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Interaction force between two finite-size charged particles in weakly ionized plasma
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The results of numerical studies of the interaction forces between two finite-size charged spherical conductive
particles embedded into weakly ionized strongly collisional isothermal plasma-like medium are presented. The
studies are performed for the case of particles with fixed electric charge under the assumption that particles
do not absorb electrons and ions from the surrounding plasma (colloidal particles) as well as for particles
charged by plasma currents (grains). In the first case the Poisson-Boltzmann model was used and in the second
the dynamics of grain charging is described in the drift-diffusion approximation. It is shown that at the large
distances the interaction force between colloidal particles has the Debye screened asymptotic while for the grains
the Coulomb-like behavior is observed. The dependence of the grain charge collected due to the plasma particle
absorption on the distance between two grains is studied. The possibility of introducing effective Coulomb
description of finite-size grain interaction in weakly ionized strongly collisional plasma is discussed.
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I. INTRODUCTION

The problem of electrostatic interaction of finite-size
charged bodies has a long history [1]. The interaction of
charged objects even of spherical form can be described by
the Coulomb law for point charges only if their sizes are
much smaller than the distance between them. Therefore, the
problem arises of calculating the force with which two bodies
are repulsed or attracted to each other at arbitrary distances.
Recent developments for the case of two conducting spherical
particles in a vacuum are presented in Refs. [2–4]. In particular,
the repulsion force between like-charged conducting spheres
of the same size is less than the Coulomb force for point
charges, due to charge polarization. The ratio of these forces
reaches the value 0.6149 when the sphere are in contact [3].

Obviously, the presence of plasma around charged finite-
size particles considerably complicates the problem under
consideration.

At the same time, the knowledge of the force with which
two finite-size charged particles interact in plasma is needed for
the solution of the verity of problems of dusty plasma physics
[5,6] and physics of charged colloidal suspensions [7–10].
These fields of physics deal with the studies of the systems
which consist of not only the charged particles that could be
treated as point particles (electrons and ions in plasmas and
counterions in the case of colloidal suspensions), but also of
finite-size charged particles (dust particles, or grains in the
case of dusty plasmas and charged colloidal particles in the
case of colloidal suspensions). In particular, one of the most
important problems in these fields is the description of the
ordered structure (for example, dusty and colloidal crystal)
formation in dusty plasmas [11,12] and colloidal suspensions
[7,8].
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It is necessary to note that the problem of grain interaction
in dusty plasmas has been studied for many years. Many
details of such interaction were described (see, for example,
Refs. [13–18] and references cited therein). However, the
problem of influence of the finite sizes of particles on
interaction forces still remains open. In the meanwhile, the
knowledge of such influence is important for the correct
description of dusty crystal formation and modeling of ordered
structures in dusty plasma [19,20].

The purpose of the present paper is to study the influence
of finite sizes of charged particles embedded into plasma-like
medium on the interaction forces between two particles and
to propose the description of such forces in terms of effective
interactions. Since the objects under consideration (grains and
charged colloidal particles) accumulate and carry very large
electric charge and thus nonlinear effects should be taken into
account, the problem was solved numerically. Dynamics of
plasma was described in the drift-diffusion approximation that
is applicable to the case of weakly ionized strongly collisional
plasmas which takes place in dusty plasma experiments
[21–23].

Notice that dusty plasmas and charged colloidal suspen-
sions have many common features such as the similar com-
position, presence of highly charged macroparticles, ordered
structure formation, etc. However, there is one very important
difference between them which concerns the mechanism of
macroparticle charging. In the case of charged colloidal sus-
pensions, a macroparticle charge appears due to the chemical
interaction of macroparticle with solvent. Such charge is
fixed and we can assume no charge exchange between the
colloidal particle and electrolyte. On the contrary, in the case
of grain embedded into plasma, the grain charge appears as
a result of electron and ion collection by grain [6]. Due to
the electron-ion recombination on the surface of the grain, its
charge is maintained by the permanent plasma particle fluxes
towards the grain surface. This means that in such case the
grain charge is dependent on the plasma dynamics and it should
be calculated self-consistently with due regard of the presence
of other grains. This introduces one more complication related
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to the fact that the charge of solitary grain is different from that
in the presence of the second grain, at least if they are located
in the vicinity of each other. This problem is also studied in
the present paper.

The paper is organized in the following order. The general
statement of the problem and basic equations are formulated
in Sec. II. This section also includes the description of the
numerical method used for the solution of the problems under
consideration. In Sec. III we discuss briefly the properties
of the screening of solitary particles and recover some
results, which are used to describe two-particle effects in
the interaction of finite-size charged particles. The difference
between the effective potentials for the case of particle without
charge exchange with the surrounding plasma and particle
charged by plasma currents is also discussed. The results of
numerical studies of the interaction forces acting between two
finite-size particles are presented in Sec. IV.

II. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

Let us consider two charged spherical conducting
macroparticles of the radius a embedded into infinite strongly
collisional, weakly ionized plasma. We assume that each
particle has the charge q and the distance between centers
of the particles is equal to 2c. The geometry of the system
under consideration is shown in Fig. 1.

The force acting on one of the particles (for example, that
with the coordinate r = {0,0,c}) can be calculated on the basis
of the following treatment. Let us consider the surface element
dS. In the case of conducting particle its charge is dq = σdS,
where σ is the surface charge density, which is the function of
coordinate. The electric field strength E is directed along the
normal to the surface and has the value E = 4πσ . The force
acting on the surface element is given by

dF = σ (E − ES)dS, (1)

z

y

x

q

q

c

FIG. 1. Mutual displacement of particles and coordinate system.

where ES is the electric field generated by the surface element

ES = 2πσn, (2)

where n is the unit vector of the external normal to the surface
element.

Thus, the force acting on it can be written as

dF = 2πσ 2ndS. (3)

The total force is given by

F = 2π

∮
S

σ 2dS = 1

8π

∮
S

(
n

∂ϕ

∂r

)2

dS. (4)

In view of the cylindrical symmetry of the problem, we use
a cylindrical coordinate system. In such a case, the surface
of the particle S is given by the equation r2

⊥ + (z − c)2 = a2

and thus the normal to the surface can be written as n =
{r⊥/a,(z − c)/a}.

As is easy to see in the system under consideration, F has a
nonzero z component only:

F = Fz = 1

8πa

∮
S

(
n

∂ϕ

∂r

)2

(z − c)dS. (5)

The potential ϕ(r) satisfies the Poisson equation. In the case
of singly ionized ions ei = −ee = e, where e is elementary
charge, one has

�ϕ(r) = 4πe[ne(r) − ni(r)], (6)

where nα(r) is the density of the corresponding plasma
particles species. This equation should be supplemented with
the boundary conditions. In all the cases, the potential should
decrease with the distance and thus

ϕ(r)
∣∣
r→∞ = 0. (7)

The boundary condition for the potential at the conducting
particles surface is

ϕ(r)
∣∣
S

= ϕS = const. (8)

The way of estimating the ϕS , as well as the boundary
condition for electrons and ions distributions around the
particles, depends on the properties of macroparticles and
should be treated separately.

In order to study the influence of surface charge polarization
on the interaction of conductive particles, we also consider
the interaction of macroparticles with uniform surface charge
density σ0 = q/4πa2. In such a case, the z component of the
force acting on the surface element is given by

dFz = σ0EzdS (9)

and the z component of the force acting on entire surface is

Fz = − q

4πa2

∮
S

∂ϕ

∂z
dS. (10)

Electrostatic potential ϕ(r) is generated by both charged
macroparticles and surrounding plasma. The potential of
macroparticle with uniform surface charge density has the
spherical symmetry. Thus, the contribution into force (10)
acting on considered macroparticle from its electric field is
equal to zero.

013212-2



INTERACTION FORCE BETWEEN TWO FINITE-SIZE . . . PHYSICAL REVIEW E 95, 013212 (2017)

In contrast to conducting particles, for the particles with
uniform surface charge density the electric field inside the
sphere is not equal to zero. Thus, one should solve the Poisson
equation �ϕi(r) = 0 inside the sphere along with (6) outside.
The boundary condition on the particle surface is

n
∂ϕ

∂r

∣∣∣∣S − n
∂ϕi

∂r

∣∣∣∣
S

= 4πσ0. (11)

A. Macroparticles with no charge exchange
with surrounding plasma

If there is no charge exchange between the macroparticles
and plasma (such picture is observed in the case of charged
colloidal suspensions) the value of ϕS in boundary condition
(8) should be taken in such a way that ϕ(r) satisfies the Gauss’s
law ∮

S

n
∂ϕ

∂r
dS = −4πq, (12)

where q is the given charge of macroparticle.
The electron and ion densities can be approximated by the

Boltzmann distribution

nα(r) = n0 e
− eαϕ(r)

Tα (13)

and thus Eq. (6) has the form of Poisson-Boltzmann equation

�ϕ(r) = 4πen0
(
e

eϕ(r)
Te − e

− eϕ(r)
Ti

)
. (14)

In the dimensionless variables

φ = eeϕ

Te

, τ = Te

Ti

, r̃ = r

λD

, (15)

where λD is the Debye length,

λD = 1

kD

, k2
D =

∑
α

k2
Dα, k2

Dα = 4πe2
αn0

Ta

,

the equation for the potential has the form

�φ(r̃) = eτφ(r̃) − e−φ(r̃)

1 + τ
. (16)

B. Grains charged by plasma currents

If a macroparticle (grain) absorbs all encountered electrons
and ions, the surface value of the potential ϕS is still fixed, but
instead of (12) we have to take into account that the stationary
value of the grain charge is determined by the total electric
current through the grain surface,

Itot =
∑

α

Iα =
∑

α

eα

∮
S

�αdS = 0, (17)

where flux density �α satisfies the stationary continuity
equation

div�α(r) = 0 (18)

and boundary conditions for nα(r), namely,

nα(r)|S = 0, (19)

nα(r)|r→∞ = n0. (20)

r⊥

z

bc a
θ

FIG. 2. Computation domain.

In the drift-diffusion approximation, which we apply for the
description of plasma dynamics in the case of weakly ionized,
strongly collisional plasma, the electron and ion flux densities
are

�α(r) = −μαnα(r)∇ϕ(r) − Dα∇nα(r). (21)

Mobility μα and diffusion coefficient Dα are gathered by
the Einstein relation and can be expressed in terms of plasma
particles’ mean free path lα

μα = eαDα

Tα

, Dα = lα

√
Tα

mα

. (22)

Using the dimensionless variables (15) and

Gα = �α

Den0kD

, (23)

one obtains

Ge = −ηe(r̃)∇φ(r̃) − ∇ηe(r̃),

Gi = (Di/De)[τηi(r̃)∇φ(r̃) − ∇ηi(r̃)],
(24)

where ηα = nα/n0 and thus the system of equations for the
potential and plasma particles density has the form

�φ(r̃) = ηi(r̃) − ηe(r̃)

1 + τ
, (25)

divGα(r̃) = 0. (26)

The problem of interaction between two spherical particles
has the axial symmetry around the z axis (see Fig. 1);
thus in a cylindrical coordinate system, the potential is the
function of two variables ϕ(r) = ϕ(r⊥,z) as well as electron
and ion number densities nα(r) = nα(r⊥,z). The above-stated
problems, which are two dimensional in (r⊥,z) coordinates,
were solved numerically using the finite-element method.
Taking into account the reflection symmetry with respect to
xy plane (Fig. 1) the computation domain shown in Fig. 2
was used. The boundary conditions (7) and (20) were approx-
imated by the same conditions at r = b in the computations,
where b � λD . Normal components of ∇φ(r̃), ∇η(r̃) to the
boundaries (z = 0,0 < r⊥ < b), (r⊥ = 0,0 < z < c − a), and
(r⊥ = 0,c + a < z < b) are equal to zero, which corresponds
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to the continuity of the potential, electron, and ion densities
at these boundaries in view of the cylindrical and reflection
symmetries of the problems.

The ratio of diffusion coefficients De/Di arises as a
parameter after the normalization. Using the relation (22)
Dα = lα

√
Tα/mα and assuming plasma particle mean free

path independence on temperature, one obtains De/Di =
(le/ li)

√
mi/me

√
Te/Ti = d

√
τ . Parameter d is the ratio of the

electron to ion diffusion coefficients in the case of isothermal
plasma. The calculations were performed for d = 1000 (the
same value was used in Refs. [24,25]) and τ = 1 (isothermal
plasma).

III. EFFECTIVE POTENTIALS OF SOLITARY CHARGED
MACROPARTICLE IN PLASMA

In order to clear up the two-particle effects in the problem
of finite-size spherical conducting particles interaction, it
is useful to compare the results of calculations with those
following from the effective potential approximation. That
is why we need to know the effective potential of solitary
finite-sized charged particle.

With this purpose, we also solved Eq. (16) or Eqs. (25) and
(26) with the boundary condition (7) or set of (7), (19), and
(20) respectively. In view of the spherical symmetry of the
problem in the case of one particle, the boundary condition at
the particle surface is simplified to

n∇ϕ(r)|S = − q

a2
. (27)

Along with the boundary condition (7), the latter condition
is sufficient for the numerical solution of the boundary-value
problem in the case of a particle which does not absorb
electrons and ions from the surrounding plasma (in this case,
the charge is treated as a given quantity). However, in the case
of grain charged by plasma currents, the value of q should
be found self-consistently using the condition of zero electric
current (17).

Since the effective potentials of charged finite-size particles
are dependent on their absorptive properties it is reasonable to
consider the case for particles with reflecting and absorbing
surfaces separately.

A. Macroparticle with reflecting surface (no exchange
with the surrounding medium)

In this case we solve the Poisson-Boltzmann equation (16)
with the boundary conditions (7) and (27) for isothermal
plasma (τ = 1). This problem was studied for many years,
both analytically [26–31] and numerically [26,32,33]. In this
section, for the sake of completeness, we recover some known
results and add other numerical results. We start from the
comparison of the numerical solution of the problem with the
linearized solution, namely the Debye potential:

ϕD(r) = q

r
e−kDr . (28)

The ratios of the calculated potential to the Debye potential
for various values of dimensionless macroparticle radii a/λD

and charges zg = qee/aTe are presented in Figs. 3(a) and 3(b).
These ratios differ from the constants only in the vicinity of

(a)

(b)

FIG. 3. Ratio of calculated potential to Debye poten-
tial ϕ/ϕD: (a) a/λD = 0.5, zg = 0.1,5,10,20,50; (b) zg = 10,
a/λD = 0.1,0.5,1.0,2.0, zg = qee/aTe.

the grain, which means that the particle potential can be well
described by the Debye potential with the effective charge
qeff that is defined by the constant values which approach the
ratios. The notion of an effective charge comes from the work
of Alexander et al. [26] and is developed in further studies.

Figure 3(a) shows that for the fixed particle radius the
growth of zg leads to the decrease of effective charge. The
dependents of qeff on the particle radius for the fixed zg is
slightly nonmonotonic [see Fig. 3(b)]. These conclusions are
clearly illustrated in Fig. 4, where effective charge vs zg is
plotted for various values of a/λD and are in agreement with
the results obtained in Ref. [32].

The analytic dependence of the effective charge on par-
ticle size can be taken from the Derjaguin-Landau-Verwey-
Overbeek (DLVO) potential

qeff
D = qekDa

kDa + 1
, (29)

which is obtained within the approximation zg � 1.

013212-4



INTERACTION FORCE BETWEEN TWO FINITE-SIZE . . . PHYSICAL REVIEW E 95, 013212 (2017)

FIG. 4. Effective charge vs zg for a/λD = 0.1, 0.5, 1.0, 2.0;
dashed lines correspond to (30).

One can see from Fig. 5 that qeff
D is valid for any particle

size while zg is less or equal to several units. For large values
of zg the calculated effective charge is less than it is predicted
by DLVO.

The following expression for the effective charge for
a/λD � 1 can be found in [27,28,31]

qeffee

aTe

= ekDa

kDa + 1
t

[
4kDa + 2

(
5 − t4 + 3

t2 + 1

)]
, (30)

where

t = T

(
zg

2kDa + 2

)
, T (x) =

√
1 + x2 − 1

x
. (31)

The analytical estimate for the effective charge (30), which
is presented by dashed lines in Figs. 4 and 5, and numerical
calculations are in agreement from kDa ≈ 1.

FIG. 5. Effective charge vs grain radius; lines are calculated for
zg = 1, 5, 10, 20, 50. Points correspond to DLVO effective charge
(29); dashed lines correspond to (30).

B. Macroparticle with absorbing surface (dust grain)

It is known that in strongly collisional, weakly ionized
plasma, grain potential has the Coulomb-like asymptote
[6,24,34–36]

ϕasymp = q̃

r
, (32)

where

q̃ = − I

k2
D

(
1

Di

− 1

De

)
(33)

and I is the charging current.
To describe the grain potential at arbitrary distance, the sum

of Debye and Coulomb potentials with effective charges can
be used [35,37,38]. It was proposed in Ref. [36] to scale the
screening length, namely to use the following expression:

ϕ0p(r) = (q − q̃)
e−pkDr

r
+ q̃

r
. (34)

The parameter p scales the screening length. It approaches
unity only for a � λD in isothermal plasma and sharply
decreases with grain radius growth. In nonisothermal plasma,
the value of p is less than in isothermal plasma. Thus the
screening length of a dust grain is much larger then the
Debye radius. Formula (34) describes potential with maximum
relative error of several percent as compared to numerical
solution of Eqs. (24) and (25).

The grain charge q and effective unscreened charge q̃

depend on grain size and the ratio of electron to ion temperature
Te/Ti . Their values can be found from numerical solution of
the problem (the results of such solution obtained in Ref. [36]
are presented in Fig. 6) or in the case of a � λD from analytical
expressions.

Approximate formulas for the potential were given also for
weakly collisional regimes in Refs. [39,40], whose accuracy is
confirmed by the numerical solution of the Bhatnagar–Gross–
Krook (BGK) kinetic equation [41].

FIG. 6. Normalized grain charge zg = qee/aTe and normalized
unscreened charge z̃g = q̃ee/aTe in isothermal and nonisothermal
(τ = Te/Ti = 2,10) plasma vs grain radius.
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FIG. 7. Normalized repulsion force Fze
2/T 2

e between conducting
particles (solid line), particles with fixed surface charge (dashed line),
and FC (dotted line) vs half-distance between centers of the particles
for a = 0.1, 0.5, 1.0λD , and zg = 5.

IV. INTERACTION OF TWO CHARGED
MACROPARTICLES IN PLASMA

In this section, we study the interaction of two charged
spherical macroparticles of the same size in weakly ionized
plasma.

A. Macroparticles with reflecting surfaces (no exchange with
the surrounding medium)

The results of numerical solution of Poisson-Boltzmann
equation (14) are presented in this subsection.

The interaction force of two charged spherical particles in
plasma within the Poisson-Boltzmann model were considered
analytically in Ref. [42] using the Maxwell stress tensor and
on the basis of electric field free energy. It was proven that the
force is repulsive in both approaches in isothermal as well in
nonisothermal plasma. Force was calculated via stress tensor
also in Ref. [43].

In the present paper the forces Fz acting on one particle
from the other particle and induced charges in plasma are
calculated by the formulas (5) and (10). Figure 7 shows the
force versus half-distance between centers of the conducting
macroparticles (solid line) and macroparticles with uniform
surface charge density (dashed line). Various particles sizes
a = 0.1, 0.5, 1.0λD with same dimensionless charge zg = 5
are considered. The Coulomb force of point charges in vacuum

FC = q2

(2c)2
(35)

is represented by a dotted line in Fig. 7. Repulsion force
decreases monotonically with distance growth. Obviously, the
maximum repulsion force is reached when the macroparticles
are in contact and the value of this maximum force decrease
with macroparticle size growth.

It is evident that the interaction force between conducting
particles and particles with uniform surface charge density in

FIG. 8. The ratio of calculated force to the Coulomb force Fz/FC

between conducting particles (solid line) and particles with fixed
surface charge (dashed line) vs half-distance between centers of the
particles for a = 0.1, 0.5, 1.0λD , and zg = 5.

plasma-like medium is less than FC (see Fig. 7). In order to
compare these forces, the ratio Fz/FC vs c is found. The ratios
for same value of zg = 5 and various a/λD = 0.1, 0.5, 1 are
presented in Fig. 8, and those for the same value of a/λD = 0.5
and various zg = 1, 5, 10 are presented in Fig. 9. The ratio
Fz/FC decreases rapidly with c growth, and thus the screening
of the macroparticle interaction takes place. The screening is
less pronounced at short distances between macroparticles,
where Fz/FC is higher, especially for smaller a/λD and zg .
The interaction of charged macroparticles in plasma is close
to the Coulomb law for c � λD , but such condition can be
satisfied only for particles with radius much less than λD .

The values of forces between particles with uniform surface
charge density and conducting particles are different. In

FIG. 9. The ratio of calculated force to the Coulomb force Fz/FC

between conducting particles (solid line) and particles with fixed
surface charge (dashed line) vs half-distance between centers of the
particles for a = 0.5λD and zg = 1,5,10.
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FIG. 10. Normalized surface charge density on conducting
macroparticle σee/(TekD) vs the θ angle (see Fig. 2) for a = 0.5λD ,
zg = 5, and c = 0.5,0.7,1λD .

particular, when the particles are almost in contact c � a, the
force between conducting particles is less (the solid line is
lower than the dashed line in Figs. 7–9 except for the case of
a/λD = 0.5,zg = 10 in Fig. 9). It is explained by the charge
polarization on the surfaces of conducting macroparticles.

The polarization is clearly observed in Fig. 10. The
normalized surface charge density σee/(TekD) on conducting
macroparticles of size a = 0.5λD and charge zg = 5 in the
case of c = 0.5λD is considerably less on the macroparticle
sides facing each other than those on opposite sides and
falls to the zero in the place of macroparticle contact.
This leads to the reduction of repulsion force as compared
to macroparticles with uniform surface charge density (see
Fig. 8). For c = 0.7λD the polarization is still considerable but
less pronounced, and for c = λD it can almost be neglected.

Figure 11 shows how the surface charge polarization
depends on dimensionless charge zg for the particles in
contact (c/λD = 0.5). The figure reveals that the polarization

FIG. 11. Normalized surface charge density on conducting
macroparticle σee/(TekD) vs the θ angle (see Fig. 2) for a = 0.5λD ,
c = 0.5λD , and zg = 1,5,10.

FIG. 12. Normalized charge density (ni − ne)/n0 vs z/λD near
one of the two interacting conducting particles (solid line) or particles
with fixed surface charge (dashed line) for a = 0.5λD , c = λD , and
zg = 5.

decreases as zg grows; in particular the region of almost zero
value of surface charge is smaller for higher values of zg .
This fact explains behavior of curves in Fig. 9 for c � a,
namely that the repulsion force between conducting particles
is considerably less than for particles with fixed surface charge
(solid line is lower than dashed line) for zg = 1. This effect is
less pronounced for zg = 5 and disappears for zg = 10.

Also, one can see that the repulsion between conducting
particles is higher than between particles with uniform surface
charge density (solid line is higher than dashed line in Figs. 8,
9) except for the region of c � λD , which was discussed above.
This fact is explained by Fig. 12, in which the normalized
charge density distribution (ni − ne)/n0 along the z axis near
one of the two interacting macroparticles of size a = 0.5λD

in plasma is depicted. The charge density is equal to zero
inside the macroparticle (0.5 � z � 1.5). There are more
positive charges between negatively charged macroparticles
with uniform surface charge density as compared to con-
ducting macroparticles (dashed line is higher than solid line
in Fig. 12) and vice versa for z > 1.5. This results in the
reduction of macroparticle repulsion. Thereby, the interaction
of macroparticles significantly depends on surface charge
properties, not only at short distance between macroparticles,
where polarization is important, but at any distance.

Also, the comparison of calculated force with the one found
from Debye potential

FD =
(

qeff

2c

)2

e−2ckD (1 + 2ckD) (36)

was made. Effective charge qeff depends on parameters τ , zg ,
and a/λD [see Fig. 3(a)]. The values of qeff/q used in further
calculations are presented in Table I.

The ratio Fz/FD for conducting particles of several values
of akD and zg versus half distance between centers c is shown
in Fig. 13 (minimal value of c is equal to macroparticle radius).
This ratio grows with distance and tends to one. It means
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TABLE I. Ratio of effective to real charge qeff/q.

a/λD zg = 1 zg = 5 zg = 10

0.1 1.0037 0.9569 0.7697
0.5 1.0929 0.9597 0.7176
1.0 1.3514 1.1961 0.9264

that the interaction is described with Debye force (36) with
corresponding effective charge at distance c � a. For particles
of different sizes a = 0.1, 0.5, 1.0λD and the same zg = 5
the value 10% of relative error of Debye force is reached at
c ≈ 0.25, 1, 1.7λD respectively. At distance c ≈ a the ratio
Fz/FD does not considerably depend on macroparticle radius
for zg = 1,5 and it is approximately 0.6. The dependence of
relative error of Debye force on dimensionless macroparticle
charge zg for the fixed a/λD is ambiguous. On the one hand, the
relative error decreases more rapidly with c increase for smaller
values of zg , but on the other hand, when the macroparticles
are almost in contact (c ≈ a) the relative error is smaller for
higher values of zg . For a = 0.5λD and zg = 10 the relative
error of Debye force does not exceed 20% in all range of
macroparticle separation distance.

The ratio Fz/FD for macroparticles with uniform surface
charge density of several values of akD and zg is shown in
Fig. 14. The ratio tends to constant value at certain distance
between macroparticles, but this value is less the unity and
decreases with macroparticle size and dimensionless charge
growth. It means that as well as for conducting macroparticles
the interaction at distance c � a is described by the Debye
force (36), but with other effective charges qeff

2 , which is
determined by the constant value of ratio Fz/FD . The values
of qeff

2 are presented in Table II and Fig. 15; according to them
qeff

2 is less than the effective charge qeff calculated for one
macroparticle (see Fig. 5), but they have the same qualitative
dependence on macroparticle radii.

If qeff
2 is used as the effective charge in the Debye force (36)

than the ratio Fz/FD approaches unit for c � a. The relative
error of FD(qeff

2 ) does not exceed 15% for the given parameters;

FIG. 13. The ratio of calculated force to (36) Fz/FD vs half-
distance between centers of conducting macroparticles for a =
0.1, 0.5, 1.0λD , and zg = 1, 5, 10.

FIG. 14. The ratio of calculated force to (36) Fz/FD vs half-
distance between centers of macroparticles with uniform charge
density for a = 0.1, 0.5, 1.0λD , and zg = 1, 5, 10.

thus the Debye force better describes the interaction of
macroparticles with uniform surface charge distribution than
the conductive macroparticles, of course, with corresponding
effective charge.

B. Macroparticles with absorbing surfaces (dust grains)

The repulsion force between two grains was calculated by
formula (5). Note again that it is the force acting on surface
charge of the grain from the electric field of other grain
and induced charges in plasma. Forces versus half-distance
between centers of the grains with radii a = 0.1λD and
a = 0.5λD are presented in Figs. 16 and 17.

The interaction force can be obtained within the approxi-
mation that the second grain is pointlike and is situated in the
field of the first grain, which is not disturbed by the first grain

F = −q
dϕ

dr
, (37)

where ϕ is the effective potential of a singe grain in plasma;
such potentials were considered in Subsec. III B. Using the
fact that potential asymptotic behavior is Coulomb-like [see
Eq. (32)], Eq. (37) gives

F = q
q̃

(2c)2
, (38)

or in the normalized form

Fe2

T 2
e

= zgz̃g

( a

2c

)2
. (39)

The values of grain charge zg and unscreened charge z̃g can
be taken from the calculations for the single grain; namely, they

TABLE II. Ratio of effective to real charge qeff
2 /q.

a/λD zg = 1 zg = 5 zg = 10

0.1 1.0013 0.937 0.664
0.5 1.0616 0.883 0.561
1.0 1.2477 1.037 0.689
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FIG. 15. Effective charge vs grain radius for zg = 5 and 10.
Points correspond to DLVO effective charge (29), the solid line is
the effective charge calculated for one macroparticle (Fig. 5), and
the line with circles is qeff

2 for the interaction of macroparticles with
uniform surface charge.

are zg ≈ 7.371, z̃g ≈ 3.021 for a = 0.1λD and zg ≈ 8.496,
z̃g ≈ 2.485 for a = 0.5λD (see Fig. 6 or Ref. [36]). The force
given by formula (39) is presented in Figs. 16 and 17 by line 2,
which is the closest to calculated curve as compared to forces
q2/(2c)2 (line 3) and q̃2/(2c)2 (line 1). The values given by
(39) are less than calculated force values, and the difference
is more considerable for the grains of size a = 0.5λD . It is
possible to assume that (39) underestimates the force due to
insufficient precision of (32), but the dashed line, which is
obtained from (37) using the calculated effective potential ϕ

of the single grain [36], shows almost the same difference with
calculated force at c � λD as (39). Thus, it can be explained
by the two-particle and/or size effects. It can be concluded
that the expression (38) describes qualitatively the repulsion

FIG. 16. Normalized repulsion force Fe2/T 2
e between two grains

with radii a = 0.1λD vs half-distance between centers of the grains:
the line with circles is calculated; line 1 corresponds to q̃2/(2c)2, 2–to
qq̃/(2c)2, 3–to q2/(2c)2; and the dashed line is obtained from (37)
using the calculated potential ϕ of the single grain.

FIG. 17. Normalized repulsion force Fe2/T 2
e between two grains

with radii a = 0.5λD vs half-distance between centers of the grains
c/λD: the line with circles is calculated; line 1–q̃2/(2c)2, 2–qq̃/(2c)2,
3–q2/(2c)2; and the dashed line is obtained from (37) using the
calculated potential ϕ of the single grain.

between grains only with radii much less than Debye length
(a � λD) for c � λD .

Let us compare the calculated force with the Coulomb
one FC = q2/(2c)2, as was done in Subsec. IV A. The ratios
Fz/FC are plotted in Fig. 18 for three values of grain radii
a = 0.1,0.5,1.0λD . These ratios tend to constant value ≈0.5
at large distances between grains (c � λD). It means that for
considered parameters the interaction force between two grains
is twice less then the Coulomb force and can be asymptotically
described by

1

2
FC = 1

2

q2

(2c)2
. (40)

Thus, the interaction force is not described quantitatively
by the single grain potential even at large distances between
grains (except the case of a � λD). Similarly to the case

FIG. 18. Ratio of calculated force to the Coulomb force (35)
Fz/FC vs half-distance between centers of the grains for a/λD =
0.1,0.5,1.0.
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FIG. 19. Normalized grain charge zg = qee/aTe vs half-distance
between centers of the grains for a/λD = 0.1,0.5,1.0.

of nonabsorbing macroparticles with uniform surface charge
density (see Subsec. IV A), the potential of the single particle
gives the correct distance dependence of the force, but
the correct quantitative description demands the introduction
of some effective charge, which in case of two grains is
q̃eff = q/2.

The ratios Fz/FC nonmonotonically depend on distance
between grains; they grow with c decrease and after reaching
the maximum values they rapidly decrease. The growth of
Fz/FC is explained by the contribution to the force from the
Debye part of the grain potential (34).

At close distance between grains, their mutual influence is
the strongest. One effect of this influence is the considerable
decrease of grain charges with c decrease, which is depicted
by Fig. 19. The charge decrease in turn is related to the
decrease of charging currents [44]. Another effect is the charge
polarization on the surfaces of grains. Both these effects lead
to the decrease of repulsion force as compared to the Coulomb
one.

V. CONCLUSIONS

The influence of two-particle effects on interaction force
between two charged spherical conducting macroparticles in
isothermal plasma-like medium is studied. The calculations
were performed for macroparticles which do not exchange
charges with environment (colloidal particles in charged
colloidal suspensions), as well as for macroparticles which
are charged due to absorption of electrons and ions from
surrounding plasma (grains in dusty plasma). In order to
reveal the two-particle contribution into interaction force, the
effective potentials of single particles were calculated. It was
recovered that the potential distribution of colloidal particle is
well described by the Debye potential with effective charge
and the grain potential has Coulomb-like asymptotic behavior
with effective charge, which is about one half of the real charge
for a � λD and decreases with particle-size growth. The
dependence of effective charge on particles radii are studied.

The interaction forces were found from the direct calcu-
lations of the potential distribution in the presence of two
macroparticles and compared with those obtained on the basis
of the effective potential, assuming that the second macropar-
ticle is sizeless. The comparison shows that at the distances
of several particle sizes, the interaction force between two
conducting macroparticles, which do not exchange charges
with the environment, can be quantitatively described by the
force obtained from the Debye potential. But in the case of
particles with uniform surface charge density distribution, the
effective charge is distinct (less) to effective charge of single
particle. For smaller distances the deviation between the cal-
culated force and the force obtained from the Debye potential
decreases and reaches ≈40% when particles are in contact.

Two-particle effects are especially essential for the descrip-
tion of grain interaction. The interaction force is approximately
equal to the half of the Coulomb force of pointlike particles
with corresponding charges at distance c � λD and considered
parameters. It means that the effective interaction charge is
approximately equal to the half of total particle charge inde-
pendently on a/λD . At distance of several a, the polarization
effects and considerable decrease of grain total charge is
observed. Thus, in order to calculate the interaction force be-
tween two macroparticles at small and intermediate distances
the self-consistent system of equations for electric potential,
particle distributions, and grain charge should be used.
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