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We investigate large-scale circulation reversals in a two-dimensional Rayleigh-Bénard cell using a proper
orthogonal decomposition (POD)-based, five-mode model. The Rayleigh number considered is Ra = 5 × 107

and the Prandtl number is Pr = 4.3. A precursor event, corresponding to the action of a mode L∗ which disconnects
the core region from the boundary layers before the onset of the reversal, is identified in the simulation. The
five-mode model predicts correctly the behavior of the POD modes observed in the simulation, and in particular
that of mode L∗. The presence of mode L∗, which was not included in an earlier, lower-dimensional version of
the model [Podvin and Sergent, J. Fluid Mech. 766, 172 (2015)], is found to be instrumental for the reversal
dynamics of the model, which suggests that it may also be important for those of the simulation. Reversals can
therefore be characterized by three time scales: the transition duration, the interreversal time, and the precursor
duration, which separates the precursor event from the onset of the reversal. The distribution of the time scales
is found to agree well with the simulation when small-scale intermittency is taken into account through the
introduction of noise in the model coefficients.
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I. INTRODUCTION

Many physical systems are characterized by intermittent
dynamics where the flow settles down for long periods of times
near different quasistationary states separated by rapid, violent
excursions. A well-known geophysical example is the Earth’s
magnetic field which has reversed its polarity several times
throughout its history. Similar reversals have been reproduced
in magnetohydrodynamic experiments [1]. Another example
of multistability can be found in aerodynamics, where the
recirculation flow behind a bluff body, such as an automobile,
shifts over long time scales between two symmetry-breaking
positions, while the averaged flow corresponds to a statistically
symmetric wake [2]. In Rayleigh-Bénard convection, thermal
fluctuations organize themselves into large-scale rolls which
change orientation in an intermittent fashion [3,4]. In
cylindrical cells, the main axis of the roll can drift slowly
but radical reorientations can also occur in an intermittent
fashion. These reorientations can be led by rotations of
the main circulation or cessations (suppression of the main
circulation) [5]. In two-dimensional (2D) or nearly 2D
domains, reversals of the large-scale circulation can also take
place [6,7]. In addition, the large-scale circulation sometimes
disappears and is replaced temporarily by a two-roll mode,
which creates a cessationlike event [6].

A long-standing question is the origin of the reversal. The
physical mechanism identified so far involves the development
of corner flows, which are observed to grow during rever-
sals [3,8]. Reversals can be interpreted as the consequence
of a thermal imbalance in the cell [9], and their initiation is
therefore dependent on the dynamics of small-scale thermal
plumes, which form in the horizontal boundary layers at small
scales and are transported into the bulk. We note that the
influence of small scales remains essential even in the absence
of thermal convection: reversals in a 2D cell were found to
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be connected to the development of vortex filaments along the
walls [10]. Alternatively, reversals can be seen as a large-scale
restoration process of the statistical symmetry of the flow:
while instantaneous realizations of the turbulent flow are not
symmetric, the assumption of ergodicity requires that the
flow trajectory in phase space should be symmetric [11]. One
question is then to determine if and how large-scale symmetry
breaking occurs during reversals.

Different approaches have led to a wide diversity of models
that describe reversals. Araujo et al. [12] have computed the
force and thermal balance on a single plume detached from
the boundary layer and have derived from it a nonlinear set of
equations, which is similar to Lorenz’s model and exhibits de-
terministic chaotic reversals. However, many approaches rely
on models where the turbulent background fluctuations are rep-
resented by stochastic noise. Sreenivasan et al. [9] relied on the
concept of metastable states separated by an energy barrier to
describe the physics. Benzi [13] used an energy cascade model
that reproduced some statistical properties of the Navier-
Stokes equations. Another example is the model of Brown
and Ahlers [5,14], which is based on the strength and the
orientation of the large-scale circulation. Recent versions of the
model can take into account the influence of the geometry [15].

All these models are based on physical modeling of varying
complexity and rely on fundamental assumptions about the
dominant patterns of the flow. In contrast, proper orthogonal
decomposition (POD) provides an unbiased framework which
extracts spatial modes from the data using an energy-based
criterion. POD modes can be compared with other classical
decompositions such as Fourier modes [6,16,17]. In addition,
for a given set of POD modes, one can derive a model from
projection of the Navier-Stokes equations that predicts the
temporal evolution of the amplitudes of the modes. Since
POD modes constitute an orthogonal, hierarchically ordered
(in the energy sense) basis, the projection of the field onto
these modes converges towards the full field as the number of
modes increases, and the dynamics of the model is expected
to converge towards those of the Navier-Stokes equations if
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the truncation is large enough. However, it is not possible to
determine a priori how many modes are necessary to capture
the dynamics of the flow.

As pointed out by Rempfer [18], the restriction to a
low-dimensional basis can affect the domain of validity of
the model, as only a partial view of the full dynamics is
provided. We emphasize that the connection between the
mathematical predictions of models and the physical processes
they describe is not one to one, as (i) POD modes do not
unequivocally correspond to physics-based coherent structures
(see the discussion in [19]), and (ii) the details of the interaction
scenario representing a given physical mechanism depend on
the POD modes selected in the truncation.

Reversals were recently investigated in a paper using
proper orthogonal decomposition (POD) [8]. A description
of the large-scale reversal process was provided by a model
based on the three most energetic POD modes. A good
agreement was observed with experimental and numerical
studies [6,20,21]. It was shown that reversals in the three-mode
model were associated with the instability of a two-cell,
symmetry-breaking mode. The model reproduced reversals
and cessations observed in the Direct Numerical Simulation
(DNS) under the condition that noise was added to the model.

In the present paper we consider two additional POD
modes. A scenario for reversals is presented: it involves as a
key player one of these extra modes, which controls the transfer
between the core region and the boundary layer and precedes
the reversal. The paper is organized as follows: we first present
the numerical configuration, then detail the behavior of POD
modes in the simulation. A comparison of the latter with the
predictions of the POD-based model is provided. We show that
the model predicts regular reversals in the absence of noise and
in the absence of symmetry-breaking modes. The influence of
symmetry-breaking modes and noise on the time scales of the
reversals is then examined.

II. CONFIGURATION

A. Equations of motion

The configuration is similar to that used in [8]. The domain
is a 2D square filled with water (Pr = ν/κ = 4.3), heated at
the bottom and cooled at the top. The flow is characterized by
the Rayleigh number

Ra = α̃g�T h3

νκ
,

where α̃ is the volumetric thermal expansion coefficient, g

is the gravity, �T is the temperature difference between
both isothermal horizontal plates, h is the height between
the horizontal plates, and ν and κ are respectively the fluid
kinematic viscosity and thermal diffusivity. The Rayleigh
number in the study is set to Ra = 5 × 107, which corresponds
to a flow regime where intermittency is expected [20].

The flow equations are based on the Boussinesq approxi-
mation. The reference length and velocity units used to make
the equations nondimensional are the height between the
plates h and the velocity κ

h

√
Ra. The temperature is made

dimensionless with �T . The horizontal and vertical directions
will respectively be labeled x and z. If u is the velocity vector
[u = (u,w)] and θ is the dimensionless temperature, then the

equations based on the nondimensional reference units are

∇ · u = 0, (1)
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+ Pr

Ra1/2 �u, (2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ Pr

Ra1/2 �w + Prθ, (3)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= 1

Ra1/2 �θ. (4)

The velocity is zero on all walls. The temperature is set
to 0.5 and −0.5 respectively on the bottom and top walls.
Adiabatic conditions are used on the side walls.

Taking the origin of the axes (x∗,z∗) to be set in the
center of the cell, the velocity and the temperature fields obey
the following statistical symmetries for the problem: (i) the
reflexion symmetry Sx with respect to the vertical axis x∗ = 0
which leaves all physical quantities invariant,⎡

⎣u

w

θ

⎤
⎦(x∗,z∗) →

⎡
⎣−u

w

θ

⎤
⎦(−x∗,z∗);

(ii) the reflexion symmetry Sz with respect to the horizontal
axis z∗ = 0 which leaves the velocity invariant and transforms
the temperature variation into its opposite,⎡

⎣u

w

θ

⎤
⎦(x∗,z∗) →

⎡
⎣ u

−w

−θ

⎤
⎦(x∗, − z∗);

(iii) the centrosymmetry or rotation of origin of the cell center
(x∗,z∗) = (0,0) Rπ = Sx ◦ Sz = Sz ◦ Sx ,⎡

⎣u

w

θ

⎤
⎦(x∗,z∗) →

⎡
⎣−u

−w

−θ

⎤
⎦(−x∗, − z∗).

Along with the identity, this forms a four-dimensional sym-
metry group.

In the paper we will refer to a mode as symmetry breaking
if it is not centrosymmetric with respect to Rπ . We note that if
a mode is symmetric or antisymmetric with respect to both Sx

and Sz then it is centrosymmetric with respect to Rπ . However
if is symmetric with respect to one and antisymmetric with
respect to the other, then the symmetry is broken.

B. Numerical method

The simulations are carried out with a multidomain spectral
code. Spectral collocation is used for spatial discretization.
Details of the method can be found in [22]. The domain
decomposition in the horizontal direction x is carried out by
the Schur complement method and implemented with the MPI
library. Chebyshev modes are used in all directions. We use
384 points or polynomials in the horizontal direction and 158
points in the vertical direction.

Time integration of the governing equations (1)–(4) is
performed through a second-order semi-implicit scheme. It
combines a second-order backward Euler scheme with an
implicit treatment for the diffusion terms and an explicit
second-order Adams-Bashforth extrapolation for the nonlinear
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terms. The time step is equal to 0.0006 convective time unit.
Incompressibility is imposed by a projection method which
retains second-order accuracy of the time integration. The code
has been validated and verified for resolution [8].

III. PROPER ORTHOGONAL DECOMPOSITION

A. Definition

The approach used to derive the POD-based model has
been described in [8]. Proper orthogonal decomposition ([19])
consists of decomposing the flow variables q as a superposition
of spatial structures or empirical eigenfunctions φ(x) whose
amplitude varies in time, which means that

q(x,t) =
∞∑

n=1

an(t)φn

q
(x). (5)

The POD modes are hierarchically organized according to
their energies λ1 > λ2 > . . . λn. The spatial eigenfunctions are
orthogonal. If the empirical eigenfunctions are normalized, we
have 〈an(t)am(t)〉 = δnmλn where δnm is the Kronecker symbol
and 〈 〉 is a time average. More details can be found in [19].

We use a joint velocity and temperature decomposition,
with a rescaling factor of 1 for the temperature.

To carry out the proper orthogonal decomposition of a set
of variables q, one solves the following eigenvalue problem:

∫
〈q(x,t)q(x ′,t)〉φ

q
(x ′)dx ′ = λφ

q
(x), (6)

where 〈q(x,t)q(x ′,t)〉 is the spatial autocorrelation tensor. The
spatial autocorrelation tensor is computed from N individual
snapshots obtained at instants tn, q(x,tn):

〈q(x,t)q(x ′,t)〉 = 1

N

N∑
n=1

q(x,tn)q(x ′,tn).

Due to the size of the physical grid, O(50 000), the method
of snapshots [23] was used to extract empirical eigenfunctions.
The method of snapshots [23] is based on the fact that the

TABLE I. Eigenvalues and symmetries obeyed by the POD modes.

Mode
index λn Sx Sz

1 1.1 antisymmetric antisymmetric
2 0.26 symmetric symmetric
3 0.18 symmetric antisymmetric

(velocity)
4 0.06 antisymmetric antisymmetric
5 0.05 antisymmetric symmetric

(velocity)

eigenfunctions can be written as the linear combination of
these N snapshots,

φn

q
(x) = An

pq(x,tp), (7)

to rewrite the eigenvalue problem. One can show that An
p

represents the temporal amplitude of the mode φn at time
tp, i.e.,

An
p = an(tp). (8)

The set of snapshots consisted exclusively of realizations
extracted from the simulation (no additional symmetry was
applied to the set).

B. Spatial eigenfunctions

Proper orthogonal decomposition was applied to both
velocity and temperature variables. The dataset included 40%
more snapshots than in [8]. The time separation between
two snapshots was six time units. The eigenvalues of the
five most energetic modes, which capture 90% of the joint
kinetic and thermal energy, are given in Table I. The shapes
of the modes can be seen in Fig. 1 and as expected are
very similar to the modes obtained in [8]. For the joint
velocity and temperature decomposition, the most energetic
mode is a single roll (denoted L) associated with a dominant
thermal flux along the middle portion of the vertical boundary

FIG. 1. POD modes for the new dataset. Top: Velocity modes. Bottom: Temperature mode isocontours at −0.2, −0.15, −0.1, 0.1, 0.15,
0.2. Dashed lines indicate negative values.
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TABLE II. Linear coefficients Ld
np and Lb

np respectively corre-
sponding to the dissipation and the buoyancy force term.

Ld
np p = 1 p = 2 p = 3 p = 4 p = 5

m = 1 −0.28 −0.09 0.02 0.44 −0.057
m = 2 −0.02 −1.79 0.13 0.10 −0.10
m = 3 0.003 0.097 −0.37 −0.03 −0.03
m = 4 0.02 0.02 −0.01 −0.78 −0.006
m = 5 −0.0025 −0.02 −0.009 −0.004 −0.43

Lb
np p = 1 p = 2 p = 3 p = 4 p = 5

n = 1 0.08 0.14 0.015 0.20 0.077
n = 2 0.002 1.85 −0.185 −0.10 −0.075
n = 3 0.0146 −0.10 0.20 −0.08 0.093
n = 4 −0.13 −0.016 0.022 0.40 0.018
n = 5 −0.0042 0.019 0.0198 0.006 0.38

layers. The second most energetic mode is a quadrupolar
velocity mode (Q) associated with the mean temperature field,
with a heat flux which is maximal in the top and bottom
sections of the vertical boundary layers. The third mode is
a two-roll, symmetry-breaking mode S. These three modes
were examined in detail in [8].

We now consider the next two most energetic modes.
The fourth mode, which consists of two corotating stacked
rolls, is entirely antisymmetric with respect to Sz and Sx .
The associated temperature field consists of fluctuations of
opposite signs on each vertical half of the cavity, and is
characterized by a strong intensity in the boundary layers, in
particular close to the center section of the vertical boundary
layers. The fifth mode is constituted by two vertical rolls. It
appears to be symmetric with respect to Sz and antisymmetric
with respect to Sx . Although the velocity field is symmetric
with respect to Sx , and antisymmetric with respect to Sz, the
temperature field only obeys the Sx symmetry, not the Sz

symmetry: the field in the top horizontal boundary layer has
an opposite sign to that in the bottom boundary layer, while it
remains of constant sign along the largest part of the vertical
walls. The symmetries of the different modes are summarized
in Table I. We can note that modes 1, 2, and 4 have the same
symmetry with respect to both reflexions, which means that
they are all symmetric with respect to the central symmetry,
while modes 3 and 5 have opposite symmetries, which means
that the velocity field is antisymmetric with respect to the
central symmetry. We therefore adopt the following notations
for the modes 4 and 5: mode 4 is denoted L∗ since it is fully
antisymmetric like the mode L, while mode 5 is called S∗ since
it is a symmetry-breaking mode with opposite symmetries to
the mode S for Sx and Sz (see Table I).

C. Histories

In all that follows, for clarity and whenever there is
no ambiguity, we will refer to the amplitude of the nth
POD mode an(t) as a mode itself, i.e., L will refer to
the temporal amplitude of the first mode a1, Q to that of
the second mode a2, and so forth. The time histories of the
POD normalized amplitudes an(t)/

√
λn for 1 � n � 5 were

TABLE III. Quadratic coefficients Qnmp . Only the upper part of
the symmetric matrix is represented. The coefficients are multiplied
by a factor of 10 for reading convenience.

10 × Q1mp p = 1 p = 2 p = 3 p = 4 p = 5

m = 1 −0.0001 6.55 0.41 −0.04 0.069
m = 2 −0.42 0.31 2.48 0.13
m = 3 0.068 0.28 −0.035
m = 4 0.15 0.15
m = 5 0.0326

10 × Q2mp p = 1 p = 2 p = 3 p = 4 p = 5
m = 1 −28.33 1.84 −3.00 −15.92 1.23
m = 2 −0.0097 −0.79 −0.49 0.0065
m = 3 −3.66 0.92 −0.38
m = 4 2.41 −0.92
m = 5 0.21

10 × Q3mp p = 1 p = 2 p = 3 p = 4 p = 5
m = 1 −2.54 2.32 −0.41 −1.24 −22.23
m = 2 −0.99 5.14 −0.99 −1.50
m = 3 0.0001 0.26 1.26
m = 4 0.065 8.81
m = 5 0.12

10 × Q4mp p = 1 p = 2 p = 3 p = 4 p = 5
m = 1 0.82 20.88 −1.33 −2.59 6.17
m = 2 −1.99 −0.84 −9.69 0.63
m = 3 0.75 −0.19 1.89
m = 4 −0.0005 −3.07
m = 5 0.096

10 × Q5mp p = 1 p = 2 p = 3 p = 4 p = 5
m = 1 −1.57 −9.43 82.28 −11.36 −0.74
m = 2 0.05 7.62 3.99 −1.08
m = 3 −4.70 -35.41 −0.46
m = 4 4.92 −0.12
m = 5 −0.0007

extracted from the simulation and represented in Fig. 2 over
a restricted time period, chosen to illustrate representative
reversals. Corresponding histograms computed over several
more reversals are also included. Figure 2 shows that reversals
are characterized by rapid excursions for all the POD modes.
The large-scale circulation mode L switches between two
nearly constant and opposite values. At the onset of reversals,
the quadrupolar mode Q increases then collapses before
increasing again. The two-roll mode S is nearly zero between
reversals, but increases sharply with positive and negative
values during reversals.

In contrast, the antisymmetric mode L∗ is never close to
zero for large amounts of time between reversals. This is
confirmed by its distribution shown in Fig. 2(d), which is much
wider than that associated with S or S∗. The mode changes sign
several times during a reversal cycle. In the quasistationary
state following a reversal, if L is positive, then L∗ is negative
(for instance at t = 80–130, t = 250–300; t = 400–450 in
Fig. 2), which means—see Fig. 1—that the mode tends to
decelerate the center of the roll and accelerate the flow in its
outer part. At least one sign change of L∗ was observed before
every reversal. The change occurred on the order of several
O(10) convective units before the collapse of mode L, i.e.,
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FIG. 2. Behavior of the normalized POD
amplitudes an/

√
λn during reversals. Left:

time evolution. Right: histograms computed
over a longer time sequence: (a) and (f)
n = 1(L); (b) and (g) n = 2(Q); (c) and (h)
n = 3(S); (d) and (i) n = 4(L∗); (e) and (j)
n = 5(S∗).
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FIG. 3. Evolution of the POD coefficients during a reversal event.

before the reversal took place. This sign change means that the
boundary layer wind decreases, while the flow is accelerated
in the bulk. However, this motion cannot be self-sustained as
the flow tends to be well mixed in the bulk: the large-scale
circulation is sustained by the transport of thermal plumes
originating from the horizontal boundary layers and driven into
the bulk by the shear layer. The intensity of mode L∗ remains
strong until L goes through zero. At least two or more sign
changes are observed again for the mode L∗ before it settles
down towards a positive value as L is now negative. In the next

section we will show how the model is able to reproduce the
dynamics of L and L∗ observed in the simulation.

The S∗ mode behaves in a very similar manner to the mode
S: it is also nearly zero between reversals, and experiences
sharp excursions during reversals. We can therefore propose
the following description of the simulation:

(i) Between reversals: mode L is constant, mode Q is
positive, and mode L∗ is nonzero (L∗ is negative when L

is positive immediately following a reversal), while modes S

and S∗ are close to zero. The variations of all modes are small,
except those of mode L∗ which changes sign at least once. This
indicates that some large-scale changes do take place between
reversals. The first sign change of L∗ is taken to constitute a
precursor of the reversal.

(ii) During reversals: mode L collapses, while mode
Q increases and modes L∗, S, and S∗ experience sharp
excursions. Mode L∗ then changes sign several times while
mode Q decreases then increases again.

The evolution of the POD coefficients during a single
reversal event is represented in Fig. 3. The time origin is
arbitrary and corresponds to a moment preceding a reversal
(i.e., L∗ has already changed sign and has the same sign
as L). The corresponding instantaneous velocity field and
temperature field are shown in Fig. 5 at the times corresponding
to the dashed vertical lines in Fig. 3. These times respectively
correspond to (i) a positive value of L∗, (ii) a maximum of L∗,
(iii) a zero of L, (iv) a maximum of Q, (v) a minimum of Q,
and (vi) an return to a quasistationary state.

As expected, the flow before the reversal at t = 30 is
constituted by a main roll along with two corner vortices. The
corner vortices grow, squeezing the main vortex in its middle
part at t = 112, and pinching it into two vortices at t = 123,
yielding a quadrupolar flow. The flow gives way through vortex
reconnection to a main roll (see t = 135) which will eventually
reorient around the diagonal opposite the initial state (see
t = 162). At t = 201, the flow is relaxing towards the new
quasistationary state. This description is similar to what was
proposed by [20] and can be connected to the Fourier-based
approach proposed by [6].

To show that the single reversal event selected from the
DNS represents typical behavior, we represented in Fig. 4 the
phase portraits in the L,L∗ space. We represented in Fig. 4(a)
the trajectories corresponding to the transition times, which

−2 −1 0 1 2
−1

−0.5

0

0.5

1

L

L *

L
0
 −> −L

0

−L
0
 −> L

0

−2 −1 0 1 2
−1

−0.5

0

0.5

1

L

L *

FIG. 4. Phase portraits of the POD coefficients in the (L,L∗ space (a) during the transitions, (b) outside the transitions.
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FIG. 5. Velocity and temperature field during a reversal event at selected times indicated in Fig. 3. Top: velocity streamlines. Bottom:
temperature contours 0.2, 0.15, 0.1, −0.1, −0.15, −0.2 (dashed lines indicate negative values).

were defined as time intervals of the form [tr − �t,tr + �t],
where tr corresponds to a crossing of the L = 0 axis and �t

is taken to be large enough to capture most of the transitions
(for the figure, we took �t = 18, which is slightly larger than
the average transition duration of 16 time units as will be seen
in the Sec. IV D). One can see that the quadrants LL∗ > 0 are
predominantly occupied during the transitions. Moreover, a
distinction was made between the transitions from positive to
negative L and from negative to positive L, and it can be seen
that each type of transition occupies a well-defined portion of
phase space: L∗ < 0 when L crosses the zero axis from left
to right (negative to positive) and L∗ > 0 when the switch is
from positive to negative values. This is in agreement with the
scenario proposed above. The phase portraits at times other
than these transition times are represented in Fig. 4(b). The
flow spends most of these times near the quasi-steady state
|L| = 1. Following a transition, the flow state is located in
the quadrant space LL∗ < 0 however one can see that after
some time (but still well before a new reversal has occurred)
the mode L∗ crosses the axis and the state moves to the
quadrant LL∗ > 0. At least one axis crossing of L∗ outside
the transitions was observed before each reversal - in 80% of
the reversals L∗ crossed the axis only once. This constitutes
the precursor event of reversals.

D. Adequacy of the large-scale description during reversals

The fields shown in Fig. 5 were projected onto the first five
POD modes and are represented in Fig. 6. Comparing Figs. 5
and 6 allows us to evaluate the capacity of the POD modes
to represent the phenomena taking place during reversals.
The POD focuses mostly on the large-scale field, leaving out
small-scale components. This means that the projection fails to
capture individual ejections of thermal plumes into the bulk, as
can be seen by comparing the bottom rows of Figs. 5 and 6. The
orientation of the roll can be inferred from the relative height
of the temperature contours, but details of the temperature field
within the bulk are absent.

In contrast, the velocity field in Fig. 6 shows similarities
with Fig. 5 and confirms the scenario proposed in Sec. III C:
the quadrupolar flow is clearly apparent in the projection at
t = 111 and t = 123. We note that, after the reversal, the
flow does not settle immediately into the symmetric state. At
t = 162 the main roll appears to be oriented along the “wrong”
diagonal (i.e., the one opposite to that corresponding to the
quasistationary state). At this time the projected temperature
field consists of cold fluid in the bottom and hot fluid in the
top boundary layers, which is in opposition to the DNS field
in the boundary layers (compare Figs. 5 and 6 at t = 162).
This temperature inversion reflects the fact that cold and hot

FIG. 6. Projected field from the DNS onto the first five POD modes at the same times as in Fig. 5. Top: velocity streamlines. Bottom:
temperature contours 0.2, 0.15, 0.1, 0.05, −0.05, −0.1, −0.15, −0.2 (dashed lines indicate negative values).
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TABLE IV. Values of the model coefficients.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1.16 1.20 3.01 1.08 4.04 6.81 0.98 0.95 3.97 7.20

α χ α′ χ ′ β μ γ ν δ δ′ ξ ξ ′ ε ω

0.24 −0.26 0.12 0.06 24.12 15.31 0.10 0.05 0.035 0.0035 0.018 −0.44 0.035 0.018

plumes are being rotated about by the large-scale circulation
independently from the horizontal boundary layers. The strong
reorganization of the plumes indicates that smaller scales
become important in the latter part of the reversal. As the flow
reaches the quasistationary state at t = 171, the large-scale
features of the full flow are again captured correctly by the
projection. The dynamics of the flow can therefore be well
described by the low-dimensional representation except for
the latter part of the reversal.

IV. MODEL DYNAMICS

A. Model derivation

Following the approach described in [8], we derive a low-
dimensional model by projecting the Navier-Stokes equations
onto the first five spatial eigenfunctions, which capture 90%
of the total energy. The general form of the model is

ȧn = Lmna
m + Qmpna

map + Tn, (9)

where details of the model are given in the Appendix. The
form of the model is obtained by computing the linear and
quadratic coefficients (see Tables II and III) and retaining only
the largest terms in the evolution equations. The effect of the
unresolved scales is represented by modified linear and cubic
coefficients. The model can thus be written as follows:

L̇ = (χ − αr2)L + (χ ′ − α′r2)L∗ + c1LQ, (10)

Q̇ = (μ − βr2)Q − c2L
2 − c3LL∗ − c4S

2, (11)

Ṡ = (ν − γ r2)L + c5SQ + c6LS∗ − c7L∗S∗, (12)

L̇∗ = (ξ − δr2)L∗ + (ξ ′ − δ′r2)L + c8LQ, (13)

Ṡ∗ = (ω − εr2)S∗ − c9LS + c10L∗S, (14)

where

r = L2 + Q2 + L2
∗ + S2 + S2

∗ .

The coefficient ci appearing in the evolution equation for
mode an characterizes the interaction between modes ap and
aq and is obtained from the quadratic coefficient Qnmp using

ci = Qnmp

(
λpλp

λn

)1/2

.

These quadratic coefficients constitute the nonadjustable pa-
rameters of the model. We checked that the selected quadratic
terms are energy preserving, i.e., that

1

c1
L̇L + 1

c2
Q̇Q + c3

c8c2
L̇∗L∗ + c4

c2c5
ṠS + c4c6

c2c5c9
Ṡ∗S∗ = 0.

This requires that c4c9 = c10c3 which is verified within the
precision with which the coefficients are computed.

The linear part of the model is characterized by a single off-
diagonal term representing a coupling between the L and the
L∗ modes, which share the same symmetries. The (L,Q,L∗)
subspace corresponding to centrosymmetry preserving modes
is an invariant subspace of the model, while the modes S and
S∗ form a symmetry-breaking subspace. The two subspaces
are coupled through the cubic feedback term and the quadratic
interaction between mode S and mode Q. The model depends
on 14 adjustable, linear, and cubic parameters. The value of the
model coefficients used in the integration are given in Table IV.

B. Dynamical behavior of the model in
the rotation-invariant subspace

We first study the dynamics of the model in the three-
dimensional, centrosymmetric space, which remains invariant
by the model equations. In the invariant subspace the equations
are of the form

L̇ = (χ − αr2)L + (χ ′ − α′r2)L∗ + c1LQ, (15)

Q̇ = (μ − βr2)Q − c2L
2 − c3LL∗, (16)

L̇∗ = (ξ − δr2)L∗ + (ξ ′ − δ′r2)L + c8LQ, (17)

where

r = L2 + Q2 + L2
∗.

The parameters were adjusted so that the system admits two
equilibria (L0,Q0, − L0

∗) and (−L0,Q0,L0
∗) corresponding

to the quasistationary states observed in the simulation.
L0,Q0,L0

∗ are taken equal to the rms of the corresponding
POD mode eigenvalues. The linear cross-coupling α′ between
the L and L∗ modes was found to be instrumental for the
dynamics of the model. For lower values of α′ < 0.11, the
equilibria are nodes. As α′ increases, the nodes bifurcate to
saddles and a heteroclinic cycle linking the two equilibria
appears. The unstable manifold is one dimensional and located
primarily along the L∗ direction. However, the heteroclinic
cycle rapidly bifurcates towards a robust limit cycle. The model
therefore predicts reversals which occur in the absence of
noise and involve only centrosymmetric modes. Other models
have been shown to predict reversals in the absence of noise
(for instance [12]) so this is not in itself a new result. The
significant contribution brought here by the model is the idea
that the centrosymmetric mode L∗ plays a determinant role in
reversals.

Histories of the POD amplitudes predicted by the model
in the invariant subspace are illustrated in Fig. 7 and can be
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FIG. 7. (a) Evolution of the coefficients in the (L,Q,L∗) sub-
space; (b) blow-up during a single reversal event.

compared to the DNS values in Fig. 3(a). The model was
integrated from an initial condition close to the quasistationary
state in the DNS. Some similarity with the evolution of the
DNS amplitudes is observed for the early part of the reversal,
such as the increase in Q and the first sign switch and increase
in L∗ [compare Figs. 7(b) and 3]. We note in particular
that L∗ > 0 (respectively < 0) when L crosses the axis and
becomes negative (respectively positive), which agrees with
the observations made in Sec. III C. As mentioned previously,
the agreement is not as good for the latter part of the reversal,

which is dominated by small scales. However the quasisteady
states, as well as the early part of the reversal, are all correctly
captured by the model.

The process which initiates the reversal in the model
physically corresponds to a deceleration of the wind coupling
the boundary layer with the bulk. It is represented by the L∗
mode, which is a centrosymmetric (nonsymmetry-breaking)
mode. To illustrate this interaction between L∗ and L, we
represented the projection of the flow onto these two modes
for different flow states in Fig. 8. We also represented the
total heat transfer associated with the modes L, L∗, and Q

for the same flow states in Fig. 9. Near a quasisteady state, L

and L∗ have opposite signs [Fig. 8(a)]. As mentioned before,
this indicates that L∗ reinforces the wind at the edges of the
boundary layers associated with L. The roll fills out the cavity
almost entirely. Figure 9(a) shows that the heat flux is maximal
and almost constant in the vertical boundary layers (we recall
that mode L contributes mostly in the center part, while
the contribution of Q is predominant in the top and bottom
parts).

As the intensity of mode L∗ gradually decreases, it
eventually switches sign, which corresponds physically to a
deceleration, and eventually a reversal of the circulation in the
upper edge of the layer, while creating motion in the opposite
direction. The effect is to isolate the bulk region from the
horizontal boundary layers, as can be seen in Fig. 8(b) for a
value of L∗ = L0

∗ (before the reversal starts) and Fig. 8(c) for
L∗ = 2L0 (i.e., at the onset of reversal). As the intensity of
L∗ increases (with now the same sign as L), the large-scale
circulation becomes more disconnected from the boundary
layers. This disconnection has two consequences: On the
one hand, a double shear layer of opposite sign (“squashed
vortices”) can be observed in Fig. 8(c). It isolates the roll
from both horizontal layers and prevents efficient transport
of thermal plumes originating there by creating a wind of
opposite direction in the inner wall region, from which
the opposite large-scale circulation will be able to grow. On
the other hand, the roll encroachment on the vertical boundary
layers is reduced, which inhibits the heat transfer between the
bottom and the top of the cavity [Fig. 9(c)].

The physical process described above is observed
in the simulation and is captured by the evolution equations
of the model, which predict that the sign switch in L∗ leads
to the decrease of mode L, and its eventual collapse. In the
model, reversals are therefore triggered by the decoupling of
the boundary layers from the bulk, which in turn affects the
heat transfer.

FIG. 8. Streamlines corresponding to a combination of the modes L and L∗; L = L0; (a) L∗ = −L0
∗, (b) L∗ = L0

∗, (c) L∗ = 2L0
∗.
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FIG. 9. Heat transfer associated with a combination of the modes L, Q, L∗: L = L0,Q = Q0; (a) L∗ = −L0
∗, (b) L∗ = L0

∗, (c) L∗ = 2L0
∗.

The signature of the decoupling is given by the sign switch
of L∗, which precedes the reversal (i.e., the sharp decrease and
sign change of L) by a significant amount of time (the most
probable value in the DNS is on the order of 40 convective
units). The connection between the boundary layer and the
bulk, which are two regions characterized by very different
physical processes and scaling laws [24], appears therefore
as a key player for the reversal dynamics of the model, and
could be instrumental in triggering the reversals observed in
the simulation.

A reconstruction of the fields corresponding to the single
reversal depicted in Fig. 7(b) was carried out and is shown
in Fig. 10 for the times identified by dashed lines in the
histories of the coefficients. The dashed lines also respectively
correspond to a sign change of L∗, a maximum of L∗, a zero
value for L, a maximum of Q, and a value of L close to L0.
The quasistationary state at t = 62 corresponds to a main roll
surrounded by two corner vortices. We observe that the center
of the main roll shifts along the diagonal as it is squeezed
along its main axis at t = 72. The corner rolls grow and
develop (see at t = 75) into a quadrupolar flow. The vortices
reconnect at t = 78 into a roll aligned on the opposite diagonal
at t = 81. We note that the pinching of the main roll by the
corner vortices occurs in a symmetric fashion since it occurs
in the centrosymmetric subspace.

C. Influence of the symmmetry-breaking modes

We now examine how the presence of symmetry-breaking
modes affects the dynamics of the model. We note that if these
modes are set to zero in the model, they cannot grow since the
other three form an invariant subspace. The centrosymmetric
and the symmetry-breaking subspaces are coupled through
a single quadratic term, through which S and Q exchange

energy. The evolution equations for (S,S∗) read

Ṡ = (ν − γ r2)S + c5SQ + (c6L − c7L∗)S∗, (18)

Ṡ∗ = (ω − εr2)S∗ − (c9L − c10L∗)S. (19)

Since the quadratic coefficients ci,i = 6,7,9,10 are large
and L and L∗ have opposite signs near the equilibria, the
off-diagonal terms are large and of opposite sign. This means
that a strong oscillatory behavior should be expected for the
symmetry-breaking modes. One can also show that in the
absence of a coupling term, there cannot be a heteroclinic
cycle in the (S,S∗) subspace and a nonzero equilibrium in that
same subspace (which would correspond to cessations). The
reason is as follows: for the equilibrium (L0,Q0,L0

∗) to be a
saddle in the (S,S∗) subspace we need

(ν − γ r2)
(
ω − εr2

0

) + (c6L − c7L∗)(c10L − c9S∗) < 0,

where r0 = (L0)2 + (Q0)2 + (L0
∗)2. Since c6L − c7L∗ is pro-

portional to c10L − c9S∗, this requires (ν − γ r2
0 ) and (ω − εr2

0 )
to be large and of opposite sign. However, if there is a nonzero
equilibrium in the symmetry-breaking subspace (S,S∗), then
this equilibrium verifies

ν − γ (S2 + S2
∗) = γ

ε
[ω − ε(S2 + S2

∗)] = 0,

which means that ν/γ = ω/ε, which implies that (ν − γ r2)
and (ω − εr2) cannot be of opposite signs. As a consequence
there cannot be both one unstable and one stable direction in
the symmetry-breaking subspace in the absence of a coupling
term.

Integration of the model over a couple of reversals from
an initial condition close to one of the quasistationary states
is shown in Fig. 11. The behavior of the model in the
centrosymmetric invariant subspace is similar to that of its

FIG. 10. Reconstructed field from the model in the centrosymmetric subspace modes at the times corresponding to the vertical lines in
Fig. 7(b). Legend as in Fig. 6.
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FIG. 11. Histories of the model in the full subspace.

restriction to that subspace, which was studied in the previous
section. The amplitudes of the symmetry-breaking modes S

and S∗ increase sharply during the reversal and roll collapse,
in agreement with observations in the DNS [see Fig. 2(c)].
The high oscillation frequency of the modes is not observed in
the DNS, which is presumably an effect of the truncation—a
continuous range of high frequencies was observed in the
DNS for mode S (results not shown here). However the mean
amplitude of the symmetry-breaking modes in the model is
close to the expected value from the DNS

√
λn: it is about

90% for mode S and about 180% for mode S∗. Reconstruction
of fields during the single reversal event shown in Fig. 12 is
plotted in Fig. 13 for selected times and displays the same
sequence of events as in Figs. 6 and 10. The main roll apparent
at t = 33 is squeezed in its middle part at t = 105. We can see
that corner flows form either on the top or the bottom of the
cell in an asymmetric manner which is closer to what is seen
in the simulation (compare for instance Fig. 12 at t = 105
with Fig. 6 at t = 111 or t = 93). The quadrupolar flow is
apparent at t = 120 and vortex reconnection takes place at
t = 129. A new quasisteady state forms at t = 162. The main
features of the reversal process are therefore captured by the
model. The addition of symmetry-breaking modes results in
more physically realistic reversals.

D. Time scales of the reversal

Essential characteristics of the dynamics are the duration
and frequency of the reversals. The time between reversals
Tir is defined here as the time between two zeros of L and
the duration of the reversal (also called transition time Ttr) is
defined as the time spent by L in the region [−0.75L0,0.75L0]
where ±L0 are the quasisteady states. In addition, a new time
scale corresponding to the time separating the disconnection
of the core and boundary layer (sign switch of L∗) from
the reversal (zero of L) can be defined. We will call it the
precursor duration and denote it Tprec. In the simulation, when
more than one axis crossing took place (20% of the cases)
Tprec was defined as the time between the first sign change
of L∗ when LL∗ < 0 and the sign change of L. We found
that the correlation between Tprec and Tir was about 0.6 in
the simulation, which supports the scenario of a limit cycle
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FIG. 12. Evolution of the coefficients in the full 5D model for a
single reversal.

brought forth by the model. In contrast, there did not seem to
be any strong correlation between Ttr and Trev in the simulation.
This suggests that the different stages of the reversal might
be governed by different processes and is therefore consistent
with the idea that small scales become important in the late part
of the transition. The values reported in Table IV were chosen
such that the period in the model without symmetry-breaking
modes was found to be 130 time units, which is close to
the period observed in the numerical simulation (about 110)
and the transition time is 12 convective time units (in the
simulation the mean and most probable value of the transition
time are respectively 16 and 12 time units). The corresponding
precursor duration was 85 units in the model (versus an average
value of 73 in the simulation).

Figure 14 shows how the characteristic times of the model
are modified when nonzero symmetry-breaking modes are
included in the model. In the absence of these modes, for
given values of the model coefficients, the period of the limit
cycle is constant, so that the interreversal and transition times
are fixed. When these modes are included, fluctuations are
introduced in these time scales, as can be see in Fig. 14(a) for
the transition time, which increases slightly, and in Fig. 14(b)
for the interreversal period, which decreases down to 90
convective units. The precursor time scale [Fig. 14(c)] also
decreases down to 60 convective units.

The evolutions of Ttr, Tir, and Tprec are consistent with
the idea that the effect of symmetry-breaking modes is
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FIG. 13. Reconstructed field from the model in the full subspace at the times corresponding to the vertical lines in Fig. 12. Legend as in
Fig. 6.

destabilizing. However the distribution spread of Tir (and
Tprec) is smaller than in the simulation, with respective
standard deviation of 22 versus 74 convective time units in
the simulation for Tir and 13 against 63 convective units for
Tprec, which again supports the idea that the distribution of the
interreversal Tir is influenced by small scales, which are not
included explicitly in the model.

To account for the effect of unresolved small scales, Gaus-
sian noise was introduced in the adjustable model coefficients
which characterize the rate of small-scale energy extraction
from the large scales. The statistics of the reversals were com-
puted as follows: for a given noise level, a few thousand sets of
coefficients were generated; the model corresponding to each
set of coefficients was then integrated from an initial condition
taken from the DNS in the centrosymmetric subspace over a
time corresponding to several reversals. The mean and standard
deviations of the transition and interreversal times are reported
in Fig. 15 for different noise levels and can be compared to the
values measured in the DNS (indicated as lines on the figure).
Trends observed show some robustness with respect to the
noise level. The mean transition time and its standard deviation
σ (Ttr) tend to increase slightly with the noise level, which
supports the idea that small scales have a destabilizing effect.
The average interreversal period 〈Tir〉 and precursor duration
〈Tprec〉 decrease as the noise level increases, which indicates
that higher small-scale intermittency will tend to make rever-
sals more frequent. For low noise levels, the standard deviation
σ (Tir) increases at first, but as the noise increases it decreases
like 〈Tir〉. For higher noise levels the average interreversal
period and its standard deviation seem to converge towards
equal values, as well as the precursor duration.

A good agreement with the DNS seems to correspond to
a noise level of 5–15%, which is on the order of the energy
fraction represented by the unresolved scales (10%). This is
evidenced in Fig. 16 which compares the distributions of Ttr,
Tir, and Tprec for the model with a noise level of 10% with
their counterparts in the simulation. We also represented in
Figs. 16(d) and 16(e) (insets) the equivalent interreversal and
transition times for standard reversals computed from the total
angular momentum L2D , which were respectively defined as
(i) the time separating zeros of L2D for the interreversal time,
and (ii) the time during which |L2D| crossed the zero axis once
and remained smaller than its maximum value by a standard
deviation for the transition time.

Despite the crudeness of small-scale modeling, which
assumes a separation between the resolved and unresolved
scales, there is evidence of some statistical agreement, as the
range of characteristic time scales found in the simulation
is also present in the model. It is likely that more realistic
modeling of the small scales could result in an even better
statistical agreement, however this is outside the scope of the
present paper.

V. DISCUSSION

In this section we discuss how our model represents the
physics of the flow and we compare it with other models. As
mentioned in the Introduction, several physically motivated
models [5,9,12,13] have been proposed to describe reversals.
These models are targeted at specific physical phenomena,
which have been extracted from the full problem. For instance,
Brown and Ahlers derived a model for the large-scale circula-
tion in the cylinder using two physically motivated equations
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FIG. 14. Influence of the symmetry-breaking modes on the time scales of the reversal (a) transition time, (b) interreversal time, (c) precursor
time.
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FIG. 15. (a) Evolution of the time scales as a function of the noise level. Dashed lines: mean values in the DNS; dotted line: standard
deviation of Tir in the DNS; solid line: standard deviation of Ttr in the DNS. (b) Evolution of the precursor time Tprec. Dashed line: mean value
in the DNS; dotted line: standard deviation

for the strength and azimuthal component of the large-scale
circulation. The model was able to reproduce cessations and
rotations. Arujo et al. produced a three-dimensional model
based on a deterministic balance between the drag and the
buoyancy force to reproduce reversals. The form of their
system is analogous to the Lorenz equations, with coefficients
which can be made explicitly dependent on the Rayleigh and
Prandtl numbers (via modeling of the Nusselt number). The
model predicts the existence of reversals (regular or chaotic)
depending on the value of these parameters.

As noted above, the evolution equations of these models
are based on selected modeling of already identified physical

phenomena. In contrast, our POD-based model is based on the
extraction of a complete eigenfunction basis from empirical
data and straightforward projection of the full Navier-Stokes
equations onto this basis. As noted in the Introduction, these
eigenfunctions are objective but artificial constructions which
do not necessarily represent physical coherent structures of
the flow. The POD-based model provides evolution equations
for the amplitudes of the spatial eigenfunctions or modes. The
first steps of the derivation of the (data-dependent) model do
not therefore require any kind of a priori assumption about the
problem: in particular, the procedure is entirely independent
of the geometry or boundary conditions. We emphasize that
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the POD eigenfunctions characterize the full problem, which
can then be simplified by considering only the most energetic
modes. Typically, these modes obey a set of symmetries
which depend on the configuration considered. As pointed out
by [19], mode symmetry constitutes a primary constraint for
the temporal evolution of the mode amplitudes. In particular,
the quadratic terms in the model characterizing the interactions
between the amplitudes of the eigenfunctions are uniquely
determined by the shape of these eigenfunctions and therefore
reflect the specific symmetries of the POD modes associated
with the configuration.

Approximations are required once a particular truncation
has been chosen for the model. These approximations are
the result of two processes: (i) the selection of the largest
linear and quadratic coefficients, ensuring that the selection
is compact yet consistent with pure redistribution of energy
through the quadratic terms—which explains why the models
corresponding to nested truncations will not be necessarily
nested within each other; (ii) the addition of modified linear
and cubic coefficients which represent the action of the unre-
solved scales (i.e., POD modes excluded from the truncation).
Moreover, owing to symmetry, invariant subspaces may be
found in the model: this is a key issue because of the constraints
they induce for the dynamics of the modes. In particular, any
trajectory originating in the invariant subspace will remain
within this invariant subspace. This is not only of interest for
a better understanding and possible further reduction of the
dynamics, but also for control purposes.

To sum up, proper orthogonal decomposition provides
objective identification of an energy-based hierarchy of flow
patterns (POD eigenfunctions). Each truncation of any dimen-
sion can be associated with an interaction scenario for the
relevant POD modes which attempts to model the physical
processes occurring in the flow. The interaction scenarios
depend on the symmetry and shape of the eigenfunctions
retained in the truncations, and produce complementary
representations of reversals. This provides a theoretically
robust, unbiased framework where physical approximations
in the model are reduced to the introduction of a closure
scheme for the modes excluded from the truncation. However,
the dependence of the eigenfunctions with respect to the
configuration parameters is itself strongly implicit, which
hampers the predictive capabilities of the models. Variations
in the flow parameters (Rayleigh number, Prandtl number) are
expected to lead to changes in the POD large-scale patterns,
but are also likely to modify the action of the small scales on
these patterns: additional modeling effort is therefore needed
to extend the range of validity of the models.

In [8], we considered a three-mode truncation with modes
L, Q, and S. The model is of the form

L̇ = (χ − αr2)L + c1LQ, (20)

Q̇ = (μ − βr2)L − c2L
2 + c3LS, (21)

Ṡ = (ν − γ r2)S + (ν ′ − γ ′r2)L − c4LQ. (22)

We note that, owing to a previous error, the signs in front
of the coefficients c1 and c2 are opposite to those given in [8]
(and consistent with those in the present model). No significant

TABLE V. Values of the coefficients of the three-mode model
[Eq. (22)].

c̃1 c̃2 c̃3 c̃4 χ μ ν ν ′ α β γ γ ′

1.22 1.25 0.51 0.27 −0.47 6.35 0.58 0.24 0.11 8.72 0.44 0.004

change in the dynamics was found when a comparison of this
model with that described in [8] was carried out (for suitable
small-scale parameters) and the conclusions of [8] were not
modified. The model coefficients are given in Table V for the
sake of completeness.

The dynamics of the 3D model consists of heteroclinic
connections between fixed points. Fixed points are either of
LQ type, i.e., they are close to the S = 0 plane and represent a
quasisteady unique roll or of S type, i.e., they are close to the
S axis and represent a two-roll mode. Both LQ- and S-type
equilibria consist of nodes and saddles. Each heteroclinic
connection linked a saddle of LQ type (respectively S type) to
a node of S type (respectively LQ type). When the effect
of unresolved scales is taken into account into the model
by the addition of a random perturbation, the system can be
kicked away from one of the nodes through random motion
and reach the basin of attraction of the nearby saddle, from
which it gets attracted towards another node, and so forth.
The deterministic heteroclinic connections then form a noisy
heteroclinic cycle linking all equilibria. It is important to note
that noise is required to establish a dynamical connection
between the two opposite large-scale circulations ±L0. The
possibility of reversals in the 3D model is therefore conditioned
on the presence of noise.

In contrast, with the five-mode model, creating the connec-
tion between the states ±L0 does not require explicit noise,
but involves a new mode L∗. This mode is absent from the
three-mode model, so there is no inconsistency between the
two model predictions. The occurrence of reversals was found
to depend on the intensity of the coupling between mode L

and the additional mode L∗, which controls the connection
between the boundary layer and the core region. Reversals
correspond to the existence of a limit cycle in the invariant
subspace (L,Q,L∗), close to an unstable heteroclinic cycle,
and linking the quasisteady states ±L0. A change in the sign
of the mode L∗ is identified as a precursor for the reversal.
The inclusion of modes S and S∗ makes the time between
reversals variable and on average shorter (just as in the 3D
model, the S mode represents a direction of destabilization for
the quasisteady states). The variability is still increased when
random variations are allowed in the model coefficients.

Both 3D and 5D models predict reversals of the large-scale
circulation in a consistent manner. At the onset of the reversal,
all modes experience sharp variations: growth of the S mode
is observed, while the quadrupolar mode Q collapses with
the large-scale circulation L. The duration of the reversal
as well as the mean period between reversals are found
to match the times measured in the simulation when the
effect of the unresolved modes is represented with additional
model coefficients and noise perturbations. The mean time
between reversals decreases as the noise level increases in the
model. We note that the POD-based scenarios (which are by
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construction global) are not inconsistent with the observations
of Sugiyama et al. [20] who propose that the onset of reversal
is associated with the local growth of corner flows (see Figs. 7
and 10). It is important to realize that the localized motions
associated with the corner flows correspond to a mixture of
many POD modes, so that direct comparison with Sugiyama’s
observations is not straightforward.

One major difference between the models is the addition
of mode L∗, through which a direct connection between the
states ±L0 can be established. The large-scale, deterministic
part of the five-mode model captures the entire transition
process, while only part of the transition could be reproduced
in the three-mode model in the absence of noise. Moreover,
it was shown that in the simulation, unlike other POD modes,
mode L∗ significantly varies between transitions, a behavior
which is correctly captured by the five-mode model. This
led to the definition of a precursor event as the first axis
crossing of L∗ following a reversal. The precursor event was
successfully reproduced by the model, which supports the
idea that reorganizations of the large-scale circulation in the
simulation are not purely random occurrences, but could be
part of a cycle reminiscent of the one displayed in the model.
This opens up the possibility that reversals could be anticipated
to some extent, and perhaps even controlled at the large-scale
level, which is a new and enticing prospect brought about by
the five-mode model.

VI. CONCLUSION

We have studied a new POD-based, five-mode model to
represent the dynamics of the large-scale circulation in a 2D
square Rayleigh-Bénard cell. It was shown that the large-scale
description provided by POD is able to describe the velocity
field at all times except during the latter part of the reversal.

The major result of this study is that a POD mode that
becomes dynamically active before reversals was identified
in the DNS. In particular, the mode changes sign between
reversals, which we termed a precursor event. This event
was correctly reproduced by the model and was found to be
essential for the model reversal dynamics, which suggests that
it could also be important for the reversals observed in the
simulation. The effect of the sign change is to decelerate the
wind in the region connecting the bulk and the boundary layers,
limiting heat transfer between the top and bottom of the cavity.
As a consequence, the main roll is isolated from the boundary
layers, while a new shear layer of opposite sign is created
in the horizontal boundary layers. A new time scale, which
we call the precursor duration, can be defined: it corresponds
to the interval between the precursor event and the onset
of the reversal, and appears to be well correlated with the
interreversal period in the simulation.

The model predicts excursions of the symmetry-breaking
(noncentrosymmetric) modes during reversals, in agreement
with the numerical simulation and the simpler, 3D model
studied previously. The presence of symmetry-breaking modes
in the model leads to fluctuations in the time scales of
the reversal, but the amplitude of the fluctuations remains
inferior to those of the simulation. However the agreement
is significantly improved when noise representing small-scale
intermittency is introduced in the model coefficients. The

average transition time slightly increases, while the average
interreversal period and precursor duration decrease with the
noise level. This is consistent with the idea that higher small-
scale intermittency will increase the likelihood of large-scale
destabilization. The distributions of the characteristic time
scales are found to agree relatively well with the DNS for
noise levels of about 10%, which corresponds to the fraction
of energy contained in the unresolved scales.
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APPENDIX: MODEL DERIVATION

The general form of the model is

ȧn = Lmna
m + Qmpna

map + Tn, (A1)

where Tn represents the effect of the unresolved modes.
(i) Linear coefficients: The linear term Lnm contains a

dissipative part Ld
mn and a buoyancy part Lb

mn, defined as

Ld
mn = 1

Ra1/2

∫ (
Pr∇φn

u
:
(∇φm

u

)T + ∇φn
θ · ∇φm

θ

)
dx,

(A2)
where T represents the transposition operator, and

Lb
mn =

∫
(φn

θ φm
w ) dx (A3)

of the inner and outer sections of the large-scale circulation.
(ii) Quadratic coefficients: The quadratic terms Qmpn

(which cannot be confused with the quadrupolar mode Q)
are defined as

Qmpn =
∫ [(

φm

u
· ∇φp

u
+ φp

u
· ∇φm

u

) · φn

u

+ (
φm

u
· ∇φp

θ
+ φp

u
· ∇φm

θ

)
φn

θ

]
dx. (A4)

They correspond to the transport of the Reynolds stress as well
as that of the convective heat flux. The structure of the model is
determined by the values of the largest quadratic coefficients.

Only one quadratic coupling term is retained between
the invariant, centrosymmetric subspace and the symmetry-
breaking subspace, in order to constitute the simplest model
that provides quadratic coupling between the two subspaces.

(iii) Small-scale modeling T : Due to nonlinearity, unre-
solved modes appear in the model and need to be accounted
for. In the absence of convection, the turbulent eddy viscosity
is assumed to be proportional to the local strain rate sij ,

νT ∼ C|sij sij |1/2.

This approximation is consistent with [25] which makes
the case for a nonlinear subscale representation in low-
dimensional models of the form

νT ∼ C ′|k<|1/2, (A5)

where k< represents the energy of the resolved modes an.
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In the case of natural convection, a simple gradient diffusion
hypothesis for the turbulent heat fluxes is generally not
acceptable [26]. A better mode for the turbulent heat fluxes
is given by [27]

〈θui〉 = −Cθ

k

ε
〈uiuk〉∂〈θ〉

∂xk

, (A6)

where k is the turbulent kinetic energy and ε is the dissipation.
The evolution of the unresolved turbulent heat fluxes is
therefore related to that of the unresolved turbulent stresses.

We generalize the approach of Osth et al. to thermal
convection flows, using Eq. (A5), and we make one further
simplification by expressing the fact that the temporal vari-
ations of the energy of the first POD modes are typically
small compared to its mean value—the normalized standard

deviation was less than 0.2 for the first five modes. Using

k(t) = 〈k〉 + k̃(t)

with |k̃(t)| � 〈k〉, we can make the approximation

√
k(t) =

√
〈k〉[1 + k̃(t)/〈k〉]1/2 ∼

√
〈k〉

(
1 + 1

2

k̃(t)

〈k〉
)

=
√〈k〉

2

(
1 + k(t)

〈k〉
)

.

This leads to an affine representation for the eddy viscosity,
which is in fact consistent with the optimal approach derived
by [28] for transient flows. The eddy viscosity is therefore
made up of a constant and a quadratic part, which yields
linear terms and cubic terms in the equations. The cubic
terms are taken to be positive to ensure global stability of
the model.
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multi-domain computing for natural convection flows, Par-
allel Computational Fluid Dynamics 2008, Lecture Notes in
Computational Science and Engineering, Vol. 74, edited by
D. Tromeur-Dervout, G. Brenner, D. R. Emerson, and J. Erhel
(Springer, Berlin, Heidelberg, 2010), pp. 163–171.

[23] L. Sirovich, Turbulence and the dynamics of coherent structures
part i: Coherent structures, Q. Appl. Math. 45, 561 (1987).

[24] S. Grossmann and D. Lohse, Scaling in thermal convection: A
unifying theory, J. Fluid Mech. 407, 27 (2000).
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