, and 4 is small enough to conclude that within the
thermometer, the Zeroth Law is satisfied among the kinetic
and the configurational degrees of freedom. Further, the Zeroth
Law holds between the system and the thermometer as well.

A similar conclusion could be drawn for the other values of
�T , as can be seen from Fig. 7, which shows the deviations
of the TK and the TC of the thermometers from the TLTE. As in
Fig. 6, we observe that the thermometer accurately measures
TLTE for the inner regions. In fact, the deviation of TK and TC

from TLTE is negligible (�2%).
Figure 8 shows the difference in the temperatures measured

by the thermometers and the TLTE with an increase in the
density of the system. The system size is kept fixed at
5000 particles and �T = 2.0. While in the inner regions
the thermometer accurately captures the LTE temperature,
in the thermostatted outer regions, with an increase in ρ,
the deviations of the TK and the TC from the TLTE shows
no improvement. Interestingly, TC and TK measured by the
thermometers in the thermostatted regions are almost the same
at higher densities.

It has been argued before that the interaction between the
thermometer and the system influences the sensing capabilities
of the thermometer [6]. We now investigate this feature by
changing the interaction between the system particles and the
thermometer particles. We set εm�=n = 0.25, 0.5, 0.75, and 1.0
for this purpose. Figure 9 shows the effect of changing the
interaction while keeping all other variables constant. It is
interesting to note that with increasing interaction between
the system and the thermometer particles, the ability of the
thermometer to sense the LTE temperature improves, and
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FIG. 8. For εm �=n = 1, �T = 2.0, and N = 5000, the absolute de-
viation of the kinetic and the configurational temperatures measured
by the thermometer from the LTE temperatures. In the thermostatted
regions, the difference from the TLTE is higher than that observed in
Fig. 7, but in the inner regions we see that the thermometers accurately
measure TLTE.

away from thermostatted ends the deviation in certain cases is
smaller than 2%.

To ensure that the system with N = 5000 gives reasonably
accurate results, we study the effect of the system size, keeping
other variables constant on the thermometer readings. The
results are depicted in Fig. 10. Although we do not observe
any particular trend in the deviation with changing system size
in the thermostatted regions, Fig. 10 shows that the results
with N = 5000 and 8000 are qualitatively and quantitatively
close to each other. Thus, the results presented above with
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FIG. 9. For T H − T C = 2.0, ρ = 0.728, and N = 5000, the
absolute deviation of the kinetic and the configurational temperatures
measured by the thermometer from the LTE temperature. In the
thermostatted regions, the deviations of the TK and the TC increase
with an increase in ρ but remain unaltered in the inner regions. That
is, in the inner regions, the thermometers accurately measure TLTE.
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FIG. 10. Deviations of TK and TC of the thermometers from the
TLTE with changing N , keeping other variables constant: ρ = 0.90,
�T = 2.0, and εm �= = 1.0. We do not observe any particular trend in
the deviation with changing system size.

N = 5000 are representative of those for a larger number of
particles.

V. CONCLUDING REMARKS

Ideal-gas thermometry is based on the equilibration be-
tween the system and the thermometer particles achieved
through elastic collisions. It thus predicts that the tempera-
ture measured by a thermometer equals the average kinetic
energy of the system. However, in realistic scenarios, two
particles need not collide with each other. In such cases,
the fundamentals of ideal-gas thermometry are not clear. It
still works extremely well for equilibrium cases because of
the equality of the different measures of temperature. But, in
nonequilibrium regimes where defining a unique temperature
is problematic, along with the fact that particles may not collide
with each other, it is not clear what temperature a thermometer
measures. In this work, we have tested the merits of ideal-gas
thermometry by embedding multiple thermometers in a heat
conducting system. These thermometers behave like real-life
thermometers—(i) they are small enough (they comprise only
6% of the system particles) not to alter the steady state
of the nonequilibrium system, (ii) any two particles never
collide, and (iii) after showing initial transients, they provide
steady-state values of the different measures of temperature.
The nonequilibrium problem studied is a thermal conduction
process affected by two Nosé-Hoover (NH) thermostats. The
interesting temperature profiles due to the NH-based thermal
conduction enable us to explore both cases TK �= TC and

TK ≈ TC locally, without looking at far-from-equilibrium
dynamics. Further, we show that local thermodynamic equilib-
rium conditions prevail in these systems, which makes possible
the definition of a unique local thermodynamic equilibrium
temperature, TLTE.

The key takeaways from this investigation are as follows:
(i) the Zeroth Law is satisfied in the regions where TC ≈ TK

locally, whereas for the regions where TC �= TK the Zeroth Law
does not hold despite the existence of the TLTE; (ii) the validity
of the Zeroth Law is crucial for the thermometers to sense the
correct system temperature, as for the regions where TK �= TC

the thermometers do not correctly identify either TC or TK ;
(iii) at the thermostatted ends, TC �= TK for the thermometers
despite them being free from the influence of the thermostats;
(iv) the temperature measured by a local thermometer depends
marginally on the interaction between the system and the
thermometer; and (v) a unique temperature measurement by a
thermometer under nonequilibrium settings depends upon TK

being nearly equal to TC . Studies based on fewer degrees of
freedom may have come to a different conclusion because
of the effects of the finite size. In our study as well, for
cases with a small number of particles, the configurational
temperature measured by the thermometer is different from
the LTE temperature. However, the difference decreases with
an increase in the system size. Thus, if one extrapolates these
results to the thermodynamic limit, one should not encounter
any major difficulty in nonequilibrium thermometry. It is note-
worthy that regardless of the configurational temperature of
the system, the thermometer has a configurational temperature
commensurate with its kinetic counterpart at larger system size
even at thermostatted ends.

Further investigation is necessary to state if the inequality
between the measured temperature and the local thermody-
namic equilibrium temperature at the thermostatted ends is a
general phenomenon. One may analyze such a situation by
creating a case in which the LTE is deliberately violated
and coupling it with the present thermometer model. An
example of the LTE violating system is the differential
thermal conduction model [35] where the kinetic and the
configurational temperatures of a thermostatted end are kept
at different values. We conjecture that our results may be
useful for researchers studying other nonequilibrium processes
such as Couette flow. However, a separate study needs to be
conducted to confirm this.
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