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Dense plasma heating by crossing relativistic electron beams
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Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense
plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir
waves, which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in
electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of
warm dense matter and as a driver for inertial fusion plasmas.
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I. INTRODUCTION

Plasma heating by electron beams is the subject of intense
study due to its varied applications, such as warm dense matter
production [1], laboratory astrophysics [2], and magnetic and
inertial confinement fusion [3,4], and the insights into funda-
mental plasma theory it provides. These electron beams can be
produced by the absorption of a high power laser pulse by an
overdense material [5]. While beam electrons may give up their
energy simply by colliding with particles in the plasma [6–9],
the collective process of beam-plasma instability, in which
the beam electrons act together to drive plasma waves, can
also efficiently extract energy from the beam [10]. Further,
this collisionless stopping process may be effective even for
relativistic electron beams whose collisional stopping length is
much longer than the target. On a coarse level, we might expect
collisionless stopping (a collective effect) to be relevant for
plasmas with a large plasma parameter [11]. Even for densities
well above solid density the plasma parameter may be large at
sufficiently high temperatures. In particular, the plasma param-
eter is large for the conditions in the hot spot of an inertial con-
finement fusion isobaric compression, but not in the dense fuel
layer surrounding the hot spot (due to the relatively low tem-
perature of the dense fuel). Representative inertial confinement
hot spot and fuel parameters may be found in Refs. [12–14].

An analytic treatment of the collective stopping of a
single relativistic electron beam was given in Ref. [15],
calculating the parameters that favor collective stopping and
examining strategies to localize the energy deposition. Other
studies include theoretical treatments of beam-plasma instabil-
ities [16,17], collective stopping of electron beams [18–20],
Vlasov-Poisson simulations of collective heating [21], and ion-
acoustic wave decay [22], as well as experiments on nonlinear
coupling between plasma waves [23] and on plasma heating by
counter-propagating laser-generated electron beams [24,25].
Recent reviews of laser-plasma interaction [26] and fast
electron transport [9] contain much detailed information
together with further references.

In this paper we use relativistic multifluid theory (Sec. II)
and Vlasov-Maxwell simulations (Sec. III) to consider a new

mechanism by which two obliquely crossing electron beams
can efficiently transfer their energy to a dense plasma. Specif-
ically, we show an instability in which the crossing beams
drive Langmuir waves in the plasma, and these Langmuir
waves nonlinearly couple into large-amplitude ion-acoustic
waves. These ion-acoustic waves decay leading to ion-acoustic
turbulence. We demonstrate that the background electrons
show a factor 2.8 increase in kinetic energy with a coupling
efficiency of 18%.

II. LINEAR THEORY

To investigate the first step of the energy cascade process,
we derive the linear growth rates for the instability of two
obliquely crossing relativistic electron beams in a background
plasma. Here the two beams and the background plasma are
each described by a separate relativistic fluid, giving three
fluids in total, and the ions provide a stationary neutralizing
background of density n0 (note that because the ions here are
fixed, all modes in Fig. 1 are electron modes, as opposed to the
simulations below where ions are free to move). The equations
governing the system are Maxwell’s equations and continuity
and momentum equations for each electron fluid, together with
equations defining the charge and current densities ρ and J
in terms of the fluid densities and velocities nα and vα (α =
1,2,3),

�∇ · �E = 1

ε0
ρ, (1)

�∇ × �B − 1

c2
∂t

�E = μ0 �J , (2)

�∇ × �E + ∂t
�B = 0, (3)

�∇ · �B = 0, (4)

∂tnα + �∇ · (nα �vα) = 0, (5)

(∂t + �vα · �∇)γα �vα = q

m
( �E + �vα × �B), (6)
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FIG. 1. Theoretical growth rate maps for the first stage of the
energy cascade process: the instability arising due to two beams
crossing in a dense plasma. The growth rates are shown for beams
crossing at an angle of 90◦ in (a) and (c) and 180◦ in (b) and (d). The
beam energy E and beam density fraction nb/n0 are E = 1 MeV,
nb/n0 = 0.01 in (a) and (b), E = 0.1 MeV, nb/n0 = 0.1 in (c) and
(d). Note the different scales.

�J = qn1 �v1 + qn2 �v2 + qn3 �v3, (7)

ρ = qn1 + qn2 + qn3 − qn0, (8)

where n1, n2, �v1, and �v2 are the beams’ number densities
and velocities, n3 and �v3 are the background plasma number
density and velocity, γj = (1 − v2

j /c
2)−

1
2 , q is the electron

charge, m is the electron mass, and n0 is the background ion
density (here we assume singly charged ions). The instability
growth rates may be calculated using standard linearization
methods [11] in which the field equations are reduced to a
linear equation,

M(k,ω)u = 0, (9)

where if N is the number of fields then M is an N × N matrix
depending on wave vector k and frequency ω, and u is the
N element vector of field mode amplitudes. The explicit form
of this dispersion matrix M is given in the Appendix. The
frequencies of modes with a given wave vector k are then
determined from the dispersion relation,

det(M(k,ω)) = 0. (10)

Figure 1 shows the theoretical growth rate maps of the
instability for 1 MeV electron beams with a density, nb, of 0.01
times the background density, n0, on the top row (a, b), and for
0.1 MeV electron beams with nb/n0 = 0.1 on the bottom row
(c, d). The left column (a, c) corresponds to beams crossing
at 90◦, traveling in the positive x and y directions. The right
column (b, d) corresponds to beams crossing at 180◦ traveling
along the x axis. The system of two beams crossing at 90◦ has
a symmetry about the line y = x, which induces the symmetry
of the growth rate maps in (a) and (c) under reflection in the

FIG. 2. The real part of the mode frequencies for a system of two
relativistic electron beams crossing in a background plasma at angles
of (a) 90◦ and (b) 180◦. The different sheets of the dispersion surface
correspond to different modes of the system.

line ky = kx . With the beams crossing at 180◦ the system has a
symmetry under reflection in the x and y axes, which is again
inherited by the growth-rate map. Note that the effectiveness
of the second stage of the energy cascade, that is, the nonlinear
coupling of the Langmuir waves into ion-acoustic waves, will
depend on the wave vector spectrum of the Langmuir waves,
since the nonlinear coupling strength depends on the relative
orientations of the wave vectors involved [18]. The cases (a)
and (c) in which the beams cross at 90◦ give a higher maximum
growth rate, corresponding to a mode with kx = ky traveling
diagonally between the two beams, as well as a spectrum of
unstable modes that covers a wider range of angles. Since in the
linear phase of the instability each mode grows independently,
these growth-rate maps show that beams crossing at 90◦
will initially couple their energy into Langmuir waves more
rapidly.

Figure 2 shows the real part of the frequencies, which solve
the 2D dispersion relation as a function of 2D wave vector
�k. The different sheets of the dispersion surface correspond
to different modes of the system. In particular the diagonal
quasiplanar sheets correspond to beam modes propagating at
the beam velocities. The curved sheets at the top and bottom
are light modes. Only a small number of the modes shown here
are unstable, that is, have a positive imaginary component of
frequency.

III. VLASOV-MAXWELL SIMULATIONS

To follow the nonlinear evolution of the crossing beams
and the coupling of the beam-driven Langmuir waves into
ion-acoustic waves, we have performed simulations with the
Vlasov-Maxwell code VALIS [27]. This code solves the
Vlasov-Maxwell system in up to two space and two momentum
dimensions on an Eulerian phase space grid. VALIS advances
the distribution functions from one time step to the next
using an operator-split conservative scheme with separate 1D
advections in each position and momentum coordinate [28],

013211-2



DENSE PLASMA HEATING BY CROSSING . . . PHYSICAL REVIEW E 95, 013211 (2017)

the advections being performed using the piecewise parabolic
method [29]. A Vlasov code is well suited to the present study
due to its low noise and ability to resolve the distribution
function f even in regions of phase space where f is very
small, both very useful traits for studying instabilities. We
consider electron beams crossing at 180◦ in a background
plasma. The background electron and ion temperatures are
4 keV, corresponding to the range of temperatures of hot spots
in inertial confinement fusion targets. The background plasma
density in the simulation is a free parameter setting the scale
of the units, though we have in mind an electron number
density of n = 1026 cm−3. Both electron beams have a mean
relativistic kinetic energy of 1 MeV and a density of 1% of
the background density, in the practically relevant regime of
high beam energy and low fractional beam density. The two
beam distributions have a temperature of 40 keV. The narrow
energy spread of the beams used here deserves comment;
while the electron energy distribution generated by a typical
overdense laser-plasma interaction is often characterized by
one or two components with exponential decay in energy, it
is conceivable that during the transport of the beam through
dense matter the lower energy electrons will be significantly
stopped, leaving the remaining distribution with a narrower
peak in energy [30]. No collision operator is used since for a
plasma of number density n = 1026 cm−3 and electron and ion
temperatures Te = Ti = 4 keV, the electron plasma frequency
is ωpe = 5.64 × 1017 s−1, over 200 times the electron collision
frequency, while the simulations here ran for a time 2000/ωpe

corresponding to 320 plasma periods, with much of the
interesting dynamics occurring early in the simulation.

The initial electron distribution function is a sum of three
drifting Maxwell-Jüttner distributions. The distributions are
initially homogeneous and periodic boundary conditions are
employed. Due to the low noise level in the code an initial
low amplitude white noise perturbation is included in the
electrons’ spatial distribution to seed the initial beam-plasma
instability. We simulate the system in one space and one
momentum dimension, and hence waves that would propagate
obliquely to the beams cannot be captured. The ion mass
in the simulations is mi = 1000me. While this ion mass
is only 0.54 times the mass of a hydrogen ion (or 0.27
times the mass of a deuterium ion), we do not expect this to
change the results significantly since with mi = 1000me the
time scale of the natural oscillations of the ions is an order of
magnitude greater than the electrons and so the ion population
will evolve on a different timescale to the electrons. The spatial
grid covers 400 c/ωp0 and the time 2000/ωp0. The relativistic
momentum space for the electrons spans ±20mec, for the ions
±0.25mic. The dimension of the (x,p) phase space grid was
4196 × 2048 for both electrons and ions.

Figure 3 shows a time history of the power spectra of the
electron and ion densities (the modulus squared of their spatial
Fourier transforms). Each frame shows a different stage of the
energy cascade. In (a) at ωpt = 150 there is a single peak in
the electron density spectrum representing a Langmuir wave
driven by the two beams crossing in the plasma. It is at a wave
vector k0 = 1.1ωp/c, in agreement with the most unstable
mode predicted by the multiple relativistic fluid theory. In (b)
at ωpt = 250 we see a peak at 2k0 in both the electron and ion
spectra representing an ion-acoustic wave driven nonlinearly

FIG. 3. Time history of the power spectra of the electron and
ion densities from a 1D Vlasov simulation of two electron beams
crossing at 180◦, showing the waves present during each stage of the
heating process. Each time step shows a different stage of the energy
cascade: (a) the generation of Langmuir waves by the instability of
the crossing beams, (b) the nonlinear coupling of the Langmuir waves
into ion waves, (c) the instability of the ion-acoustic waves, and (d)
ion-acoustic turbulence.

by the beam-driven Langmuir wave [18]. The higher order
peaks in the electron spectrum are Langmuir waves resulting
from the nonlinear coupling. In (c) at ωpt = 350 the ion-
acoustic feature in the electron and ion spectra from (b) has
generated higher order peaks as the ion-acoustic wave becomes
unstable. In (d) at ωpt = 750 sharp peaks are no longer visible
in the electron and ion spectra, the continuous fall off with
wave vector indicating a turbulent state.

Figure 4(a) shows a space-time plot of the electron density
from the simulation, giving a global picture of the interaction.
Initially the beams drive Langmuir waves in the plasma
via beam-plasma instability. These Langmuir waves become
large and couple into ion-acoustic waves. The ion-acoustic
waves are then damped, and the plasma ends in a state of
ion-acoustic turbulence. The bunched structures in the dashed
boxed region of Fig. 4(a) show that localized wave packets
are formed. Figure 4(b) shows the Fourier transform of the
portion of Fig. 4(a) indicated by the dashed box, highlighting
the time in which the beams become unstable and ion-acoustic
waves begin to form. Figure 4(b) shows the distribution of
waves in wave vector and frequency, i.e., in (k,ω) space. This
provides a discrete approximation to the space-time Fourier
transform ñ(k,ω) of the electron density n(x,t), ñ(k,ω) =∫

n(x,t) exp [−i(kx − ωt)] dx dt . The orange curves plotted
on Fig. 4(b) show the roots of the dispersion relation from
an electrostatic relativistic multifluid model for the two
beams, background electrons and ions, with temperature
terms included. The predominance of modes along the linear
dispersion curves in Fig. 4(b) demonstrates the utility of the
linear wave properties even in this nonlinear interaction. The
red sections of the dispersion curves have a positive imaginary
component of the frequency, leading to an exponential growth
of the mode amplitude and thus instability. Figure 4 shows the
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FIG. 4. (a) Space-time plot of the electron density showing each
stage of the energy cascade. (b) The numerically calculated frequency
and wave vector, ω and k, of the waves produced by instability or
nonlinear coupling in the dashed boxed portion of (a). Overlaid are
the theoretical dispersion curves. The red sections of the dispersion
curves indicate frequencies with a positive imaginary part, showing
instability.

evolution of the waves responsible for the energy cascade from
the electron beams to the plasma particles.

To further study the evolution of the waves shown in
Fig. 4 responsible for the energy cascade, we employ
a mathematical representation that reveals detailed infor-
mation on the time evolution of the wave vector, fre-
quency, and location of the waves. This is a wave phase
space distribution [31,32], here defined as a space-time
windowed Fourier transform g according to g(x,k,t,ω) =∫

n(y,s)wxt (y,s) exp [−i(ky − ωs)] dy ds, where wxt (y,s) =
exp [−(y − x)2/σ 2

x − (s − t)2/σ 2
t ] is a Gaussian window

function and the parameters σx and σt determine the window
width in space and time.

Figure 5 shows volume plots of |g(x,k,t,ω)|2 for a range
of times t , which we may interpret as the distribution of
waves in position, wave vector, and frequency at the time
t . The gridded surfaces show the dispersion surfaces from the
relativistic multifluid theory used in Fig. 4. Figure 5(a) shows
the early formation of bunched high-frequency Langmuir
waves, located along the Langmuir wave dispersion surface
as predicted by the linear theory. Figure 5(b) shows that the
ion-acoustic waves generated are localized near the position

FIG. 5. Time history of the wave phase space distribution of the
electron density. This shows the distribution of the plasma waves
in the space of position, wave vector, and frequency (see text). The
gridded surfaces are the theoretical dispersion surfaces.

of the large Langmuir wave packets. This local information
is important since the Langmuir waves are able to drive
ion-acoustic waves more rapidly by bunching to increase
the local Langmuir wave intensity, which in turn increases
the coupling rate into ion-acoustic waves. Figure 5(c) shows
similarly localized daughter Langmuir waves together with
bunched ion-acoustic waves, while in Fig. 5(d) the spread
of the low-frequency part of the distribution in k indicates
ion-acoustic turbulence. Figure 5 unfolds the plasma dynamics
into the interaction of localized wave packets of a variety of
frequencies and wave vectors, providing a detailed picture of
the evolution of the waves responsible for the energy cascade
process.

Figure 6 shows the time evolution of the fractional kinetic
energy change of the beam electrons and the background
electrons. These energies are calculated using a simulation
in which the electron beams and the background electrons are
separate species, allowing a clean calculation of the energy of
each component. Figure 6 shows that 18% of the electron beam
kinetic energy is coupled into the plasma electrons, giving a
factor 2.8 increase in plasma electron kinetic energy.
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FIG. 6. Time evolution of the fractional energy change of the
background electrons (blue line) and beam electrons (orange line)
during the collisionless heating process.

Figure 7 shows the electron density distribution in ω and k
from 2D Vlasov-Maxwell simulations of two 1 MeV electron
beams of density nb/n0 = 0.01 crossing in a plasma at (a)

FIG. 7. Numerically calculated ω-k distribution of the electron
density from 2D Vlasov-Maxwell simulations of 1 MeV beams
crossing at (a) 90◦ and (b) 180◦. The bottom faces show
the distribution in wave vector k integrated over frequency ω.
The red spheres in (a) show the most unstable modes predicted by the
relativistic multi-fluid theory of Fig. 1(a).

90◦ and (b) 180◦. The largest amplitude wave in Fig. 7(a)
travels diagonally between the beams with positive projection
of its phase velocity vector along each beam velocity vector.
It occurs at the wave vector and frequency predicted by the
linear theory above, shown in Fig. 7(a) by the red spheres.
Note that the modes corresponding to the two red spheres
have phase velocities in the same direction although their wave
vectors point in opposite directions, since their frequencies
differ by a factor of −1. Both positive and negative frequencies
are shown here since including the negative frequency modes
facilitates the consideration of nonlinear wave coupling. The
bases of the 3D plots show the wave distribution in (ω,�k)
integrated over ω, giving the distribution in �k space, which is
here two-dimensional.

IV. CONCLUSIONS

In conclusion, we have provided a theoretical and computa-
tional study of dense plasma heating using crossing relativistic
electron beams. The heating is due to the collective processes
of beam-plasma instabilities and nonlinear wave coupling.
Using a relativistic multifluid model we have calculated
linear growth rates for the instability of two electron beams
obliquely crossing in a plasma. Vlasov-Maxwell simulations
exhibit features predicted by the theory for the beam-plasma
instability and the subsequent nonlinear coupling of Langmuir
and ion-acoustic waves. Using a wave phase space analysis
we have studied the evolution of the location, wave number,
and frequency of all waves involved in the heating process
in clear relief. The simulations show a kinetic to thermal
coupling efficiency of 18% into the plasma electrons giving
a factor of 2.8 increase in plasma electron kinetic energy.
Further, the effect of collisions on a longer timescale will
act to thermalize the background electron distribution and
equalize the electron and ion temperatures on a timescale
of ∼5 ps. This means that within the confinement time
of an inertial-fusion target some of the energy collectively
coupled into the background electrons may be transferred to
the plasma ions and so contribute to increasing the neutron
yield. These results are very encouraging for the auxiliary
heating concept [33], where the heating of the central hot spot
by shock wave convergence [12,34] is supplemented by this
process.
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APPENDIX

In this appendix we show the explicit form of the dispersion
matrix M(k,ω) used in the linear theory section to derive the
frequencies and growth rates from our relativistic multifluid
model. Since M is an 18 × 18 matrix we have displayed

it as four blocks A, B, C, and D in terms of which
M = (A,B,C,D). Here the quantity βαj = vαj /c is the j th
component of the velocity of species α normalized to the
speed of light and nα is the zeroth-order density of species
α normalized to the background ion density.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i(−ω + kxβ1x + kyβ1y) ikxn1 ikyn1 0

0 − i(−ω+kxβ1x+kyβ1y)
(
β2

1y−1
)

(
−β2

1x−β2
1y+1

)
3/2

iβ1xβ1y(−ω+kxβ1x+kyβ1y)(
−β2

1x−β2
1y+1

)
3/2

0

0 iβ1xβ1y(−ω+kxβ1x+kyβ1y)(
−β2

1x−β2
1y+1

)
3/2

− i

(
β2

1x−1
)

(−ω+kxβ1x+kyβ1y)(
−β2

1x−β2
1y+1

)
3/2

0

0 0 0 i(−ω+kxβ1x+kyβ1y)√
−β2

1x−β2
1y+1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

β1x n1 0 0
β1y 0 n1 0
0 0 0 n1

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

i(−ω + kxβ2x + kyβ2y) ikxn2 ikyn2 0

0 − i(−ω+kxβ2x+kyβ2y)
(
β2

2y−1
)

(
−β2

2x−β2
2y+1

)
3/2

iβ2xβ2y(−ω+kxβ2x+kyβ2y)(
−β2

2x−β2
2y+1

)
3/2

0

0 iβ2xβ2y(−ω+kxβ2x+kyβ2y)(
−β2

2x−β2
2y+1

)
3/2

− i

(
β2

2x−1
)

(−ω+kxβ2x+kyβ2y)(
−β2

2x−β2
2y+1

)
3/2

0

0 0 0 i(−ω+kxβ2x+kyβ2y)√
−β2

2x−β2
2y+1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

β2x n2 0 0
β2y 0 n2 0
0 0 0 n2

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)
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C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

i(−ω + kxβ3x + kyβ3y) ikxn3 ikyn3 0

0 − i(−ω+kxβ3x+kyβ3y)
(
β2

3y−1
)

(
−β2

3x−β2
3y+1

)
3/2

iβ3xβ3y(−ω+kxβ3x+kyβ3y)(
−β2

3x−β2
3y+1

)
3/2

0

0
iβ3xβ3y(−ω+kxβ3x+kyβ3y)(

−β2
3x−β2

3y+1
)

3/2
− i(β2

3x−1)(−ω+kxβ3x+kyβ3y)(
−β2

3x−β2
3y+1

)
3/2

0

0 0 0
i(−ω+kxβ3x+kyβ3y)√

−β2
3x−β2

3y+1

β3x n3 0 0
β3y 0 n3 0
0 0 0 n3

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
iω 0 0 0 0 iky

0 iω 0 0 0 −ikx

0 0 iω −iky ikx 0
0 0 iky −iω 0 0
0 0 −ikx 0 −iω 0

−iky ikx 0 0 0 −iω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)
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