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Impact of diffusion on surface clustering in random hydrodynamic flows
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Buoyant material clustering in a stochastic flow, which is homogeneous and isotropic in space and stationary in
time, is addressed. The dynamics of buoyant material in three-dimensional hydrodynamic flows can be considered
as the motion of passive tracers in a compressible two-dimensional velocity field. The latter is of interest in the
present study. It is well known that the clustering of the density of passive tracers occurs in this case. We evaluate
the impact of diffusion on the clustering process by using a numerical model. In general, the effect of diffusion
is negligible in the very beginning of the evolution of initially uniformly distributed passive tracers. Therefore,
the clustering of the density of passive tracers can emerge in accordance with the general theory. We analyze the
long time clustering affected by diffusion and show that the emerged cluster structure persists in time in spite of
the diffusion effect. However, the clusters split in time.
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I. INTRODUCTION

Studying the passive tracer motion in random hydrody-
namic flows is important to get insight into a vast range
of physical problems including impurities spreading in the
ocean and atmosphere [1–3]. For instance, floating debris
concentrated in garbage islands [4,5] or oil from seeps and
spills converges in irregular clusters at the ocean surface [3].
It also plays a role in the oceanic ecosystems [1], in cloud
dynamics [6], porous media [7], planetology [8], or the mass
distribution in the Universe formation [9].

The case of compressible velocity fields attracts special
interest since, on the one hand, they permit the appearance of
cluster structures [10–14]. On the other hand, the dynamics
of buoyant [15,16] and low-inertia impurities [17–19] in
hydrodynamic flows can be considered as the motion of passive
tracers in a compressible velocity field [20,21].

We use a Lagrangian method to simulate numerically the
advection of floating tracers in random hydrodynamic flows to
assess the diffusion effect for a long time [10,22]. Our approach
is similar to the ones suggested in the works [23,24], but
we consider a potential velocity field, which needs additional
calculation of the divergence along material trajectories. It is
the Lagrangian divergence that induces clustering [3,10,18].

The aim of our study is to determine the influence
of diffusion on cluster structuring of material density of
floaters for a long time evolution. In the problem of laser
emission in random media, the appearance of cluster splitting
under influence of diffraction, which acts as the diffusion in
Schrödinger equation [18], was reported. In this work, we
aim at finding an analogous effect for the problem of particle
clustering. As mentioned above, the horizontal divergence that
corresponds to compressibility in the surface flow leads to
clustering. The scale of divergence in a rapidly varying velocity
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field can be smaller than the diffusion scale, and, therefore,
one can observe clustering below the diffusion scale. It is
worth noting that in an earlier work [22], a similar model was
numerically studied. However, the resolution and time interval
were insufficient to reveal the effect of the cluster splitting
below the diffusion scale. Therefore, the present work presents
evidence of the phenomenon using a fine resolution and longer
calculation time.

In Sec. II, the problem formulation and statistical properties
of the random velocity field model are described. In Sec. III,
we give a brief review of statistical topography characteristics
and relevant results for clustering in the absence of diffusion. In
Sec. IV, we discuss a method for modeling a random velocity
field numerically and for calculating the density of buoyant
material over a long time. The numerical results are also
discussed in this section. The conclusions are given in Sec. V.

II. FORMULATION OF THE PROBLEM

The Eulerian dynamics of a passive tracer material density
field ρ(r,t) advected by a velocity field u(r,t) is described by
the following partial differential equation [25–27]:(

∂

∂t
+ ∂

∂r
u(r,t)

)
ρ(r,t) = κ�ρ(r,t), (1)

where ρ(r,0) = ρ0(r) is an initial condition. Here, κ is the
diffusion coefficient, and stochastic properties of the equation
followed from u(r,t) being a random velocity field with a given
statistical features.

Let us consider the diffusion of a floating tracer following
Refs. [15,18,28]. If a passive tracer moves with horizontal and
vertical velocity components u = (U,w) over the surface z = 0
in an incompressible medium [divu(r,t) = 0] in the absence of
a mean flow, then an effective compressible two-dimensional
flow with two-dimensional divergence

∇RU(R,t) = −∂w(r,t)
∂z

∣∣∣∣
z=0
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is created on the surface. Representing the floating tracer field
as ρ(r,t) = ρ(R,t)δ(z) and substituting this expression into
(1), and then integrating with respect to z leads to the equation(

∂

∂t
+ ∂

∂R
U(R,t)

)
ρ(R,t) = κ�Rρ(R,t). (2)

As a result, we can consider a two-dimensional compress-
ible random velocity field U(R,t). The dynamical system (2)
is conservative with a constant mass of all the buoyant tracers
M = ∫

dRρ(R,t).
All the values involved are considered to be dimensionless

with the space and time scales being L0,t0 and the tracer
density scale being ρ∗. As a result, the characteristic size of a
scalar patch in the dimensionless coordinates is of the order of
1, the initial tracer density is also of the order of 1, and t0 is
chosen to be equal to the discretization step since we assume
that the velocity field is δ correlated in time. The velocity scale
is then L0/t0, and the diffusivity scale is L2

0/t0.
A special feature of the equation (2) in the case of com-

pressible flows is that the density field ρ(R,t) is parametrically
excited in every realization in time [10,13,14]. In the absence
of the diffusion, the density field is governed by a first-order
equation with partial derivatives [10]. Every realization of the
corresponding velocity fields may produce clusters, i.e., there
may appear compact regions with high values of the material
density of tracers and with significantly lower background
values. It is worth noticing that the quantities averaged over
velocity field realizations do not bear any information on
the emerging clusters. The stochastic structure formation in
space in specific realizations of the random velocity field
is of interest. This problem can be tackled by means of
analyzing the one-point probability density of the solution.
Various functions of the moments of the density fields for the
equation in question are considered in many papers (see, for
example, Refs. [13,14]). In particular, as the cluster formation
triggers, all the functions of the moments of the density field
exponentially grow in time in any particular point in space.

A. Statistical characteristics of a random velocity field

Let the random velocity field U(R,t) be potential, two-
dimensional, Gaussian with zero mean, statistically homoge-
neous and isotropic in space, and statistically stationary in
time. Thus, correlation and spectral functions are

Bαβ(R′,η) = 〈Uα(R,t)Uβ(R + R′,t + η)〉

=
∫

dkE(k,η)
kαkβ

k2
eikR′

. (3)

Let Bαβ(0,0) = 〈Uα(R,t)Uβ(R,t)〉 = 1
2σ 2

Uδαβ , and the ve-
locity field variance is

σ 2
U = Bαα(0,0) =

∫
dkE(k,0).

Let us introduce the effective diffusion coefficient appeared
due to random velocity field

D =
∫ ∞

0
dη

∫
dk k2E(k,η)

=
∫ ∞

0
dη

〈
∂U(R,t + η)

∂R
∂U(R,t)

∂R

〉
, (4)

where ∂U(R,t)/∂R is the velocity field divergence. The
coefficient D from (4) can be expressed through the statistical
parameters of the derivatives of the velocity field

D = σ 2
divUτdivU,

where σdivU and τdivU are variance and correlation time of
velocity field divergence [14]. Now, to get insight into the
space clustering of the random field ρ(R,t) in almost every
realization, we employ the ideas of statistical topography
[13,14].

III. STATISTICAL TOPOGRAPHY OF RANDOM FIELDS

At any fixed point in the space R̃, function ρ(R̃,t) is a
random process in time with the simultaneous probability
density independent of R̃. In the physical space {R}, there
may appear a structure in the field ρ(R,t) as a physical object.
These structures appear as closed regions with a high tracer
concentration, conventionally called clusters.

Let us consider the diffusion of the density field ρ(r,t)
in a random velocity field at the initial stage. The stochastic
clustering is governed by Eq. (2) at κ = 0. In the case of the
one-point probability density, one can formulate an equation
[13,14,18] with a solution corresponding to the log-normal
process

P (t ; ρ) = 1

2ρ
√

πt/τ
exp

{
− ln2(ρet/τ /ρ0)

4t/τ

}
, (5)

where τ = 1/D is the effective diffusion dimensionless time
scale. The corresponding integral distribution function is

(t ; ρ) =
∫ ρ

0
dρ ′P (t ; ρ ′) = Pr

(
ln(ρet/τ /ρ0)

2
√

t/τ

)
, (6)

where the function Pr(z) is the probability integral,

Pr(z) = 1√
2π

∫ z

−∞
dx exp

{
−x2

2

}
.

We can now analyze the clustering of floaters from the
statistical topography [13,14,29] point of view. We introduce
the indicator function

ϕ(R,t ; ρ) = δ(ρ(R,t) − ρ).

With the help of this function, one can assess, for instance,
the area of the regions with the random field ρ(R,t) exceeding
a prescribed level ρ, i.e., ρ(R,t) > ρ:

S(t ; ρ) =
∫

dR θ (ρ(R,t) − ρ) =
∫

dR
∫ ∞

ρ

dρ ′ ϕ(R,t ; ρ ′)

with the total mass of the tracers, encompassed in the areas

M(t ; ρ) =
∫

dR ρ(R,t)θ [ρ(R,t) − ρ]

=
∫

dR
∫ ∞

ρ

dρ ′ ρ ′ϕ(R,t ; ρ ′),

where θ [ρ(R,t) − ρ] is the Heaviside step function.
The mean value of the indicator function averaged over the

realization ensemble of the random velocity field determines
the probability density P (R,t ; ρ) = 〈δ[ρ(R,t) − ρ]〉 simul-
taneous in time and one-point in space [13,14]. Therefore,
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the mean values averaged over the random velocity field
realization ensemble of S(t ; ρ) and M(t ; ρ) ensue as follows

〈S(t ; ρ)〉 =
∫

dR
∫ ∞

ρ

dρ ′ P (R,t ; ρ ′),

〈M(t ; ρ)〉 =
∫

dR
∫ ∞

ρ

dρ ′ ρ ′P (R,t ; ρ ′).

In the case of a field ρ(R,t) homogeneous in space, the
one-point probability density P (R,t ; ρ) is independent of
R. Therefore, the statistical means of the relations describe
specific (related to the unit area) values of the corresponding
quantities.

Hence, the specific mean area 〈shom(t ; ρ)〉, with the random
field ρ(R,t) exceeding the prescribed level ρ, coincides with
the probability of the event occurrence ρ(R,t) > ρ in every
point in the space

〈shom(t ; ρ)〉 = 〈θ [ρ(R,t) − ρ]〉

= P{ρ(R,t) > ρ} =
∫ ∞

ρ

dρ ′P(t ; ρ ′).

This is also a geometrical interpretation of the probability
of the event occurrence ρ(R,t) > ρ independent of the point
R. The specific mean mass of tracers encompassed in the areas
shom(t ; ρ) is defined as

〈mhom(t ; ρ)〉 =
∫ ∞

ρ

dρ ′ ρ ′P (t ; ρ ′).

In the case of a positive definite field ρ(R,t), the condition of
clustering with probability 1, i.e., in almost every realization,
results from the asymptotic relations being simultaneously sat-
isfied as t → ∞. The asymptotic relations in the homogeneous
case are [13,14]

〈shom(t ; ρ)〉 → 0, 〈mhom(t ; ρ)〉 → 〈ρ(t)〉.
Thus, in the case of a potential flow, the density field always

clusters with probability 1. For the mean specific area with
ρ(r,t) > ρ̄ it follows from (5)

〈shom(t,ρ̄)〉 = Pr

(
ln(ρ0 e−t/τ /ρ̄)√

2t/τ

)
, (7)

and the specific mass of the impurity concentrated in the area
is

〈mhom(t,ρ̄)〉 = ρ0 Pr

(
ln(ρ0 et/τ /ρ̄)√

2t/τ

)
. (8)

From (7), (8), it follows that given τ 	 1, the mean specific
area decreases according to the law

〈shom(t,ρ̄)〉 = P{ρ(R,t) > ρ̄} ≈
√

ρ0

πρ̄t/τ
e - 1

4
t
τ , (9)

while almost all the tracers concentrate inside this region

〈mhom(t,ρ̄)〉/ρ0 ≈ 1 −
√

ρ̄

πρ0t/τ
e− 1

4
t
τ . (10)

It is this process that corresponds to the effect of the density
field clustering in a random velocity field.

IV. NUMERICAL SIMULATION

A. Numerical simulation of random velocity field

In this paper, we study the clustering taking into account the
effect of diffusion. The algorithm of the numerical modeling of
a random velocity field δ correlated in time with the correlation
tensor (3) is as follows. We use a spectral representation of the
velocity fields [22,30,31]

Uβ(R,t) = σU

∫
dk[a(k,t) + ib(k,t)]

kβ

k
exp(ikR), (11)

where a(k,t),b(k,t) are given random Gaussian fields δ

correlated in time and over the wave vector with the parameters

〈a(k,t)〉 = 〈b(k,t)〉 = 〈a(k,t)b(k′,t ′)〉 = 0,

〈a(k,t)a(k′,t ′)〉 = 〈b(k,t)b(k′,t ′)〉
= A

2
EN (k)δ(k − k′)δ(t − t ′).

The velocity field (11) has the correlation tensor (3).
Further, one can represent the random fields a(k,t),b(k,t)

as discrete scalar Gaussian δ correlated processes with the
variance

√
A
2 EN (k). We use piecewise random functions

constant in every discretization cell, and random Gaussian
series with independent values. Instead of (11), we use a
discrete analog of the Fourier transform. In our calculations,
we use the spectral function

EN = 1

2π

l4

4
k2 exp

{
−1

2
k2l2

}
,

FIG. 1. A realization of the area and the mass of the clusters
at ρ̄ = 2.0 for the parameters l = 0.02,σu = 0.166, marked by
circles (magenta); l = 0.04,σu = 0.333, not marked (blue); l =
0.08,σu = 0.333, marked by squares (green); l = 0.16,σu = 0.666,
marked by triangles (red). The bold lines indicate the asymptotic
solutions (9), (10).
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FIG. 2. The density distribution at the time t = τ for the pa-
rameters of the velocity field: l = 0.04, σu = 0.333 (top), l = 0.08,

σu = 0.666 (center), l = 0.16, σu = 0.666 (bottom).

where l is the space correlation radius and for effective
diffusion coefficient (4), one can obtain expression

D = σU
2

l2
t0.

The equation (2) is numerically solved by means of a Monte
Carlo simulation [10,22–24]. To that end, we consider an
auxiliary field ρ̃(R,t) governed by the stochastic equation

∂

∂t
ρ̃(R,t) + ∂

∂R
U(R,t)ρ̃(R,t) = −γ (t)

∂

∂R
ρ̃(R,t), (12)

with the initial condition ρ̃(R,0) = ρ0(R), and γ (t) be-
ing a δ-correlated Gaussian vector process independent
of random velocity field U(R,t) such that 〈γ (t)〉 = 0,

FIG. 3. The area and mass of all the clusters for ρ̄ = 2.0. (Top)
l = 0.08, σu = 0.333. The diffusion coefficients: κ = 2 × 10−4,
marked by rhombus (purple); κ = 2 × 10−5, marked by circles
(magenta); κ = 2 × 10−6, marked by triangles (red); κ = 2 × 10−7,
marked by squares (green); κ = 2 × 10−8, not marked (blue). The
curves with a greater value of κ are higher for the area and lower
for the mass. (Bottom) The diffusion coefficient is κ = 2 × 10−4.
The parameters of the velocity field are l = 0.04, σu = 0.333, not
marked (blue); l = 0.08, σu = 0.333, marked by squares (green);
l = 0.16, σu = 0.666, marked by triangles (red). The bold lines
correspond to the asymptotic values (9), (10).

〈γα(t)γβ(t ′)〉 = 2κδαβδ(t − t ′). A solution of Eq. (2), thus,
corresponds to a solution of Eq. (12) averaged over the
realization ensemble of γ (t) [10]

ρ(r,t) = 〈ρ̃(r,t)〉γ (t).
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FIG. 4. The density distribution at the time t = 27.3τ for l =
0.08, σu = 0.333,κ = 0 (top). The enlarged part (0/0.2, 0/0.2)
(center). The same part calculated for a finer resolution in the space
(bottom).

The equation (12) is solved by the characteristic method

dR
dt

= U(R,t) + γ (t), R(0) = ξ ,

dρ

dt
= −∂U(R,t)

∂R
ρ̃(t), ρ̃(0) = ρ0(ξ ). (13)

The governing equations (13) are written in terms of the
Lagrangian point of view. To turn into the Eulerian point
of view, one can rewrite the solution of (13) in the form
R(t) = R(t ; ξ ),ρ̃(t) = ρ̃(t ; ξ ). Now, by eliminating ξ , one
obtains the Eulerian definition of the density field ρ(R,t) =
〈ρ̃(t)〉γ = 〈ρ̃[t ; ξ (R; t)]〉γ . We will further address only the
Eulerian representation of the density field.

B. Numerical results

To start, we consider the clustering process for κ = 0.
Figure 1 shows the specific area and mass of the clusters
depending on the time for ρ̄ = 2.0. The figures suggest that
the area of all the clusters and their mass tends swiftly to the

FIG. 5. The density distribution at the time t = 27.3τ for
l = 0.08, σu = 0.333, and κ = 2 × 10−4 (top). The enlarged part
(0/0.2, 0/0.2) (center). The same part calculated for a finer resolution
in the space (bottom).

asymptotic values (9), (10) even in separate realizations. The
curves appear similar given different values of the variance and
space correlation radius. It is worth noticing that given small
correlation radius values, the theoretical curves are attained
slowly.

Figure 2 shows that the empty regions among the clusters
have a characteristic linear scale proportional to the space cor-
relation radius. This result follows strictly from the numerical
modeling and cannot be obtained analytically.

From common knowledge, one can assume that the dif-
fusion is to force the cluster area to grow and the mass to
shrink because of blurred cluster boundaries. However, the
tracers emanated from a cluster may again converge into a
new cluster. The intrinsic balance between these two processes
determines the clustering dynamics. Figure 3 demonstrates
that, at the initial stage, the clustering has no significant
differences from the case of no diffusion. When the clusters
approach the size of the diffusion scale, however, their area
ceases to increase because of the diffusion. Then, the secondary
clustering occurs in the diffused primary clusters. Hence, their
area exponentially decreases. Contrary to the area, the mass of
impurity concentrated in the clusters does not tend to the total
mass of the tracers. From this, one can infer that the diffusion
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FIG. 6. The same as in the bottom panel of Fig. 5 for a range
(0.04/0.06, 0.1/0.12) with a finer resolution.

do not terminate the clustering, but hinders it and results in
that only a part of the impurity ends up in clusters.

The top panel of Fig. 3 illustrates the joint effect of the space
correlation radius and diffusion. The figure indicates that as
the correlation radius increases, the blurring due to diffusion
is delayed. Given large values of the correlation radius, the
number of tracers located in clusters increases.

Such a clustering process is to result in the cluster structure
changing. Instead of one cluster, there is to appear a few smaller
clusters within the areas comparative to the diffusion scale.
Similar phenomenon has been reported for waves in random
media where diffraction plays the role of the diffusion [13,14].
This phenomenon is called the contour splitting.

Figures 4 and 5 depict examples of the density distribution
at the given time. It is worth noticing that a point in the figures
comprising a cluster has a significantly higher area that the one
of the cluster itself. Nevertheless, Fig. 4 attests that provided
a finer resolution, the number of points comprising clusters
changes very little. On the other hand, Fig. 5 demonstrates

that given a finer resolution, a finer structure of clusters starts
appearing. It is also worth mentioning that the density in the
clusters, whose number increases once taking into account the
diffusion, also significantly grows. The maximal density in a
cluster attains 1020 in Fig. 4, and 1022 in Fig. 5. Comparing
the bottom panel in Figs. 4 and 5, one can see that the markers
cluster effectively within the diffusion scale near the vanished
initial cluster.

The comparison of bottom panel of the Fig. 5 and the Fig. 6
illustrates the strong clustering below the diffusion scale near
the initial cluster more clearly.

V. CONCLUSION

In this paper, we show that the diffusion effect is negligible
at the initial stage for a uniform tracer distribution. In this
case, clusters form in accordance with the asymptotic relations
(9), (10). The characteristic size of the regions with small
impurity concentration is shown to be proportional to the
space correlation radius of the velocity field. In the presence
of the diffusion, clusters always form. However, the clusters
disintegrate engendering new smaller clusters. These new
clusters are concentrated within the regions of the diffusion
scale near the initial cluster. It is worth noting that the cluster
splitting due to the diffusion becomes apparent only after
longer integration times. Because of this fact, the effect was not
revealed earlier in the work [22], where, first, an insufficient
integration time and, second, a coarse space resolution were
implemented.

As a concluding remark, we note that an analogous effect
of contour splitting was reported for a stochastic problem of
laser emission in random media [13,14]. The problem was
formulated by means of Leontovich equation (Schrödinger
equation) with the diffraction playing the role of the diffusion.
The contour splitting, described analytically by means of
reformulating the problem in terms of the continual integral,
allows us to interpret the numerical results reported in this
paper in particular and various calculation and experimental
data in general.
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