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Geometry and design of origami bellows with tunable response
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Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight
and medicine. In spite of this interest, a general understanding of the mechanics of an origami folded cylinder has
been elusive. With a newly developed set of geometrical tools, we have found an analytic solution for all possible
cylindrical rigid-face states of both Miura-ori and triangular tessellations. Although an idealized bellows in both
of these families may have two allowed rigid-face configurations over a well-defined region, the corresponding
physical device, limited by nonzero material thickness and forced to balance hinge and plate-bending energy,
often cannot stably maintain a stowed configuration. We have identified the parameters that control this emergent
bistability, and we have demonstrated the ability to design and fabricate bellows with tunable deployability.
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I. INTRODUCTION

Origami typically calls to mind images of flowers, leaves,
birds, and ever more sophisticated and beautiful sculptures.
Reluctant to cut, glue, or stretch their medium, artists have
developed a stunning family of fold patterns and techniques
to reshape flat sheets into imagined forms. Literally “folding
paper,” the art of origami is fundamentally the study of the
generation of dramatic changes of a material’s appearance and
bulk mechanical properties via the application of a sequence
of highly localized deformations.

Origami lattices are a prototypical metamaterial, readily
converting an unwieldy film into a robust device capable
of reliable and simple actuation [1]. A remarkably small
fraction of a sheet is deformed when it is creased, but
the mere existence of a crease dramatically changes its
deformation modes. Several creases acting in concert can
govern a device’s kinematics—the final device’s degrees of
freedom depend more on its geometry than on its local
structural properties [2]. Like other metamaterials, origami
lattices have several exotic mechanical properties that can be
tuned with small variations in their design [3]. Of particular
interest, the Miura-ori chevron tessellation expands in all
directions when pulled apart, exhibiting a negative Poisson’s
ratio [4]. Furthermore, several classes of flat-foldable origami
are known to exhibit bistable behavior [5,6]. Origami lattices
are amenable to rigorous mathematical handling [7], which
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generates a direction for designers exploring the space of
accessible patterns. Subsequent work in that quantitative
endeavor has led to a set of powerful theorems and tools, in
particular to deal with the non-self-intersection constraint [8].
Classical “rigid face” origami tessellations are constructed
with planar faces linked by flexible but well-defined hingelike
creases. These origami metamaterials have raised interest in
disparate fields [9], where further theoretical development is
driven by a multitude of creative applications.

It is important to distinguish between origami geometry and
origami mechanics. Origami geometry concerns itself with
mathematically ideal objects. These bodies are inextensible,
uniformly flat, and generally defined with a degree of internal
symmetry. With surfaces and linkages so constrained, the
base configuration of the device may be perfectly specified.
Considering each crease as a hinge mechanism, it is possible
to count up the degrees of freedom, which is sufficient to
determine if the device is rigid or if it can be smoothly actuated.
For example, the crystalline silicon cells found in deployable
solar panels are effectively inelastic, and the mechanism can
be analyzed much like its idealized mathematical analog.
These techniques are useful for generating starting geometries
and framing problems of interest, but they are insufficient
to yield mechanical insight. They are forced, by their base
assumptions, to ignore the differing energetic costs of various
fold configurations, and they are thereby unable to predict
or explain the complete mechanical response of an origami
folded device. In particular, they fail for structures folded
out of materials with nonzero elasticity, as both the faces
and the creases have innate elastic energy. Indeed, creases
have a preferred angle of repose [10], which can either
stabilize a particular configuration or drive it far from its
rigid-face equilibrium. Moreover, creases and faces tend to
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bend on different energy scales, and the competition of
these effects leads to dramatically different behavior than
what geometric models might predict. For example, Ref. [5]
demonstrates how face bending can generate a pathway for
an origami mechanism to follow while transitioning through a
geometrically forbidden configuration to a lower energy state,
while in Ref. [10] a straightforward technique to measure the
competition between crease and plate bending is demonstrated.

Much of the previous theoretical work was focused on
planar lattices [4], although cylindrical configurations are of
considerable technical interest. Origami folded cylinders have
found applications in space technology for deployable sails
and booms [11,12], medical devices such as stents [13], and
even nuclear physics [14]. Although these fields are very
sensitive to reliability and cost concerns, pattern development
has been conducted in a largely ad hoc manner [15] due
to the absence of a general predictive framework for their
performance. Recent work with such configurations has led to
several remarkable theoretical developments. In Ref. [16], a
family of rigid foldable cylindrical bellows is identified and a
mechanism whereby the mechanics of such bellows could be
tuned is demonstrated [17]. It was later proved that a cylinder
constructed out of radially arranged Miura corrugations is
incapable of rigid foldability [18]. Recent developments have
explored the bistability of bellows patterned with Miura-ori
folds [19] as well as a Kresling pattern [20]. These works
utilize an elastic rod framework to explore the dynamic
response of a folded bellows. This suffices to illustrate the
existence of geometrically allowed bistable configurations, but
it fails to capture the behavior of a folded device as it actuates.

In the present work, we use properties established by a
general solution for allowable configurations to predict and
explain the responses of real bellows. Toward that end, we
will first define and solve the geometry at hand, detailing each
constraint and assumption. We will then explore the mechani-
cal response of their physical manifestations, necessitating the
construction of a series of tunable cylindrically symmetrical
bellows before subjecting them to controlled actuation and
collapse. We will conclude finally with a discussion of the
behavior observed during actuation, with a special focus on its
possible applications.

II. ORIGAMI BELLOWS GEOMETRY

Given an ideal origami pattern represented as a system
of linked rigid polyhedra, there exist multiple families of
frameworks that may be used to analyze its allowable config-
urations. If an origami system is represented as a mechanism
of rigid linkages [12], it can be subjected to classical
constraint-counting techniques. Some of these frameworks
invoke quaternionic algebra to generate the relative rotations
of their linkages [12] or faces [21]. Other treatments of
Miura-ori sheets and cylinders use the angle between faces
as their control parameters [4,21]. In the following, we instead
parametrize origami tessellations using the set of vectors
associated with the crease network [6]. By solving the fully
constrained behavior of a periodic fundamental origami cell,
we have found an analytic solution for all possible rigid-face
states accessible from both cylindrical Miura-ori and Kresling
patterns.
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FIG. 1. Cylindrical Miura-ori corrugation: thick left and right
edges connect to one another. The framework used in this paper does
not specify whether edges are valley or mountain folded, a property
that instead emerges from the solution of its geometry. The red dotted
rectangle indicates a unit cell. The lower blue edges are implicitly
assumed to mirror ω2 and ω3 about the plane established by ω0 and
ω1. A single band of circumferential rigid panels is defined by its
lateral size h.

To illustrate the benefits of this method, consider the folding
pattern depicted in Fig. 1. As shown in Fig. 2, the tessellations
of several types of rotationally symmetric bellows can be
derived from variations on this unit cell. Planar tilings of
these unit cells have been studied extensively, but relatively
few works have studied cylindrical configurations [18,20].
Some developable patterns on the cylinder lack rotational
symmetry [17], but here we will focus on regular cylindrical
tilings of the above-mentioned cells, whose regularity will be
formally introduced as uniform rotational symmetry.

The unit cells illustrated in Fig. 2 generate bellows like
those shown in Fig. 3. They have been organized by class
and type leading to four major domains. Type A and type B
differ in the value of the continuously variable angle φ1, where
type A patterns correspond to φ1 < π

2 and type B patterns are
characterized by φ1 > π

2 . Class 1 and 2 patterns differ in the
existence of the crease vector �ω0, which leads to a different
set of fold parametrizations and constraint counts, but will
not dramatically alter the solutions for rigid-face states. When
0 < φ2 < φ1 < π

2 , the generated pattern is the familiar Miura
corrugation for class 1 and the Kresling pattern for class 2. If

Type A: φ1 < π/2, φ2 < φ1 Type B: φ1 > π/2, φ2 < π/2
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FIG. 2. Various unit cells (delimited by red dashed rectangles)
derived from the Miura-ori folding patterns. A global scaling factor
determines the length of the unit cell. At least three circumferential
cells are required to make a bellows.
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FIG. 3. First row: Miura-ori (left) and Kresling (right) bellows
models annotated with example unit-cell vectors. Second row:
annotated vector illustration of unit cell in the XY plane. Photographs
are at approximately the same scale, and these structures correspond
to n = 5 unit cells.

π
2 < φ1 < π and 0 < φ2 < π

2 , a hexagonal grid is generated
instead for class 1, and a Yoshimura pattern is generated for
class 2. These angular ranges are nearly sufficient to define
the class of figures, but one additionally needs to maintain
positive edge lengths. As far as class 2 fold patterns are
concerned, thin-walled cylinders under axial compression tend
to develop a rigid triangular tessellation known as a Yoshimura
pattern, first described in [22]. This tessellation is described by
this framework as class 2–type B. Under torsion, thin-walled
cylinders of certain lengths buckle into a twisted triangular
configuration, known as a Kresling pattern [23], described
here as class 2–type A.

Figure 1 shows that a class 1 unit cell is described by
a total of five fold vectors �ωi , with | �ωi | = �i . By setting
�0 + �1 + �4 = 1, a global length scale is defined allowing
the parametrization of all edge lengths as

| �ω0| = �0, | �ω1| = | �ω4| = �1 = 1
2 (1 − �0), (1)

| �ω2| = �2 = h

2
csc φ1, | �ω3| = �3 = h

2
csc φ2. (2)

The free length parameters �0 and the lateral size of a single
band h are geometrically restricted to the following domains:

0 < h � 1 − �0

cot φ2 − cot φ1
. (3)

Inequality (3) ensures that �1 remains positive and that the edge
defined by �ω3 does not cross �ω2 in an adjacent unit cell. Note
that class 2 fold patterns are described by this same framework
but with �0 = 0 and h = 1/(cot φ2 − cot φ1).

When the imprinted network of creases is rigidly folded,
two degrees of freedom can be fixed because of global rota-
tional symmetry. A first degree of freedom can be eliminated
by taking �ω0 = �0 ı̂, where ı̂ is a unit vector parallel to the
X axis. Second, the vectors �ω1 and �ω4 also lie in the XY

plane, locking the final degree of freedom and expediting
the generation of the remaining vectors. Here, we utilize
SO(3) rotation matrices in lieu of Wu and You’s quaternionic
approach [21],

�ω1 = �1Rz(−θ1) ı̂, (4)

�ω2 = �2Rx(ψ) Ry(−φ1) ı̂, (5)

�ω3 = �3Rx(ψ) Ry(−φ2) ı̂, (6)

�ω4 = �4Rz(θ2) ı̂, (7)

where θ1 describes the angular deflection of �ω1 with respect to
�ω0, and θ2 parametrizes the opening angle between �ω0 and �ω4,
as seen in Fig. 3. To handle the opening angle of the pattern
about ω0, the angular deflection ψ from vertical (z axis) is a
measure of the panel’s angular deviation (π − 2ψ being the
opening angle between adjacent bands of folds). To ensure a
symmetric cylindrical configuration of class 1 constructions,
we introduce an additional constraint on θ1 and θ2,

θ2 = π − 2π

n
− θ1. (8)

Here n is the number of unit cells. Condition (8) is nec-
essary to generate well-behaved closed tubes for all n � 3.
It is easily shown that the parametrization described by
Eqs. (4)–(7) reduces to a system of two equations, with the
as-yet unspecified parameters θ1 and ψ :

�ω1 · �ω3 = �1�3[cos θ1 cos φ2 + sin θ1 sin φ2 sin ψ]

= �1�3 cos φ2, (9)

�ω2 · �ω4 = �2�4[cos θ2 cos φ1 − sin θ2 sin φ1 sin ψ]

= −�2�4 cos φ1. (10)

Using Eq. (8), one can show that this system of equations is
satisfied by

tan
θ1

2
= 1

2 tan π
n

[
1 − tan φ2

tan φ1

±
√(

tan φ2

tan φ1
− 1

)2

− 4
tan φ2

tan φ1
tan2 π

n

⎤
⎦, (11)

sin ψ = tan θ1
2

tan φ2
. (12)

Equations (11) and (12) determine θ1 and ψ as functions of φ1

and φ2, the only control parameters of bellows geometry. One
can show that the solution of Eq. (11) satisfies θ1 � π − 2π

n
,

and thus self-intersection of the faces is implicitly avoided.
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FIG. 4. Parameter space for class 1 and class 2 family bellows for
a number n � 3 of unit cells.

However, for Eqs. (11) and (12) to yield physically meaningful
solutions, one must still satisfy that θ1 is real and | sin ψ | � 1.
Using these conditions, one can show that there are no more
than two geometrically allowed rigid face configurations for
a closed band constructed of at least three unit cells. The
structure of the phase diagram is illustrated in Fig. 4. The
regions of the φ1,φ2 parameter space where physical solutions
exist are bounded by several functions:

f (φ1,n) = arctan

(
tan(φ1)

1 − sin π
n

1 + sin π
n

)
, (13)

g1(φ1,n) = φ1 − π

n
, (14)

g2(φ1,n) = φ1 − π + π

n
. (15)

f (φ1,n) is found by limiting the solutions of Eq. (11) to be real,
and g1 (g2) corresponds to the case sin ψ = 1 (sin ψ = −1).

Although the number of faces is identical, class 1 and class
2 tessellations differ in their total number of folds requiring
careful verification of allowable rigid-face configurations for
class 2 folded patterns. Using the same approach, one can show
that the corresponding solution space is indeed also bounded
by Eqs. (13)–(15), generating identical diagrams to the solu-
tions detailed in Fig. 4, indicating that the bistability of these
bellows is topological in nature. These results dovetail with
Connelly’s bellows theorem [24], which states that continuous
deformations of a closed triangulated surface cannot change its
volume, and that the number of enclosed volumes attainable
by reconfiguring a closed triangulated surface is finite. By
assuming rotational symmetry, this solution does not explore
the ability for a single band of folds to continuously deform.
These folding modes require ω0, ω1, and ω4 to not be coplanar,
a folding mode that is blocked by the presence of the cells
corresponding to the mirrored edges of ω2 and ω3.

The classification by type in Fig. 2 is chosen to mirror
the structure of the parameter space in Fig. 4. As there are
zero free parameters in the system of equations given by
Eqs. (11) and (12), we will only find a finite number of
allowable solutions at any point in parameter space. The figures
constructed with φ1 > π

2 are at best monostable. The boundary
defined by g2(φ1,n) generates a flat-folded monostable figure.

The type A bellows is the one generated in the left
half of Fig. 4, with a bistable region neighboring a larger

π
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π
2φ1

π
4
− π

2n

π
2
− π

n

π
2

φ2

0

π
8

π
4

3π
8

π
2

Δψ

FIG. 5. Detailed figure of the (red) bistable region of Fig. 4.
Grayscale shading indicates the angle difference �ψ (in radians)
between collapsed and deployed solutions, with colored call outs
for the contours indicated on the figure’s right. The purple curve
represents zero separation between the solutions, indicating the
solution’s degeneracy along the curve f (φ1,n).

monostable region. The bistable region is bounded on the left
by f (φ1,n) and below by g1(φ1,n). Along the curve g1 one
of the configurations is flat-folded. At (φ1,φ2) = (π

2 , π
2 − π

n
),

the deployed state is completely extended, with perfectly flat
walls along the bellows’ axial direction. Moving to smaller
values of φ1 along g1, the deployed configuration’s hinge angle
decreases until φ1 = π

4 + π
2n

, at which point the bistable states
are degenerate. The deployable bellows explored in [15] all lie
along g1, with increasing deployability as φ1 increases from
π
4 + π

2n
to π

2 .
In the region of existence of two states, the difference

between more collapsed and more extended configurations
for an origami cylinder may be colloquially referred to as
its “deployability.” The magnitude of extension between the
two states is easiest to measure from the angle difference
�ψ between the two allowed rigid face configurations by
Eqs. (11) and (12). Figure 5 illustrates the parameter space
governing these tubes. Along the line φ2 = φ1 − π

n
, one of the

solutions is flat foldable and therefore lies entirely within the
XY plane, and along the line φ1 = π

2 one of the solutions is
maximally extended, perpendicular to the XY plane. The pair
of states found at (φ1,φ2) = (π

2 , π
2 − π

n
) therefore correspond

to flat foldable and maximally extended states. This point is
the maximally deployable configuration, with �ψ = π

2 . The
deployability decreases monotonically as one moves away
from this maximal configuration. This overall behavior is
independent of the number of facets in the cylinder’s folding
pattern. Figure 5 also hints that small variations in φ1 or φ2

can have dramatic changes in the mechanical stability of these
objects.

Individual bands of a class 2 tessellation do not affect the
configuration of their neighbors because the angle parameter
for the polygonal footprint, θ = π − 2π

n
, does not vary during

the pattern’s collapse (see Fig. 3). This behavior is different
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from that of a class 1 folded cylinder: θ1 and θ2 change from one
stable configuration to the other, so each band of the bellows
is forced to move in lockstep with its neighbors. While both of
the individual bands have the same allowable configurations,
the deployment behavior of an aggregate bellows should not
be the same. Each stage of a Kresling bellows is able to snap
between its bistable states independently of its neighbors, but
a Miura-ori cylinder’s only stable rigid face configurations are
completely collapsed or completely deployed. This lack of in-
termediate stable configurations contributes to the appearance
of smooth deployability. To demonstrate this most clearly, a
physical bellows should be constructed.

III. MECHANICS

A. Device fabrication

To generate regularly folded bellows, a laser cutter was used
to etch flat panels of a substrate, which could then be assembled
into a uniform cylinder. Cylinders were initially constructed by
cutting a complete fold pattern from a single sheet that included
a row of tabs with which the sheet was glued into a cylinder.
Once glued, the panels’ hinges could be folded so that the entire
device collapsed into its preferred configuration. While useful
for exploring various fold patterns, this assembly technique is
not acceptable for device fabrication. The height of the energy
barrier between bistable configurations is a function of the
face bending energy [5], and this technique, although rapid,
generates a single column of particularly stiffer walls.

Instead, our bellows are constructed much like a glued
paper lantern. Individual strips of acetate sheets with thickness
0.1 mm (transparency slides) are cut out. Instead of scoring
creases, the sheets are perforated: leaving a constant length
fraction attached for each crease ensures a hinge energy that
scales appropriately with the length of the crease and allows
for a small torsional stiffness of the crease compared with the
bending stiffness of the faces. This energy scale separation
has been checked by observing that faces of a single actuated
crease do not bend. Notice that such an estimate would only
provide a lower bound since in a bellows configuration the
kinematics rigidify the faces. Each strip has a set of tabs that
connect it to its neighbor with double-sided tape [Fig. 6(a)].
Panels are aligned where laser-cut lines converge, and global
alignment is double-checked with the flatness of the assembled
sheet of strips before they are connected into a tube. This
generates a device with an isotropic cross section, as seen in

(a) (b) (c) (d)

FIG. 6. Isotropic bellows construction. Individual strips are pat-
terned with the laser cutter before being attached by the small tabs
seen at rightmost edge of (a). Strips are then rolled into a tube (b),
which is then collapsed one cell at a time (c) to form the final
bellows (d).

Fig. 6(b). Once shaped into a tube, the top and bottom regions
are reinforced with a layer of scotch tape. Without this tape,
the tubes tend to pull apart from the ends under the stress of
the initial folding. Edges are gently precreased, working along
the entire tube [Fig. 6(c)]. As the tube approaches the desired
shape, more force is used until the panels buckle flat [Fig. 6(d)].
With this design, one edge of each face is stiffer than the
remainder of the bellows. Fortunately, the stiffened region is
very close to the crease, where mechanics are dominated by
the hinge energy. The bellows is collapsed during assembly,
giving a preliminary indication of how it will respond to forced
cycling.

The naming convention used in Fig. 2 may be adapted
for device fabrication by considering a single band of cir-
cumferential rigid panels (see Fig. 1). A class 2 (triangular
tessellation) bellows can be constructed with any number
of these bands. An odd number of bands must twist during
compression, but mirrored pairs of bands will have no net
twist. A class 1 (Miura-ori) bellows should be designed with
an even number of bands, as each one needs to be paired with its
mirror image. To average out small defects from construction
while keeping the bellows as large as possible, each bellows
is constructed with six total bands per strip. In addition to the
bands themselves, a bit of extra material is required to seal
the end of the bellows. Furthermore, a transition pattern is
required for a Miura-ori folded bellows to connect smoothly
to these convex and rigid end caps. Finally, five-panel (n = 5)
bellows were selected in the following study.

Although Miura-ori and triangular tessellated unit cells are
described by identical phase diagrams, the aggregate behavior
of a collection of unit cells may be different during extension
and collapse. Exploring this divergent behavior requires the
careful selection of a control parameter to hold constant among
multiple test geometries. Because the total number of unit cells
will vary during testing, the total fold length and the folds
length relative to the overall base size were conserved.

B. Experimental observations

Because the bellows are fabricated with nonzero hinge
energy and panels of finite thickness, a mathematically bistable
configuration may not be mechanically bistable, i.e., able to
remain in one metastable state without external forcing. As
a matter of fact, Fig. 4 shows that bellows constructed along
the curve f (φ1,n) are degenerate and thus monostable, and
bellows constructed along the segment (φ1 = π/2, π

2 − π
n

�
φ2 � π

2 ) have a barrier to their collapse, and they are thus
mechanically bistable. Therefore, one expects that a transition
between these regimes should exist for a critical design angle
φ1 = φc. When φ1 < φc, the bellows is unable to remain in
its collapsed state and is expected to deploy itself to very near
its rigid-face extended state after its collapse. This property
provides a large design space for actuation, as will be discussed
below.

Inspired by [15,25], initial values of φ1 = 2π
5 and φ2 =

φ1 − π
n

were selected. This generates a flat-foldable bellows
that is very close to the minimal distortion geometry described
in [25]. We found that such a “flat foldable” bellows is unable
to maintain a stowed configuration, instead demonstrating a
self-deployability. Although it would be possible to move into
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the nonflat stowed region (φ2 > φ1 − π
n

), it is more interesting
to explore various values of φ1 by keeping φ2 = φ1 − π

n
. The

exact value of the critical φ1 for this transition is dependent
on assembly, but it appears that φc � 2π

5 = 72◦. Class 1 and 2
bellows were designed on either side of this transition (φ1 =
68◦ and 76◦) in order to demonstrate its existence.

The mechanical response of the bellows was performed
using an Instron R© test frame, and its corresponding deforma-
tion was captured with a Nikon D800 both as high-resolution
still images and as movie shots at 720p, 60 fps. Bellows were
designed for their end caps to have zero net rotation as they
actuate, and they were mounted to the Instron R© on irrotational
compression plates. Movies (available as Supplemental Mate-
rial [26]) were synchronized to the Instron R© test frame’s data
after their capture via motion tracking. On all the following
force versus displacement curves, the zero displacement point
is chosen at the extended position of the bellows where the
applied force is nearest to zero after attaching the bellows.
The zero load reference point is established by the dynamic
force value at the moment the test frame reverses direction
from extension to compression.

As seen in Fig. 7, after the initial compression’s dramatic
collapse behavior, subsequent cycles follow each other closely,
with only minor aging of the device as it cycles, and
the mechanical response of the bellows converges toward
a limiting cycle. This typical behavior is not reported in
Figs. 8–11, which only illustrate a cycle consisting of a single
extension followed by compression.

The class 1–type A bellows with φ1 = 68◦ < φc in Fig. 8
is the softest of the bellows examined here. As seen in its
force-displacement curve as well as Movie-S1 in [26], it can
be fully collapsed with only 5 N applied force. Unfortunately,
we are unable to resolve face-bending behavior during the
collapse of this pattern. Its class 2–type A equivalent (Fig. 9
and Movie-S2 in [26]) does show small steps as the paired
cells collapse, but the smooth extension stroke (the lower half
of the force-displacement plot) indicates that this pattern does
not lock in its collapsed state, instead deploying itself after
collapse.

0 20 40 60 80 100

Position (mm)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
ad

(N
)

FIG. 7. Typical mechanical fatigue curve as a bellows (here Class
2–Type A) is repeatedly actuated. The snap-through transition rapidly
fatigues the thin polymer bellows, leading to a softening of the device
on subsequent (darker) cycles without modifying qualitatively the
mechanical response of the device. The top (red) curves are from
multiple compressions, and the bottom (blue) curves are data from
the corresponding extensions.
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FIG. 8. Class 1–Type A (Miura-ori) bellows with φ1 = 68◦. This
device collapses smoothly, with only a small step as its transition
panels collapse. Force measurement corresponding to the image on
the left is indicated as a solid point. The colored gradient trailing
the ball indicates previous force or position measurements, and the
shadowed line indicates future measurements. See also Movie-S1
in [26].

The class 1–type A bellows with φ1 = 76◦ > φc in Fig. 10
exhibits minor locking (see also Movie-S3 in [26]), but this
is an artifact of the transition end pieces, which convert the
variable concave cross section to a uniform convex hexagon
that can be mounted rigidly to the Instron R©. The class 2–Type
A bellows in Fig. 11 with φ1 = 76◦ > φc demonstrates the
most interesting behavior of this set: clear face bending, crease
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FIG. 9. Class 2–Type A (Kresling) bellows with φ1 = 68◦. This
device is constructed with identical angles φ1 and φ2 as Fig. 8, yet it
collapses with small steps as each paired panel crumples. It deploys
smoothly without external forcing. See also Movie-S2 in [26].
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FIG. 10. Class 1–Type A (Miura-ori) bellows with φ1 = 76◦. This
device collapses with a single large step at its transition panels, and
deploys in a fairly smooth manner. See also Movie-S3 in [26].

bending, and self-locking behavior. An overview of its cycling
behavior is displayed in Movie-S4 [26]. The sharp steps on the
extension stroke indicate locking of individual cells and the
failure of those cells as they extend to their other rigid-faced
state.

Looking closely at the ends of the bellows in the last frame
of Fig. 11 reveals that the outer edges parallel to �ω2 (see Fig. 2)
are bent. The bellows has been driven out of its rigid face
equilibrium, and the only way to access the stable collapsed
state is by bending the faces. Class 2 bellows, however, are
triangular and can only bend their faces by also bending a
crease. The regularity of this crease bending is evidence of
the suitability of the construction techniques detailed earlier.
Crease bending also is far more energetically expensive than
plate bending, which largely accounts for why the class 2
bellows are so much more rigid than their class 1 counterparts.
After the crease bend emerges, it does not remain in the
same location. By traversing the face, the vertex of the crease
bend introduces a mobile crease to the fold pattern, thereby
bypassing the preconditions required for the bellows theorem
to apply [27].

In all cases, it is easier to extend a collapsed bellows than
it is to collapse a rigidly extended bellows. This is readily
explained by the interplay between the hinge bending and

FIG. 11. Class 2–Type A (Kresling) bellows with φ1 = 76◦ shows
the most dramatic behavior of the lot. Contrary to class 1–type A
shown in Fig. 10, this bellows must be pulled apart at each step, and
snaps shut as it collapses with increasing rapidity. See also Movie-S4
in [26].

plate bending: When extended, the hinge is held relatively
near its preferred angle of repose. The plate’s dramatically
higher folding energy then dominates the dynamics of the
device, leading it to equilibrate near its rigid face state. When
collapsed, the hinges are compressed far from their angle of
repose, leading to dramatic deformations of the plates, as seen
in Fig. 11. Bent, the plates are driven away from their rigid-face
equilibrium toward the potential barrier between the two states.
Because the collapsed state is driven far from its equilibrium
state by hinge energy, it is easier to overcome the remainder
of the barrier.

Special attention should be paid to the mechanical response
shown in Fig. 11. In particular, note that there are three
collapse events, with each one corresponding to a pair of panels
collapsing. If the unit cells were identically manufactured and
unable to communicate with one another, these progressive
collapsing events would occur at roughly the same force
levels. That they do not is potentially evidence that some
cells are less rigid than others, due to minor variations
in their manufacture. Moreover, careful inspection of video
data Movie-S4 in [26] shows that the cells do not always
collapse in the same order, suggesting that while some cells
may be temporarily softer than others, it is not entirely
explainable by their permanent connections to one another.
Instead, we suspect that the remaining deployed cells are
able to flex and deform slightly, easing the transition for the
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FIG. 12. Class 1–Type B bellows with φ1 = 105◦ and φ2 = 69◦.
This hexagonal bellows is expected to have a single accessible rigid-
face configuration. Without a geometrically allowed collapsed state,
this bellows buckles under load, breaking its rotational symmetry.
See also Movie-S5 in [26].

cells that will collapse. Because the number of available face
configurations falls off as cells collapse, we see that each
subsequent event requires more and more force.

Notice that the force-displacement curve of Fig. 11 has
a dramatically negative slope at each band’s collapse, which
originates in the device’s multistability: once the system passes
through the barrier to the transition, the bellows is pushing on
the clamp.

That each unit cell must twist in order to access its collapsed
state suggests analyzing the torsion from one state to another
using geometric considerations [28]. However, our bellows are
designed to have zero net helicity and were mounted to plates
that could not rotate. Therefore, there is a coupling between
the geometric torque and boundary conditions, which in some
cases inhibits allowed geometrical transitions. Therefore, a
general statement using only geometric theory cannot be
achieved for the present study. Finally, bellows without a
geometrically allowed collapsed state for both classes behave
like typical thin-walled cylinders. As seen in Figs. 12 and 13,
once the panels’ capacity to deform is exceeded, the rotational
symmetry breaks and one side of the bellows buckles and
crumples in on itself. Returning the bellows to its original
position does not restore the symmetry present initially (see
also Movie-S5 and Movie-S6 in [26]).

FIG. 13. Class 2–Type B bellows with φ1 = 105◦ and φ2 = 69◦.
Much like the hexagonal bellows of Fig. 12, without a geometrically
allowed collapsed state this bellows crumples, breaking its rotational
symmetry. See also Movie-S6 in [26].

Within these devices, the underlying mathematical deploy-
ability not only allows physical actuation, but is also largely
enriched by the mechanics, which in turn provides extended
functional capabilities. Deployable designs with φ1 < φc can
be smoothly actuated with hardly any snap-through effects
and with small forces: they can be held collapsed and they
would self-deploy as the confining force is released. On the
other hand, designs with φ1 > φc will remain in a given
metastable state until actuated to change configuration, and
the available configurations can be made to be either fully
collapsed versus fully deployed, or they can alternatively
exhibit several intermediate states with well-defined energy
barriers between states. Interestingly, the nature of the energy
barrier between metastable states depends on the geometry
of the faces: quadrangular faces decouple the bending of the
face and that of the crease, leading to soft actuation, whereas
triangular face bending requires the adjacent creases to deform,
yielding an overall much stiffer actuation.

IV. DISCUSSION

We have presented a unified geometrical description of
several previously disconnected classes of origami bellows,
and we uncovered their allowed states, painting a phase dia-
gram with a peculiar island of bistability. We then proceeded
to craft the corresponding physical models using an original
technique, which allowed us to investigate the effect of these
kinematics on the mechanical response of the models. We
have shown that it is possible to rapidly generate precisely
folded origami bellows using a laser cutter, plastic film,
and double-sided tape. This technique can be easily used
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to make arbitrarily complicated bellows with finely tuned
fold parameters. We found that the “deployability” of a
given pattern, a characterization of the distance between two
geometrically allowed states, yields quantitative insight into
the behavior of the physical bellows, though the mechanics of
face and crease bending and self-exclusion govern the detailed
characteristics of their deployment.

More importantly, we have demonstrated the existence
of a critical design angle that controls the bistability of
a mechanical origami bellows. Furthermore, nonzero hinge
energy drives these bistable devices away from the flat-folded
configuration predicted by geometry, clearly illustrating the
necessity of mechanics in a design phase. Class 1 bellows tend
to be much more flexible than their Class 2 counterparts. As
would be expected, the figures with larger �ψ have more stable
collapsed configurations, and some are capable of holding
themselves in a collapsed state.

Bellows with specific properties can be designed with
knowledge of the geometric limitations as well as the me-
chanical properties of their substrate. While the fabrication
technique described earlier is optimal for exploring bellows
configurations, it necessarily generates perforated bellows,
which are unable to displace fluids or be actuated by internal
pressure. Construction of a sealed bellows is more compli-
cated, requiring machined intermediate forms and molds to
shape the cylindrical substrate as needed. It is thus a more
efficient use of time to only generate these construction tools
once a design has been adequately prototyped by using our
paper lantern construction technique.

Given the importance of plate-bending in the collapse
of an origami-folded bellows and the difficulty faced
by finite-element computations of thin shells undergoing

bending [29], physical measurements of origami patterned
bellows as they collapse or deploy are crucial for the
verification and development of simulation tools. As faces
and hinges bend, accurate measurements of surface curvature
would allow a more complete accounting of the effective
mechanical response of the bellows.

Among promising fields of application for next generation
bellows design are architecture, mechanical design, and
cryogenic devices. In these arenas, reliability and weight
are primary design goals in the development of deployable
origami bellows. Materials age and fail dramatically faster
when subjected to crease bending, so patterns that minimize
this damage are more reliable. With a full understanding
of the importance of face bending, more robust origami
patterned actuators may be designed. Bellows designs to date
have rightfully started with purely geometric considerations,
followed by iterative physical prototyping. Unfortunately, as
the practical foldability of a bellows depends on the interplay
between the established creases and the device’s ability to
plate-bend its faces, this process is dependent on prototyping
and intuition to generate future designs with predetermined
functionalities.
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