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Geometrical model for martensitic phase transitions: Understanding criticality and weak
universality during microstructure growth
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A simple model for the growth of elongated domains (needle-like) during a martensitic phase transition is
presented. The model is purely geometric and the only interactions are due to the sequentiality of the kinetic
problem and to the excluded volume, since domains cannot retransform back to the original phase. Despite this
very simple interaction, numerical simulations show that the final observed microstructure can be described as
being a consequence of dipolar-like interactions. The model is analytically solved in 2D for the case in which two
symmetry related domains can grow in the horizontal and vertical directions. It is remarkable that the solution
is analytic both for a finite system of size L × L and in the thermodynamic limit L → ∞, where the elongated
domains become lines. Results prove the existence of criticality, i.e., that the domain sizes observed in the final
microstructure show a power-law distribution characterized by a critical exponent. The exponent, nevertheless,
depends on the relative probabilities of the different equivalent variants. The results provide a plausible explanation
of the weak universality of the critical exponents measured during martensitic transformations in metallic alloys.
Experimental exponents show a monotonous dependence with the number of equivalent variants that grow during
the transition.
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I. INTRODUCTION

Martensitic transformations are first-order solid-solid phase
transitions in which the system undergoes a change in the sym-
metry of the crystalline lattice [1]. The high-symmetry phase,
called austenite, is the stable phase at high temperatures. When
cooling, the atoms rearrange without long-range diffusion into
a less symmetric phase called martensite. In general, a group-
subroup relationship exists between the symmetries of the
austenite and martensite, which implies that the new marten-
sitic domains can grow in different equivalent variants that
are symmetrically related. The arrangement of the martensitic
domains constitutes the so-called martensite microstructure
[2] and is, to a large extent, determined by the minimization
of the elastic strain field that results from the crystal misfit
between the martensite and the parent phases [3,4].

In the absence of externally applied fields and in contrast to
the prototypical first-order phase transitions, martensitic trans-
formations do not usually occur at a well-defined temperature,
but extend along a certain temperature range. The main reason
for this extended behavior is due to the internal elastic forces
(thermoelasticity) [5]. When a first domain nucleates in the
bulk of an austenitic single crystal, it creates an internal stress
field that arrests the transition, in a way similar to the pressure
decrease one observes in vapor-liquid condensation at constant
volume. Undercooling is needed for the transition to proceed.
Other reasons behind the extended character are the existence
of favorable nucleation centers on the crystal surfaces and/or
the existence of impurities, vacancies, dislocations, etc. Stress
fields around quenched disorder also contribute to the extended
behavior by creating a range of effective local transition
temperatures.

As a consequence of these combined effects, the final
microstructure when the transition is complete (at low temper-
atures) may become quite complex, difficult to predict but with

very important consequences for the macroscopic properties
of the material. Microstructures can be easily observed
by optical microscopy using polarized light, revealing the
tiny deformations on the sample surface corresponding to
the different variants. Figure 1 shows, as an example, a
micrograph of a Cu-Zn-Al sample in the martensitic phase. The
microstructure consists of an apparently random combination
of thin martensite needles, as shown by the different colors
corresponding to different symmetry-related variants. Fourier
analysis of such microstructures indicates that the distribution
of domain sizes tends to be fat-tailed in the large-size region
[6,7].

It is more difficult to obtain experimental information
about the growth dynamics, given the fast character of the
martensite-austenite interface movements. Several martensitic
transformations have been studied by using techniques with
high-time resolution. Both acoustic emission [8,9] and high-
sensitivity calorimetry [10] have revealed an intermittent
behavior called avalanche dynamics: when cooling rate is
slow enough, the system remains trapped in metastable states
until a free-energy barrier disappears. Then, it relaxes, by
creating a new martensite domain, in a fast event called an
avalanche. After it, the system remains again in a silent period.
In other words, within the time resolution reached by AE
techniques (microseconds), the transformation process occurs
as a sequence of transformation events with well-defined
waiting times between them [11].

The study of the statistical properties of these avalanches
has revealed that they tend to show absence of characteristic
scales in energies, durations, sizes, etc. This is also revealed
by the fat tails of the experimental distributions that, in many
cases, fit very well to power laws with characteristic exponents.
For the energy distributions, for instance, p(E) ∼ E−ε . The
relation between the absence of characteristic scales and the
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FIG. 1. Example of the final microstructure on a Cu69.3Zn17Al13.7

single crystal, after the thermally induced transformation from
cubic to monoclinic phase is completed. The image corresponds
to a ∼8 mm × 6 mm area approximately perpendicular to the the
[100] direction. It has been obtained by using polarized light on a
sample initially polished in the cubic phase. Different colors indicate
slightly different orientations of the sample surface and, therefore,
approximately correspond to different variants.

existence of an out-of-equilibrium critical point has been
discussed [9]. This suggests that the exponents tend to show
universal behavior. The universality, nevertheless, is weak.
Analysis of different alloys that transform into different
symmetries indicates that the exponent ε depends on the
number of equivalent variants that grow during the transition.
It takes values ε = 2, 1.75, and 1.6 when the number of
equivalent variants is 12, 6, and 4, respectively [9,12]

Microstructure modeling is based, essentially, in the calcu-
lation of combinations of variants minimizing elastic energy in
the martensitic phase [13–15]. Models describe very well the
existence of twins, which consists in two equivalent variants
that grow one adjacent to the other forming a very elongated
martensite needle that in some cases extend along the whole
sample. Other more sophisticated solutions correspond to
zigzag twins, twins within twins and many other complex
variant organizations near defects. But most of these models
neglect the fact that the microstructure should be grown
dynamically during the cooling process and that, once a
domain has grown into a certain variant, retransformations
to the parent austenitic phase or variant-variant transitions are
usually impossible due to the existence of high-energy barriers.
Thus, the problem of modeling the final microstructure cannot
be treated as a problem of finding the energetically most
favorable final state. Instead, it is important to identify the
energetically most favorable sequence of transformations; in
general, thermal fluctuations are very low and the system
cannot explore, at every temperature, the whole configuration
space.

In this paper we present a very simple probabilistic
model that explores the dynamical constraints that occur
when martensite variants (or twins) are grown sequentially
during the martensitic transition. In general, we will refer
to the transformed regions as domains, without specifying
whether they are single variants of martensite or twins. We

propose a continuum and a discrete 2D realization of this
model that essentially assumes only two ingredients: the
elongated nature (needle shape) of the growing domains and
the absence of retransformation events, which implies that
martensite needles cannot cross each other. The aim of this
paper is to show that with only these two ingredients (also
present in most of the realistic models including long-range
elasticity) the model is able to predict some general results
concerning the statistical distribution of sizes of the martensite
domains in the final microstructures. It suggests that the
fat-tail behavior experimentally observed in the distributions
of acoustic emission and calorimetric avalanches could arise
from this dynamical constraint, although it will become a true
power-law distribution only in very special limits.

From a general viewpoint the model developed in the
present work can be considered to belong to the class of
geometrically constrained probabilistic models, such as the
random sequential addition problem [16], the fragmentation
and multifragmentation problems[17], the sequential parti-
tioning problem [18], and the random space-filling problem
[19]. It also has connections with the study of percolation and
jamming of linear segments [20,21]. Our model is specifically
formulated for systems undergoing a martensitic transition
and is solved in both the continuum and discrete cases. It
is expected to provide responses to recently reported experi-
mental results concerning avalanche-like dynamics, which is
characteristic of this class of transformations. In fact, other
geometrically constrained models have been proposed in the
past to deal with martensitic transitions. It is worth mentioning
the model published by Rao et al. [22]. It was aimed at
explaining the scale invariance that has been observed during
the growth of acicular martensites. The model considers the
competition between the front velocity and the nucleation rate
of the martensite grains. Interestingly, in the limit of infinite
growth velocity this model reduces to a specific realization of
the model developed in the present paper. The solution of the
model in this limit has been reported in Ref. [23]. Using the
language of the present work, this solution focuses on the
sequential distribution of untransformed regions. Actually, the
same point of view has been adopted by Ball et al. [24],
who have proposed a model aimed at understanding the same
experimental results as those that have motivated the present
paper. Actually, the most significant differences between Ball’s
model and the present one concerns the interpretation of the
sequence of transformed and untransformed regions and a
different recipe for the sequential ordering of segments. We
will discuss these issues in the last section of the paper.

In Sec. II we define the details of the model and perform
computer simulations with various symmetries. This allows
us to understand some effective dipolar-like interactions
between martensite domains that occur simply due to kinetic
constraints.

In Sec. III we solve heuristically a continuum version of the
simplest version of the model in which domains are infinitely
thin, i.e., essentially 1D lines that grow in the horizontal and
vertical directions on a 2D square. In this case, despite the
fact that the transformation is never complete due to the 1D
character of the transformed domains, we obtain an expression
for the distribution of lengths in the limit when the number of
grown domains is very large.
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In Sec. IV we solve analytically the discrete version of the
model in which variants have a certain width a and grow on
a discrete lattice with size L × L. In this case, the transition
can be completed, and we obtain exact expression for the
distribution of domain lengths for any finite size L. Some
interesting graphical examples are presented.

Finally, in Sec. VI we discuss and summarize the conclu-
sions.

II. MODEL

The model under construction is defined on planar lattices
with lattice spacing a. On the lattice we propose a set of
equivalent directions that will correspond to the possible
growth directions of the martensite needle domains. For
instance, in the simplest case we consider only two equivalent
domains growing in the horizontal (1,0) and vertical (0,1)
direction, on a square lattice with L × L sites. We could also
consider only two domains but growing along the diagonals
(1,1) and (−1,1). This model would be equivalent to the first
one except for the role played by the sample boundaries.
Another example on the same square lattice will be to consider
four growth directions along the directions (1,2), (2,1), (−1,2),
and (−2,1). More complex symmetries can be defined on
hexagonal lattices where we can select, for instance, three
equivalent growth directions along (1,0), (0,1), and (−1,1),
etc.

Once the lattice and the equivalent directions have been
defined, the microstructure is constructed as follows: (i)
first, we choose a random site (uniformly distributed on the
lattice) that has not been already transformed. (ii) Second,
we sort according to a certain probability law, one of the
equivalent directions. In the most common case, we use
equal probabilities for every equivalent direction, but for the
analytical analysis below we will also consider situations in
which some directions are favored. In practice this could
occur when the system is subjected to external fields that
break the symmetry. (iii) Then, starting from the chosen site,
a martensite domain is grown with width a (equal to one
lattice spacing) along the chosen direction (in both senses) until
hitting the system boundaries or hitting an already transformed
site. The variable of interest is the length � of this domain. (iv)
The process is repeated sequentially until the whole lattice
has been transformed to the martensitic phase. For numerical
simulation purposes, it is convenient to keep a table of the
untransformed sites. Otherwise, the simulation becomes very
slow at the late stages of the transformation.

Figure 2 shows an example of how the microstructure
grows. Figure 3 shows an example of the final microstructure
in a simulation of a L × L = 81922 square lattice with two

FIG. 2. Example of the initial domains in the construction of the
microstructure with our model, in the case of two different equivalent
domains along the (1,0) (black) and (0,1) (yellow) directions on a
square lattice.

FIG. 3. Example of the final microstructure generated with our
model, in the case of two different domains along the (1,0) (black)
and (0,1) (yellow) directions on a square lattice. The lattice size for
the simulation is L = 8192.

equally probable variants growing along the vertical and
horizontal direction. The resolution of the plot does not allow
to see the fine details of the microstructure. A magnified
view is shown in Fig. 4. Details of the final microstructures
corresponding to a case with three equivalent directions on a
hexagonal lattice and four equivalent directions on a square
lattice are shown in Figs. 5 and 6.

FIG. 4. Magnification of the final microstructure generated with
our model, in the case of two different domains along the (1,0) (black)
and (0,1) (yellow) directions on a square lattice. The original lattice
size for the simulation is L = 8192. Only a small region of 500 × 500
sites is shown.
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FIG. 5. Example of final microstructure generated with our
model, in the case of three different domains along the (1,0) (black),
(0,1) (red), and (−1,1) (yellow) directions on a hexagonal lattice, with
equal probabilities. The simulated domain has a hexagonal shape with
size L = 8192. Only an small area of 500 × 500 sites is shown.

The observation of the final microstructures reveals, at
first sight, a surprising result: a clear tendency for domains
that grow in the same direction (same color in the plots) to
aggregate and form large regions. This correlation is also clear
close to the system boundaries in Fig. 3. Horizontal (black)
domains concentrate along the upper and lower boundaries,
whereas vertical domains (yellow) concentrate along the right
and left boundaries. Such correlations are very different from
what one would expect after a random coloring problem.
It is easy to understand that, effectively, there is indeed a
dipolar-like interaction that favors both (i) martensite domains
to grow in the same direction as boundaries nearby and (ii)
domains growing in the same direction when they are close to
one another.

Consider a certain empty region that, by chance, contains
two parallel martensite domains in, for instance, the vertical
direction (The same can be argued with a domain parallel to

FIG. 6. Example of the final microstructure generated with our
model, in the case of four different variants along the (1,2) (black),
(2,1) (magenta), (−1,2) (yellow), and (−2,1) (red) directions on a
square lattice, generated with equal probabilities. The lattice size is
L = 8192. Only a small region of 500 × 500 sites is shown.

FIG. 7. Order parameter density indicating the relative proba-
bility of sites occupied by vertical or horizontal domains. Data
corresponds to an average of many simulations of lattices with
size L = 8182. The order parameter is measured on regions with
size 8 × 8. When all 64 sites in the region are filled with vertical
(horizontal) variants, the order parameter is 1 (−1).

a boundary.) The empty sites in between these two domains
have, a priori, the same probability for being filled with vertical
or horizontal domains. But, if a horizontal domain grows in
between these two vertical lines, it will have a very short
length. Contrarily, if a vertical domain grows, it will have
a much longer length and, thus, it will fill a bigger space.
Therefore, a posteriori, the sites close to a certain domain are
more probably filled by domains in the same direction.

One can thus conclude that, as a consequence of the
dynamic constraints, martensitic domains show an effective
dipolar-like attraction. By performing a large number of
simulations we have evaluated the decay of such correlations
with the distance. On the L × L = 81922 lattice we have
defined blocks of 8 × 8 sites and computed an order parameter
that accounts for the difference in the coarse-grained density of
vertical and horizontal domains. The result is shown in Fig. 7.

The plot reveals that the correlations with the boundaries
are weak (order parameter changes below 2%) but long
ranged, extending until reaching the center of the system.
Such correlations can be measured in the surroundings of any
domain.

In the following sections we will concentrate on the study
of the distribution of domain lengths in the simplest case
consisting in a square lattice with two equivalent variants
growing in the horizontal and vertical direction.

III. CONTINUUM LIMIT

In order to study the variants of lengths � much larger
than the lattice spacing, i.e., in the limit a/L � a/� → 0 one
may consider a continuum version of the model in which all
lengths are rescaled by L. Note that the results obtained by
this rescaling may not work for those physical properties that
are controlled by the finite width of the martensitic domains.

We consider a 2D square whose width and height have
been rescaled to 1, and two directions for the martensite
needles, namely (1,0) and (0,1) which are, now, 1D segments.
Of course, in this continuum case, the system is never fully
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transformed, but one may expect that after enough segments
are drawn the statistical properties of the segments become
stationary. We are interested in determining the distribution of
domain lengths z = �/L in such stationary regime. Note that z

is a real number (0 < z � 1) in this continuum rescaled model.
Due to the random nature of the process, the information
about the distribution of lengths will be given by the average
number density of domains with size in (z,z + dz). For reasons
that will become clear later, it is interesting to generalize the
model allowing the two possible directions to be selected with
different probabilities, ph for horizontal domains and pv for
vertical domains. The focus of our attention will be the case
ph + pv = 1, although our results in terms of ph and pv can be
directly extrapolated to cases where ph + pv < 1, which might
be suitable to address incomplete transitions in a hierarchy-less
manner, i.e., with statistical (and dynamical) independence
between regions of the lattice that have become isolated from
each other during the process. The quantity of interest we
will analyze is thus H (z; ph,pv), the average number density
of horizontal segments. The explicit dependence with the
parameters ph and pv will be indicated only when needed.

In order to determine this quantity, in what follows, we will
formulate an heuristic argument. First of all, take into account
that the casuistics for z = 1 (that corresponds to the system
length) are different from the rest of possible values. While
there is a finite probability of generating a segment of z = 1 in
our system as long as ph > 0, any other specific size supposes,
in the continuum limit, a set of zero measure in the domain of
the distribution. Thus, it is reasonable to assume that

H (z; ph,pv) = A(ph,pv)δ(z − 1) + h(z; ph,pv), (1)

where δ is Dirac’s δ, h(z; ph,pv) is a continuum function and
does not vanish in the interval (0,1) and A is a constant to be
determined. On the other hand, given the continuum character
of the problem, we can assume that the regions that are left
after drawing the first segment are fully equivalent to the initial
region but rescaled. Since we are interested in studying the
length of horizontal segments we should care about rescaling
only when the line that has been drawn is vertical. Considering
this first drawing, the problem can thus be split as

H (z; ph,pv) = phH
[h](z) + pvH

[v](z), (2)

where H [h](z) [H [v](z)] is the average number density if the
first line is horizontal (vertical). Let us consider the two cases
separately. If the first line is horizontal the two new areas are
exactly as the original one without rescaling. Therefore, from
Eq. (1) we can write

H [h](z) = 1δ(z − 1) + 2[Aδ(z − 1) + h(z)], (3)

where the first term corresponds to the horizontal line that has
been drawn and the second term to the two equivalent problems
above and below the line.

If the first line is vertical, one should rescale the new two
problems according to the position x where the first line was
drawn. The problem on the right will be rescaled by a factor
(1 − x) and the problem on the left by a factor x. For symmetry
reasons it is enough to study the problem on the left and
multiply the result by a factor of 2. The variable x is, a priori,
uniformly distributed between 0 and 1. But if x turns out to be

smaller than z, H [v](z) in the left region becomes zero because
no more segments of size z can exist. Thus, we can write

H [v](z) = 2
∫ 1

0
dx�(x − z)

[
A

x
δ

(
z

x
− 1

)
+ 1

x
h

(
z

x

)]
,

(4)

where � is a heaviside function that takes into account the
above-mentioned limitation for x > z. Performing a change
of variables (t = z/x,dt = −zdx/x2) and joining the above
expressions (1)–(3), and (4) one gets the following integral
equation:

Aδ(z − 1) + h(z) = ph[(1 + 2A)δ(z − 1) + 2h(z)]

+pv

[
2A + 2

∫ 1

z

h(t)
dt

t

]
. (5)

This equation can be easily solved. Analyzing the term that
multiplies the δ function one gets

A = ph

1 − 2ph

. (6)

In turn, the equation obtained for the continuum part of the
distribution is

h(z)(1 − 2ph) = 2phpv

1 − 2ph

+ 2pv

∫ 1

z

h(t)
dt

t
. (7)

After differentiating with respect to z the following linear
differential equation is obtained:

dh

dz
= − 2pv

1 − 2ph

h

z
. (8)

The solution is a power-law function: h(z) ∝ z−2pv/(1−2ph). By
adjusting the proportionality constant, one finally obtains

H (z) = ph

1 − 2ph

δ(z − 1) + 2phpv

(1 − 2ph)2
z
− 2pv

1−2ph . (9)

Thus, besides the δ contribution at z = 1, the average dis-
tribution density of lengths H (z) will be a power law z−α

with an exponent α that depends on ph and pv . A particularly
interesting case occurs when ph → 0. Almost all the segments
are vertical and the few horizontal lines are distributed as z−2.
Nevertheless, notice that the exponent diverges for ph = 1/2
(which is the symmetric and, perhaps, most interesting case)
and it gives a nonsensible positive value for larger values
of ph. The origin of these unphysical results is the absence
of a limiting mechanism in our argument for the number
of lines of z = 1. When ph � 1/2 this role is played by
statistics itself and the problem disappears. In any physical
construction, at ph ∼ 1/2 a small size effect (the UV cutoff
of the problem), such as the line size or the lattice spacing,
would supersede statistics in this duty. Note than under the
standard assumption that ph + pv = 1, the exponent becomes
α(ph) = (2 − 2ph)/(1 − 2ph). But, if ph + pv = c < 1, we
will have an smaller exponent α(ph) = (2c − 2ph)/(1 − 2ph).

IV. EXACT SOLUTION

Let us now derive the exact solution for the discrete case. We
consider a finite lattice with L × L sites and a lattice spacing
a. Domains are elongated and have a width a and a variable
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length �. The variable � now takes discrete values between 1
and L.

For the computation below, it is important to introduce the
dependence with the system size and allow the horizonal and
vertical lengths to be different. The function H�;Lh,Lv

(ph,pv)
will now describe, not the average density, but the average
number of horizontal variants with length �. To proceed, we
develop a recurrence relation for H (�). For this purpose, let us
study what happens when the first line is drawn. Following an
analogous treatment to the one in the previous section we get

H�;Lh,Lv
= phδ�Lh

+ 2ph

Lv

Lv−1∑
j=1

H�;Lh,j + 2pv

Lh

Lh−1∑
j=�

H�;j,Lv
.

(10)

It is straightforward to check that this recurrence can be
simplified to

H�;Lh,Lv
−Lv − 1 + 2ph

Lv

H�;Lh,Lv−1−Lh − 1 + 2pv

Lh

H�;Lh−1,Lv

+ (Lv−1+2ph)(Lh−1+2pv)−4phpv

LvLh

H�;Lh−1,Lv−1

= ph

Lv

(
δ�,Lh

− Lh − 1

Lh

δ�,Lh−1

)
. (11)

Note that the solution of the homogeneous part of this linear
recurrence, i.e., the set of values H�,Lh,Lv

for which the
left-hand side of Eq. (11) vanishes, includes the constructions
A

Lh,Lv

k,�h,�v
(2pv,2ph), defined by the following rule:

A
Lh,Lv

k,�h,�v
(xh,xv) ≡

∞∑
j=0

x
j

hx
j+k
v

j !(j + k)!

d2j+k�
Lh,Lv

�h,�v

dx
j

hdx
j+k
v

, (12)

with

�
Lh,Lv

�h,�v
(xh,xv) ≡ �h!�(xh + Lh)

Lh!�(xh + �h)

�v!�(xv + Lv)

Lv!�(xv + �v)
. (13)

In Eq. (12) it must be understood that k is an integer and
that, when it is negative, only terms with positive or zero
factorials in the divisor will contribute. It is worth pointing
out that � is a polynomial of finite degree and consequently
so are the functions A; their expression as an infinite sum is
merely convenient for the purposes of this paper, and in general
more compact expressions for these quantities might be more

appropriate, such as

A
Lh,Lv

k,�h,�v
(xh,xv) =

∮
zk−1�

Lh,Lv

�h,�v
(xh + xhz,xv + xv/z)dz

2πi
.

(14)

Before we proceed, let us point out two properties of these
objects that will be relevant later on:

(1) Symmetry:

A
Lh,Lv

k,�h,�v
(xh,xv) = A

Lv,Lh

−k,�v,�h
(xh,xv). (15)

(2) Sum completion:
∞∑

k=−∞
akA

Lh,Lv

k,�h,�v
(xh,xv) = �

Lh,Lv

�h,�v

(
xh + xh

a
,xv + axv

)
.

(16)

In order to solve Eq. (11) completely, it will suffice to build
a linear combination of A

Lh,Lv

k,�h,�v
(2pv,2ph) of different k, �h, and

�v that vanishes whenever Lv = 0, and matches the appropriate
boundary conditions at � = Lh − 1. Unless otherwise stated,
it will be understood in the rest of the paper that the arguments
of A

Lh,Lv

k,�h,�v
functions are xh = 2pv and xv = 2ph, respectively.

Let us now explain how these boundary conditions can be
established. We begin observing that when Lv = 1 the only
way to have a horizontal line of size � = Lh is for it to be the
first drawn line:

HLh;Lh,1 = ph. (17)

Consequently, from Eq. (11), we get directly

HLh−1;Lh,1 = 2pvph

Lh

. (18)

Then, we extend this result to generic Lv by using the
recurrence Eq. (11), which, in the case � = Lh, can be rewritten
in a suggestive way:

HLh;Lh,Lv
− ph

1 − 2ph

= 2ph + Lv − 1

Lv

(
HLh;Lh,Lv−1 − ph

1 − 2ph

)
. (19)

From this result it follows that

HLh;Lh,Lv
= ph

1 − 2ph

[
1 − 2ph

Lv!

�(2ph + Lv)

�(2ph + 1)

]
. (20)

Observe that the first term inside the parenthesis corresponds
to the continuum limit prediction, the prefactor of δ in Eq. (9).
We obtain HLh−1;Lh,Lv

in a similar way, making use of the
recurrence Eq. (11), which, after the substitution of Eq. (20),
reads

HLh−1;Lh,Lv
= 2ph + Lv − 1

Lv

HLh−1;Lh,Lv−1 + 2phpv

LvLh(1 − 2ph)

[
1 − (2ph)2�(2ph + Lv − 1)

(Lv − 1)!�(2ph + 1)

]
. (21)

We thus apply this recurrence on Eq. (18) and generate

HLh−1;Lh,Lv
= 2phpv

Lh(1 − 2ph)2

{
1 + �(2ph + Lv)

Lv!�(2ph + 1)
2ph

[
(2 − 2ph) + (1 − 2ph)

Lv−1∑
k=1

1

k + 2ph

]}
. (22)
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This equation in conjunction with the aforementioned restriction, H�,Lh,0 = 0, constitutes the boundary conditions for the
remaining problem.

We are now in a position to build the general solution for the recurrence as a linear combination of the quantities A
Lh,Lv

k,�h,�v
,

which we introduced in Eq. (12). From the minutious analysis of Eq. (22) we obtain the main result of this section:

H�<Lh;Lh,Lv
= 2phpv

(1 − 2ph)2(� + 1)

⎧⎨
⎩

∞∑
j=0

(
1

2ph

− 1

)j

A
Lh,Lv

j ;�+1,1 − 2ph

[
(2 − 2ph)ALh,Lv

0;�+1,1 + (1 − 2ph)ALh,Lv

1;�+1,1

]⎫⎬⎭. (23)

The key point in this last step is to observe that at � = Lh − 1
the defining sum for the quantities A

Lh,Lv

k,�+1,�v
in Eq. (12) has a

single nonvanishing term: j = 0.
Let us analyze some specific limits of interest of this

expression before closing this section:
Regime ph � 1/2: It is convenient to use the sum comple-

tion property Eq. (16) in order to make explicit the divergence
cancellation in the first parenthesis of Eq. (23). Thereafter,

H�;Lh,Lv
=

2phpv

[
�

Lh,Lv

�,1

( 2pv

1−2ph
,1

) + O(ph)

]
(1 − 2ph)2(� + 1)

. (24)

Using the Stirling approximation one recovers the continuum
distribution in Eq. (9), up to an L−1

h factor that disappears
when we rephrase the distribution in terms of z = �/Lh,

H�;Lh,Lv
∼ 2phpv

(1 − 2ph)2Lh

(
�h

Lh

)− 2pv
1−2ph

. (25)

The corrections to this result at finite ph are controlled
by 4pvph/(1 − 2ph), so the continuum solution should be
mistrusted at ph � 0.19 (provided ph + pv = 1).

Regime ph ∼ 1/2: Let us rewrite Eq. (23) as

H�;Lh,Lv
= 2phpv

(� + 1)

⎡
⎣A

Lh,Lv

0;�+1,1 + 1 + 2ph

2ph

A
Lh,Lv

1;�+1,1

+ 1

4p2
h

∞∑
j=0

(
1 − 2ph

2ph

)j

A
Lh,Lv

j+2;�+1,1

⎤
⎦. (26)

This expression is manifestly finite and well behaved at 2ph →
1. Similarly, the result of Eq. (20) for � = Lh becomes in this
limit

HLh,Lh,Lv
= 1

2
(ψ(Lh + 1) + γE) ∼ log Lh + γE

2
, (27)

where φ is the digamma function, and γE denotes the
Euler-Mascheroni constant. Observe the qualitative difference
between these results and those in the regime of ph � 1/2.
The absence of the power-law behavior and the dependence of
HLh,Lh,Lv

on the size are both consequence of the active role of
the cutoffs of the problem in the regularization of the amount
of horizontal lines crossing the system.

Regime ph = 1 − pv → 1. In this limit the A functions
will be dominated by the first term of their defining series, and
therefore, the first parenthesis of Eq. (16) becomes a formal
Taylor series in xv in the explicit limit. Making use again of
Stirling’s approximation we obtain for the continuum part of

the distribution

H�;Lh,Lv
∼ 2pv

Lh

√
Lv

�v

(1 + 2H1+Lv
− 2H2) + O

(
p2

v

)
, (28)

where Hn denotes the nth harmonic number. Notice that the
leading contribution in this limit is generated from the case
where a single vertical line is generated, and since any position
for this variant is equiprobable the � dependence disappears.

V. NUMERICAL COMPUTATION

At large L and �, it becomes an imperative to identify
better strategies to evaluate A

Lh,Lv

k;�h,�v
than their defining sum: the

direct implementation of the latter wastes more computational
resources than the full recurrence Eq. (11). In this section we
will present an algorithm to evaluate this quantity in a more
efficient way for our purposes.

The key point in what follows is that in A
Lh,Lv

k;�h,�v
the L and

� variables mirror each other. It is straightforward to verify
that a similar recurrence to the homogeneous part of Eq. (11)
holds, where the roles of � and L variables are interchanged:

A
Lh,Lv

k;�h,�v
= (2pv + �h)

�h + 1
A

Lh,Lv

k;�h+1,�v
+ (2ph + �v)

�v + 1
A

Lh,Lv

k;�h,�v+1

+2ph2pv − (2pv + �h)(2ph + �v)

(�h + 1)(�v + 1)
A

Lh,Lv

k;�h+1,�v+1.

(29)

Admittedly, the evaluation of a single value in a specific A

construction is not necessarily simpler in Eq. (29) than in
the homogeneous part of Eq. (11). The main advantage of
using Eq. (29) is the fact that, in contrast to what happens for
Eq. (11), we do not have to obtain the A values at any Lv and
Lh independently for a specific �. Instead, we obtain all the
� < Lh part of the distribution at a time for a specific Lv and
Lh.

Therefore, we determine the value of Eq. (23) by applying
the recurrence Eq. (29) on its combination of Ak structures,
which we will denote by Ã, and which satisfy the boundary
conditions

Ã
Lh,Lv

Lh,�v
= 2phpv

(1 − 2ph)2

{
1 − 2ph

�v!�(Lv + 2ph)

Lv!�(�v + 2ph)

[
(2 − 2ph)

+ 2ph(1 − 2ph)
(
HLv+2ph−1 − H�v+2ph−1

)]}
,

Ã
Lh,Lv

�h,Lv
= 2phpv�h!�(Lh + 2pv)

Lh!�(�h + 2pv)
. (30)
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FIG. 8. Average number of domains with length � for a system
with size L = 213 and different values of ph, as indicated in the
legend. Lines are guides to the eye.

We can directly read H�,Lh,Lv
= (1 − �)−1Ã

Lh,Lv

�+1,1 as long as
� < Lh. The distribution is completed with the HLh,Lh,Lv

value
given by Eq. (20).

In the following pictures we graphically illustrate the
behavior of the distribution of avalanche sizes for different
values of ph (pv = 1 − ph) and L. Figure 8 shows, in a
log-log plot, the average number of domains with length �

for a fixed system size L × L = 81922 and several values
of ph increasing from 0.02 to 0.9. As can be seen up to
p � 0.4 the tail exhibits a reasonable power-law (linear)
behavior. The distributions show a δ-function-like behavior
for � = L = 8192, which corresponds to the values given by
Eq. (20).

Figure 9 shows the same distributions as in Fig. 8 but for
a larger system size L = 217 = 131 072. One can observe that

FIG. 9. Average number of domains with length � for a system
with size L = 217 and different values of ph, as indicated in the
legend. Lines are guides to the eye.

FIG. 10. Average number of domains with length � for ph = 0.3,
and different system sizes as indicated in the legend. Lines are guides
to the eye.

the power-law tails for small values of p extend now to more
than four decades, between � = 10 and � = 105. For large
values of p the curvatures do not disappear.

The same conclusion can be reached by plotting the same
distributions for a fixed value of ph and for increasing values
of L, as shown in Figs. 10 and 11.

It is worth noticing that the height of the δ-function-like
peak at � = L shows an constant behavior for ph = 0.3, but
shows an increasing logarithmic behavior for ph = 0.5, as
discussed in the paragraph after Eq. (27).

For the values of ph smaller than 0.5 it is possible to define
an effective exponent corresponding to the power-law-like
behavior H (�) ∼ �−α of the tail of the observed distributions.
We have chosen to fit it by estimating the logarithmic derivative

FIG. 11. Average number of domains with length � for ph = 0.5,
and different system sizes as indicated in the legend. Lines are guides
to the eye.
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FIG. 12. Exponent fitted at the central part of the distribution as
a function of the probability of horizontal variants ph for different
system sizes L as indicated in the legend. The black dashed line shows
the behavior corresponding to the continuum limit, given in Eq. (9).

at � = L − 1 (avoiding the δ-function-like peak at � = L) as

α = − d log H

d log �

∣∣∣∣
�=L−1

� (L − 1)

[
H (L − 2)

H (L − 1)
− 1

]
. (31)

The results are shown in Fig. 12 as a function ph. The dashed
black line corresponds to the solution of the continuous model
α = 2(1−ph)

1−2ph
. The plot illustrate the slow convergence to the

exact exponent in the limit L → ∞ for 0.25 < ph < 0.5.

VI. DISCUSSION AND CONCLUSIONS

We have presented a simple geometrical model for the
growth of needle-like domains in a 2D lattice, which can
be easily applied to the study of 2D martensitic transitions
by selecting the appropriate lattice symmetries and equivalent
variants. Explicit analytic results for the model are presented
for its simplest realization, which concerns only two variants.
Its extension to 3D structural transitions would require us
to consider planar domains growing in a 3D lattice. The
formulation of such realizations of the model does not seem
to be especially difficult, but the solution would in general be
much more cumbersome.

In the Introduction we mentioned the close connection
of this model with the one recently reported model by Ball
et al. [24]. The authors consider the simplest continuum case
on a 2D square and lines drawn at random and growing
along the vertical or horizontal direction with a certain

probability until hitting an exiting line or boundary. Every new
line drawn separates the system into two rectangular domains.
In contraposition to the approach presented here, in Ref. [24]
the interest is centered on the distribution of untransformed
regions. In addition, the model presented there differs with the
present model in the fact that, in order to derive asymptotic
expression for the number of rectangles with sizes (a,b) they
choose the nucleation centers always in the domain with largest
area, which induces an unphysical hierarchy in the problem
and makes its statistical analysis considerably more involved.

It is worth pointing out that the two-variant implementation
of our model features compelling properties: First, our analysis
shows that certain quantities display criticality, which can
be addressed analytically both in the large L limit and at
finite size. This is a result that represents an important
step in the understanding of the finite-size effects in critical
systems. Second, our numerical experimentation indicates
that the system has effective long-range interactions, but
a critical behavior that depends on model parameters and
that qualitatively differs from mean-field predictions. This is
another surprising and interesting result. Third, another lesson
uncovered by our treatment is the emergence of finite-size
effects even at large L as ph → 0.5. This effect is unrelated to
the equiprobability of variants. Instead, it comes from the role
of the cutoffs of the problem in keeping finite the amount of
horizontal needles expected for any subsystem. Consequently,
the appearance of this effect will remain at p = 0.5 for the
variant under consideration, even when the probability for
the other variant is lowered, or when additional variants are
included in the problem.

The present authors plan to study the local properties of the
model, the already discussed extension to 3D, and to relax the
condition for fixed width a, in the near future.
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