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Thermal effects in dislocation theory. II. Shear banding
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The thermodynamic dislocation theory presented in previous papers is used here to describe shear-banding
instabilities. Central ingredients of the theory are a thermodynamically defined effective configurational
temperature and a formula for the plastic strain rate determined by thermally activated depinning of entangled
dislocations. This plastic strain rate is extremely sensitive to variations of the stress and the ordinary temperature.
As a result of this sensitivity, the system undergoes rapid shear banding instabilities when ordinary thermal
relaxation is slow. It also undergoes rapid changes from elastic to plastic behaviors at yielding transitions.
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I. INTRODUCTION

In the preceding paper [1], I reviewed basic features of
a thermodynamic theory of dislocation-mediated plasticity in
polycrystalline solids. I showed there, in an oversimplified
toy model, how this theory might explain shear-banding
instabilities in such materials. My purpose here is to use those
ideas in a more realistic analysis of shear-banding dynamics.
More generally, I want to explore the implications of this
theory in other nonequilibrium situations, especially yielding
transitions.

There is a large body of literature, extending over more than
three decades, devoted to what is known as adiabatic shear
banding (ASB) in metals and alloys. For example, see [2–4].
This subject is important; the banding instability is generally
recognized as a principal failure mechanism in rapidly stressed
structural materials. However, the experimental observations
of ASB that I have found so far are not completely adequate
for my purposes.

The thermodynamic dislocation theory described in [1,5,6]
has focused on strain hardening and related strain-rate-
dependent phenomena. It describes those phenomena in terms
of a small number of physically meaningful state variables
that are consistent with basic principles of nonequilibrium
statistical physics [7]. The ASB observations, however, are
generally not accompanied by measurements that allow me
to determine equations of motion for those variables. When
stress-strain curves are shown in the ASB literature, they
usually show a yielding transition at a large stress and a
very small strain and then a sudden stress drop at a larger
strain indicating failure. As will become clear here, that initial
yielding transition is strongly sensitive to sample preparation.
It cannot tell us much about the intrinsic dynamical properties
of the material.

My main theme in this paper is that ASB is a remarkably
deep probe of the internal dynamics of structural materials.
The adiabaticity of ASB refers to the idea that these banding
instabilities are caused by thermal softening in situations where
heat flow is slower than plastic deformation. A local increase
in strain rate produces a local increase in heat generation that
in turn softens the material and further increases the local
strain rate. The result is a runaway instability if the heat is
unable to flow away from the hot spot more quickly than
new heat is being generated there. Thus, we are looking at a
delicate balance between thermal and mechanical behaviors.

To understand what is happening, we need a first-principles
theory of the underlying deformation mechanism. I cannot
find the information that I need for developing such a theory
in the existing ASB literature.

To work around this difficulty, I will use the same strategy
here that I used in [1]. Due to the pioneering work of Kocks,
Mecking, Follansbee, Meyers, and others [8–10], we have a
first-principles picture of plastic deformation in copper. (Other
papers that I have found useful for understanding the present
state of this field include [11–13].) The trouble is that copper
is not observed to undergo ASB, probably because its thermal
conductivity is too high. In [1], I invented a pseudocopper
by using the material parameters that I had available for real
copper. Then I used artificial values for the thermal parameters
so that my pseudocopper exhibited a rudimentary form of ASB.
I will do the same thing here in a more realistic, position-
dependent, dynamical framework. In this way, I will present
what I believe to be an interesting description of ASB and, in
addition, a description of yielding transitions in polycrystalline
materials.

In Sec. II of this paper, I summarize the equations of motion
for the thermodynamic dislocation theory, with emphasis on
aspects of it that are especially important for the present
purposes. In Sec. III, I describe theoretical experiments in
which I harden samples by straining them to various degrees
and then compute the ways in which they undergo yielding
transitions and shear banding at high strain rates. The paper
concludes in Sec. IV with further remarks about needs for
experimental information.

II. EQUATIONS OF MOTION

A. Basics

As in [1], consider a strip of polycrystalline material,
of width 2W , oriented in the x direction, being driven
in simple shear at velocities Vx and −Vx at its top and
bottom edges. The total strain rate is Vx/W ≡ Q/τ0, where
τ0 = 10−12 s is a characteristic microscopic time scale. In
contrast to [1], here we will look at spatial variations in
the y direction, perpendicular to the x axis. Eventually, we
will need to consider general three-dimensional variations in
order to model the effects of notches or other crack-initiating
spatial irregularities, but, for the present, this simple geometry
provides as large a range of dynamical behaviors as is needed.
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It is the same as the geometry used by Manning et al. [14] in
an analysis of shear banding in amorphous materials.

The local, elastic plus plastic strain rate is ε̇(y) = dvx/dy,
where vx is the material velocity in the x direction. This motion
is driven by a time-dependent, spatially uniform, shear stress
σ . Because this system is undergoing steady-state shear, we
can replace the time t by the accumulated total strain, say ε,
so that τ0∂/∂t → Q∂/∂ε. Then we denote the dimensionless,
y-dependent plastic strain rate by q(y,ε) ≡ τ0ε̇

pl(y,ε).
The internal state variables that describe this system are

the areal density of dislocations ρ ≡ ρ̃/b2 (where b is the
length of the Burgers vector), the effective temperature χ̃

(in units of a characteristic dislocation energy eD), and the
ordinary temperature θ̃ (in units of the pinning temperature
TP = eP /kB , where eP is the pinning energy defined below).
Note that ρ also may be interpreted as the total length of
dislocation lines per unit volume and 1/

√
ρ is the average

distance between dislocations. All three of these dimensionless
quantities ρ̃, χ̃ , and θ̃ are functions of y and ε.

B. Depinning rate

The central dislocation-specific ingredient of this analysis
is the thermally activated depinning formula for the dimen-
sionless plastic strain rate q as a function of a non-negative
stress σ :

q(y,ε) =
√

ρ̃ exp

[
− 1

θ̃
e−σ/σT (ρ̃)

]
. (2.1)

As shown in [5,6], this formula is an Orowan relation in which
it is assumed that the plastic flow is determined entirely by
the rate at which entangled dislocations jump instantaneously
between near-neighbor pinning sites. Here σT (ρ̃) = μT

√
ρ̃ is

the Taylor stress. It is equal to the ratio of the range of the
pinning forces to the average spacing between dislocations (a
strain), multiplied by the shear modulus μ; thus μT is a small
fraction of μ, and σT is a geometrically determined stress,
mathematically independent of the strain rate, the temperature,
or the effective temperature. The fact that the stress dependence
occurs in Eq. (2.1) as a function of the ratio σ/σT is important
and, I think, very natural, but the exponential function in which
that ratio occurs could be replaced by any smoothly decreasing
function without changing the qualitative predictions of this
theory. In the following analysis, we will see that eP is large, of
the order of electron volts, so θ̃ is very small, and q(y,ε) is an
extremely rapidly varying function of σ and θ̃ . This behavior is
the key to understanding the banding instability. Conversely, as
shown in [5], it is also the key to understanding why observed
steady-state stresses are such slowly varying functions of the
strain rate.

C. Dislocation density and the onset of hardening

The equation of motion for the scaled dislocation density
ρ̃ describes energy flow. It says that some fraction κρ of the
power delivered to the system by external driving is converted
into energy of dislocations and that that energy is dissipated
according to a detailed-balance analysis involving the effective

temperature χ̃ . This equation is

∂ρ̃

∂ε
= κρ

σq

γ̃DQ

[
1 − ρ̃

ρ̃ss(χ̃)

]
, (2.2)

where γ̃D = γD/b2 is a dislocation energy per unit volume
and γD is the more familiar dislocation energy per unit length.
Here ρ̃ss(χ̃) = e−1/χ̃ is the equilibrium value of ρ̃ at given χ̃ .

It is important to understand the relation between the
various ingredients of this formula and the onset of strain
hardening. That rate is defined to be �0 ≡ (1/μ)(∂σ/∂ε)onset.
It has been known for decades (see, for example, [8]) that
�0 often (but not always) remains a material-specific constant
over wide ranges of strain rates and temperatures. We need
to understand a physical basis for this rule in order to know
when and how to use it. See, for example, my analysis of the
strain-rate anomaly in [6].

To see why �0 may be a constant, consider the following
argument made in [5]. Hardening begins when the deformation
switches from elastic to plastic so that q ∼= Q. In most of
the situations discussed in [8], the materials apparently have
been prepared in such a way that they are relatively free of
dislocations. That is, the initial dislocation density ρ̃ is still
much smaller than ρ̃ss , so the energy-conservation law in
Eq. (2.2) has the form ∂ρ̃/∂ε ∼= κ (0)

ρ σ/γ̃D
∼= κ (0)

ρ μT

√
ρ̃/γ̃D .

Here I have assumed that the dislocations are still far enough
apart from each other that the stress is well approximated
by the simple Taylor formula σ ∼= σT = μT

√
ρ̃. I also have

used a “bare” conversion factor κ (0)
ρ assumed to be strain-rate

independent. Combining these two relations, we find that
�0 = μ2

T κ (0)
ρ /2μγ̃D . Note that this formula is independent of

both ρ̃ and the strain rate and also is likely to be independent of
temperature because γ̃D and the elastic moduli ought to scale
thermally in the same way.

Now we return to Eq. (2.2) to evaluate the conversion factor
κρ . To do this, it is useful, for stresses that are not too small or
negative, to solve Eq. (2.1) to find

σ

σT (ρ̃)
∼= ln

(
1

θ̃

)
− ln

[
ln

(√
ρ̃

q

)]
≡ ν(ρ̃,q,θ̃ ). (2.3)

To evaluate κρ we need to look only near onset, where q ∼= Q

and ρ̃ is again appreciably smaller than ρ̃ss . Because q and ρ̃

appear only as arguments of a slowly varying double logarithm,
we can write σ ∼= ν0μT

√
ρ̃, where ν0 ≡ ν(ρ̃ss ,Q,θ̃0), with

θ̃0 the scaled ambient temperature. Now we can repeat the
analysis in the preceding paragraph to find that κρ = κ (0)

ρ /ν2
0 .

Finally, Eq. (2.2) can conveniently be rewritten in the form

∂ρ̃

∂ε
= κ1

σq

ν2
0μT Q

[
1 − ρ̃

ρ̃ss(χ̃)

]
, (2.4)

where

κ1 = 2μ

μT

�0. (2.5)

Note that the factor γ̃D has canceled out, so the prefactor κ1

in Eq. (2.4) is completely determined by directly observable
quantities.
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D. Thermal equations

The equation of motion for the scaled effective temperature
χ̃ is a statement of the first law of thermodynamics for the
configurational subsystem. The derivation leading to Eq. (2.20)
in [6] tells us that, in the present notation, this equation is

ceff
∂χ̃

∂ε
= σq

Q

(
1 − χ̃

χ̃0

)
− γ̃D

∂ρ̃

∂ε
, (2.6)

where ceff is the effective specific heat and χ̃0
∼= 0.25 (see

[5]) is the steady-state value of χ̃ for strain rates appreciably
smaller than inverse atomic relaxation times, i.e., much smaller
than τ−1

0 . The last term on the right-hand side of Eq. (2.6) is
the rate at which configurational energy is stored in the form
of dislocations. In [1] I assumed this term to be negligible. I
will do the same thing in this paper, but I keep the term here
because there are circumstances in which it may be important.
(See [6].)

With the same analysis that led from Eq. (2.2) to Eq. (2.4),
Eq. (2.6) becomes

∂χ̃

∂ε
= κ2

σq

μT Q

[
1 − χ̃

χ̃0
− κ3

ν2
0

(
1 − ρ̃

ρ̃ss(χ̃)

)]
, (2.7)

where the storage term is the expression proportional to κ3

inside the square brackets, with

κ3 = γ̃D

μT

κ1. (2.8)

The overall dimensionless factor κ2 is inversely proportional
to ceff. Unlike κ1, whose value is determined directly from
experiment via Eq. (2.5), κ2 must be determined on a case by
case basis by fitting the data.

The equation of motion for the scaled ordinary temperature
θ̃ is the usual thermal diffusion equation with a source term
proportional to the input power. I assume that, of the three state
variables, only θ̃ diffuses in the spatial dimension y. Thus,

∂θ̃

∂ε
= K

σq

Q
+ K1

Q

∂2θ̃

∂y2
− K2

Q
(θ̃ − θ̃0). (2.9)

Here K = β/TP cpρd , where cp is the thermal heat capacity
per unit mass, ρd is the mass density, and 0 < β < 1 is a di-
mensionless conversion factor. In addition, K1 is proportional
to the thermal diffusion constant and K2 is a thermal transport
coefficient that ensures that the system remains close to the
ambient temperature θ̃0 = T0/TP under slow deformation, i.e.,
small Q.

E. Stress

It remains to write an equation of motion for the stress σ (ε)
which, to a very good approximation, should be independent of
position y for this model of simple shear. In some applications
of this theory, I have used Eq. (2.3) to evaluate σ . The problem
here is that the arguments of ν(ρ̃,q,θ̃ ) are strongly dependent
on ε and y, especially in the neighborhood of a shear band. I
start, therefore, with the local relation σ̇ = μ[ε̇(y) − ε̇pl(y)],
which becomes

dσ

dε
= μ

[
τ0

Q

dvx

dy
− q(y,ε)

Q

]
. (2.10)

One simple strategy is to integrate both sides of this relation
over y and divide by 2W to find

dσ

dε
= μ

[
1 −

∫ +W

−W

dy

2W

q(y,ε)

Q

]
. (2.11)

An even simpler strategy for numerical purposes is to
replace Eq. (2.11) by

∂σ

∂ε
= μ

[
1 − q(y,ε)

Q

]
+ M

∂2σ

∂y2
(2.12)

and to use a large enough value of the diffusion constant M

that σ remains constant as a function of y. I have used both
of these strategies for checking the accuracy of the numerical
results shown in what follows. When using Eq. (2.12), I have
chosen M = 105 and I have set W = 1 in defining my length
scale.

III. THEORETICAL EXPERIMENTS

Figure 1 shows two room-temperature, stress-strain curves
for real copper, measured and computed at two very different
total strain rates ε̇ = 0.002 and 2000 s−1. The experimental
points (red circles) are the same as those used in [5], where
they were taken from [15,16]. It is from these data, plus
other measurements at other strain rates and temperatures,
that my colleagues and I in [1,5,6] obtained values for many
of the parameters appearing in the equations written here in
Sec. II. Specifically, the parameter values to be used in what
follows are TP = 40 800 K, T0 = 298 K, μT = 1600 MPa,
μ = 31μT = 39.6 GPa, κ1 = 3.1, κ2 = 11.2, and κ3 = 0.

Because I cannot use real copper to study shear banding, I
have arbitrarily chosen the thermal coefficients for pseudocop-
per to be K = 10−5 (so that it is slightly smaller than 1/TP , i.e.,
so that the conversion factor β is very roughly of the order of
unity), K1 = 10−12 (so that thermal diffusion is relevant to the
strongly-spatial-dependent behaviors driving shear banding,
but is not so strong as to eliminate those behaviors), and
K2 = 10−9 (so as to be roughly comparable in magnitude to
the larger values of Q and thus to keep T ∼= T0 at smaller strain
rates). The initial values of ρ̃ and χ̃ used for computing both of
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FIG. 1. Hardening curves for ε̇ = 0.002 s−1 (bottom curve) and
for ε̇ = 2000 s−1 (top curve). The red circles are the experimental
data used in [5].
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FIG. 2. Stress-strain curves for two prehardened samples. The
harder sample, shown by the dark curve, fails via shear banding at
ε ∼= 0.2. The softer sample, shown by the red curve, fails at ε ∼= 0.6.
The nearly vertical elastic parts of these curves, just above ε = 0,
have slope μ.

these curves are ρ̃i = 10−5 and χ̃i = 0.18. Because the thermal
terms have not been set to zero for computing the curves in
Fig. 1, the top (fast) curve exhibits thermal softening at large
ε, but the agreement with experiment at small ε remains quite
good.

Now we do the following (theoretical) experiments. We
repeat the slow deformation shown by the bottom curve in
Fig. 1 (for ε̇ = 0.002 s−1), but this time stop straining at ε =
0.2. We do this again, for a different sample, stopping at ε =
0.4. Next, we make pseudonotches in these prestrained (i.e.,
prehardened) samples by making spatially localized, negative
perturbations of their initial effective temperatures:

χ̃(0,y) = χ̃i − δe−y2/2y2
0 , (3.1)

with δ = 0.02 and y0 = 0.05. Finally, we strain these samples
again at the high rate ε̇ = 2000 s−1 by using the final values of
ρ̃ and χ̃ in the first deformations as the initial values for these
second stress-strain calculations. For the first case (the softer,
less strained sample), I find these values to be ρ̃i = 0.0085
and χ̃i = 0.219. For the second case (the harder, more highly
strained sample), ρ̃i = 0.0149 and χ̃i = 0.243. The resulting
stress-strain curves are shown in Fig. 2. Both samples undergo
abrupt stress drops that, as will be seen, indicate shear-banding
failures. The first case, i.e., the harder sample shown by the
dark curve in the figure, is the one for which failure occurs
earlier; it is the more brittle of the two. The softer sample,
shown by the red curve, fails later; it is tougher.

Before looking in more detail at the shear-banding events,
consider what is happening near ε = 0, where both samples
exhibit what appear to be (and indeed are) yielding transitions.
Both curves in Fig. 2 start with very steep elastic sections
whose slopes are equal to the shear modulus μ = 39.6 GPa
and then bend sharply to plastic behavior. These transitions are
not infinitely sharp, however. We see in Fig. 3 that the relative
plastic strain rate q(ε)/Q jumps rapidly but smoothly during
the transition from elastic to plastic deformation. (The curves
shown here have been computed at y = 0.5W in order that
they not be affected by the pseudonotch at y = 0.) The fact that
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FIG. 3. Relative strain rates q/Q across the initial yielding
transition for the two prestrained samples whose stress-strain curves
are shown in Fig. 2. The softer sample, shown by the red curve, is the
one that yields earlier.

there is a small amount of plastic flow q below the onset point
(where q/Q → 1) means that there is a small rate at which
dislocations are jumping between pinning sites, consistent with
the fact that these systems are known to be noisy near yielding
transitions even when plastic flow is unmeasurably small.

Shear-band formation near y = 0 for the harder, more
highly strained sample is shown in Fig. 4. Plotted here are
graphs of q/Q as functions of position y/W for a sequence of
increasing total strains ε = 0.20, 0.22, 0.23, 0.24, and 0.25.
A diffuse shear band is visible at ε = 0.20 and becomes
increasingly stronger as ε increases. At ε = 0.24, the band
is starting visibly to become narrower as it intensifies at the
expense of the plastic strain rate at larger values of y. Finally, at
ε = 0.25, the band has suddenly strengthened and sharpened
so much that the strain rate outside this region has dropped to
zero. Figure 5 focuses in on, and expands this picture vertically,
at ε = 0.25. Also shown here by the dashed curve is the plastic
flow distribution much later, at ε = 1.0. Apparently, this band
has reached its peak intensity and is beginning to spread as
heat diffuses away.
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FIG. 4. Relative plastic strain rates q(ε,y)/Q as functions of
position y/W for a sequence of increasing total strains ε = 0.20,
0.22, 0.23, 0.24, and 0.25.
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FIG. 5. Relative plastic strain rates q(ε,y)/Q as functions of
position y/W for total strains ε = 0.25 and 1.0. The latter is shown
by the dashed line. Note that, in comparison with Fig. 4, the horizontal
axis has been expanded by a factor of 2 and the vertical axis
compressed by a factor of about 4.

The corresponding sequence of temperature distributions
is shown in Fig. 6. Here the sequence of total strains, shown
from bottom to top, is ε = 0.24, 0.25, 0.27, 0.40, and 1.0. Note
that the band has achieved its peak sharpness in the strain-rate
distribution at the second of these curves, shown in Fig. 5,
for ε = 0.25, but it theoretically continues to generate heat
for a long time afterward. Almost certainly, this behavior is
not physically realistic. At the temperatures shown here, the
material inside the band will have melted or undergone other
structural changes. However, the onset of rapid failure of one
kind or another seems to be a plausible prediction of this
analysis.

While the late stages of the ASB behavior shown in
Figs. 4–6 cannot be realistic in detail, the general picture seems
generic for this kind of banding instability. Within the present
set of theoretical experiments, the graphs in Figs. 4–6 remain
almost unchanged when recomputed for the softer sample in
Fig. 2. One way to make a bigger change in the banding
behavior is to reduce the diffusion constant K1. Even if I
let K1 → 0, however, the only qualitative change that I see is
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FIG. 6. Temperatures as functions of position y/W at total strains
ε = 0.24, 0.25, 0.27, 0.40, and 1.0, from bottom to top.

that the stress drop becomes sharper and deeper, going all the
way down to σ ∼= 0, and the band becomes narrow enough to
challenge my numerical capabilities.

The present results are essentially identical to those found
experimentally by Marchand and Duffy [2] for shear banding
in steel. In fact, the overall agreement between their exper-
iments and the present theory goes well beyond the results
shown here. For example, in their Fig. 8, Marchand and Duffy
show a stress-strain curve that looks almost identical to the
softer of the two curves shown here in Fig. 2. They also
show the equivalent curve for a very much smaller strain
rate. In that case, the yield stress decreases by about 10%
and no shear banding failure occurs. The same behavior can
be reproduced here simply by changing the strain rate and
no other parameters. Similarly, in their Fig. 9, Marchand and
Duffy show stress-strain curves at fixed (large) strain rate at a
series of different temperatures. As the temperatures increase,
the yield stresses decrease and failure is shifted to increasingly
large strains. The same behavior occurs here when only the
temperature is changed. The Marchand-Duffy sequences of
pictures of strain as functions of transverse position at various
times are directly analogous to the graphs of q(y)/Q shown
here in Figs. 4 and 5 and the temperature as a function of
transverse position shown in their Fig. 20 can be compared
with the sequence of such graphs shown here in Fig. 6.

IV. CONCLUSION

The microscopic picture of a rapid but intrinsically smooth
yielding transition presented here is different from the one
found in phenomenological descriptions of solid plasticity.
It is also qualitatively different from the picture of yielding
in amorphous materials, where transitions between jammed
and flowing states are determined by the balance between
noise-driven creation and annihilation of flow defects, e.g.,
shear transformation zones (STZs) [17,18]. Plastic flow in
amorphous materials and their yielding transitions are deter-
mined primarily by their chemical compositions and states of
disorder. These materials do not have long-term memories.

In polycrystalline solids, however, the flow defects are
the dislocations, whose lifetimes are almost infinitely longer
than those of STZs. These solids do not quickly forget their
past deformations. As seen in Sec. III, the history of a
strain-hardened sample is partially encoded in its density of
dislocations, which determines how it responds to subsequent
forcings. To test this picture, we can observe yielding tran-
sitions such as those shown in Fig. 3. However, to construct
and test a physics-based theory of such transitions, we need
independently determined values of parameters such as μT ,
TP , κ1, etc., for which we need other kinds of experiments.
In particular, we need measurements of strain hardening,
starting with samples with small dislocation densities, and
we need to make those measurements over a range of different
temperatures and strain rates.

The advantage of having detailed material-specific infor-
mation is that it would allow us to test not just the present
theory of yielding and shear banding, but also a wide range
of related conjectures. For example, there is an intriguing set
of observations by Rittel and co-workers [19–21] in which
they see dynamically recrystallized grains (DRX) appearing
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in association with, and apparently preceding, the appearance
of ASBs. I would have preferred to write this paper using
parameters appropriate for Rittel’s ASB-forming titanium
alloy, or for Marchand and Duffy’s steel, instead of using
pseudocopper. Then, discrepancies between my results and
the experimental data might have told us whether or not the
theory is missing physically essential ingredients. As I stressed
in [1], what I have presented here is a bare-bones theory. It is
missing dynamical ingredients such as stacking faults, cellular
dislocation patterns, grain boundaries, etc., in addition to DRX.
All of these could be included in the theory in various ways,

but we need to find out whether and when to do so in order to
draw useful conclusions.
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