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Triboelectric charging, the phenomenon by which electrical charge is exchanged during contact between two
surfaces, has been known to cause significant charge separation in granular mixtures, even between chemically
identical grains. This charging is a stochastic size-dependent process resulting from random collisions between
grains. The prevailing models and experimental results suggest that, in most cases, larger grains in a mixture of
dielectric grains acquire a positive charge, while smaller grains charge negatively. These models are typically
restricted to mixtures of two discrete grain sizes, which are not representative of most naturally occurring granular
mixtures, and neglect the effect of grain size on individual charging events. We have developed a model that
predicts the average charge distribution in a granular mixture, for any continuous size distribution of dielectric
grains of a single material. Expanding to continuous size distributions enables the prediction of charge separation
in many natural granular phenomena, including terrestrial dust storms and industrial powder handling operations.
The expanded model makes predictions about the charge distribution, including specific conditions under which
the usual size-dependent polarity is reversed such that larger grains charge negatively.
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I. INTRODUCTION

Granular mixtures are susceptible to the generation of large
electrical potential differences due to triboelectric charging,
even when all grains are composed of the same material. This
phenomenon is connected to the large electrical fields that
often develop in sand storms [1–3] and ash clouds [4], and
causes clumping and even dust explosions in powder-handling
industries [5–8]. This type of charge exchange is stochastic
due to the chemical symmetry among all grains, but trends
can be observed in the charging behavior. Most experiments
and existing models for charge exchange predict that larger
grains will tend to acquire a positive charge and smaller grains
will become negatively charged, on average. The degree of
charge separation is influenced primarily by the size differ-
ences and mass fractions of each discrete grain size [9–13].
Existing models for charge exchange in granular mixtures
of a single material neglect a number of important effects,
especially the influence of contact area during collisions
and the effect of nondiscrete size distributions on charge
separation, and typically underestimate the magnitude of the
charge exchange [9,10,14].

In this paper, we expand existing models of tribocharging to
make predictions about the charge distribution in mixtures with
a continuous size distribution. To date, analytical models for
charge exchange typically apply only to very simple mixtures
of grains in which each grain is assumed spherical and has
one of two allowed sizes [1,9–12,14]. Many of these models
describe charge exchange events as identical for all pairs of
grains regardless of grain size, despite the fact that the final
charge is observed to be size-dependent [9–13]. Because the
magnitude of insulator tribocharging is shown to be highly
dependent on the area in contact [13,15–18], we introduce an
additional term Aij , the contact area between grains of radii Ri

and Rj during a collision. This causes the amount of transferred
charge during a collision to depend upon the relative sizes of
the grains in contact, changing the properties of the charge
distribution and making predictions about charging trends for
various size distributions.

II. EXISTING MODELS FOR GRANULAR
TRIBOCHARGING

Tribocharging occurs between nearly every combination of
materials, including conductors, semiconductors, and insula-
tors. There are many different mechanisms and models for the
charge exchange depending on properties of the materials. For
example, in conductive materials in contact, mobile electrons
in the bulk are able to easily transfer to materials with lower
surface energy, allowing predictable exchange of charge that
disperses evenly throughout the materials [19].

Insulators, however, exhibit far more complex charging
patterns, with charge exchange attributed to many causes with
various degrees of success. For the contact of metals with
insulators, an empirically determined effective work function
admits treatment of the charge exchange in a similar fashion
to the high-conductivity case [19,20]. However, the contact
of insulators with other insulators is far less well understood.
While the degree and cause of charge transfer is difficult to
identify in many such cases, the direction is fairly predictable,
with a particular charge polarity frequently arising after contact
between certain pairs of materials. For this reason, researchers
have developed a triboelectric series that lists materials in order
of polarity, used to predict the direction of charge transfer when
two materials from the series come into contact [21,22]. These
lists are qualitative and often unreliable due to the wide variety
of possible mechanisms causing insulator charging: charge
exchange has been attributed to such factors as the settling
of trapped high-energy electrons [9–12,16,17], the release
of adsorbed ions [8], breaking of polymer chains [23], and
interactions with atmospheric ions [15], with varying degrees
of accuracy.

It has also been shown that tribocharging occurs even
between identical materials, despite the lack of chemical
differences between the surfaces. Based on their experiments,
Lowell and Truscott proposed a model in which a number
of electrons on insulator surfaces are in unfavorably high
energy states, but cannot reach low-energy states due to
the low conductivity of the material. During contact with
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another surface, these electrons are exposed to low-energy
states on the other surface and can be transferred [16,17].
Shinbrot, Komatsu, and Zhao demonstrated that rubbing
two identical insulating surfaces together in air produces
an increasingly large potential difference, with the surfaces
acquiring a random polarity in each experiment [15]. In
general, the symmetry of same-material tribocharging causes
the direction and magnitude of charge exchange to vary
between experiments, suggesting that a stochastic model (e.g.,
high-energy electron transfer) will be more successful than
previous rigidly deterministic models (e.g., the work function
difference).

Granular mixtures of a single insulating material are just as
susceptible to same-material tribocharging as flat surfaces. In
many cases, granular mixtures include a variety of materials,
and their charge distribution is governed by these material
differences; for example, pneumatic powder transport often
induces significant triboelectric exchange between powders
and metal surfaces [5–8]. In addition, humidity in the air and
adsorbed onto grain surfaces has been shown to significantly
alter charging characteristics [8,24]. However, even granular
mixtures of only a single insulating material have been shown
to readily develop charge separation through same-material
particle-particle collisions [10,12,25].

Expanding upon Lowell and Truscott’s model for trapped
electron relaxation in insulator-insulator contact, Lacks and
Levandovsky proposed a mechanism for grain charging due
to size differences in a mixture alone [9]. During agitation
of a granular mixture, grains repeatedly collide and slide
against each other, allowing all trapped electrons to achieve
lower-energy states. Lacks and Levandovsky developed a
model for predicting the average steady-state charge on grains
of a particular size in a bidisperse mixture of a single material,
demonstrating that larger grains will always acquire a positive
charge in such a case. They later expanded upon this model to
include the more general case of multiple size species and the
possibility for low-energy electron exchange, although they
neglected the latter in simulations and analysis [11].

Particle dynamics simulations of this “population balance”
model compare favorably with experimental results, with
larger grains acquiring a more positive charge on average than
smaller grains [9,11,13]. Forward, Lacks, and Sankaran devel-
oped a methodology for isolating particle-particle interactions
through the use of a bed fluidized with inert nitrogen [26].
In a variety of experiments, they demonstrated that the size-
dependent charge polarity predicted by the electron relaxation
model is independent of material and occurs in any mixture
with a wide size distribution [12,27,28]. They further showed
that the degree of charge separation is highly dependent on the
relative masses of each size species, as this value influences
the rate at which grains collide with other species. In 2009,
Lacks and Kok extended the model to include a dependence of
the quantity of transferred charge on the sizes of the grains in
contact [14]. In their model, electrons transfer due to tunneling
during collisions, with the probability of tunneling a function
of the distance between the electron on one grain and the
closest point on the surface of the other grain. Assuming δ0 is
the maximum distance an electron in the ground state could
tunnel, one can calculate the surface area on each grain over
which electrons are able to transfer.

Jaeger and Waitukaitis et al. developed a more sophisticated
method for measuring the actual charge on each grain to further
investigate the predictions of these models [10,29]. Their
results also agreed with the polarity predicted by the original
model, but they observed that the magnitude of the charge
was too large to be simply caused by trapped electrons. They
suggested that alternative mechanisms such as ion transfer or
interactions with the atmosphere may play a role in charging.

Although the experimental evidence for Lacks and Levan-
dovsky’s model is promising, the model itself is strikingly sim-
plistic. In their initial discussion, Lacks and Levandovsky note
that they have ignored a variety of phenomena, including the
effect of aspherical shapes, sliding contact, and electrostatic
forces between grains, which may alter the charge exchange
rate [9]; Kok and Lacks similarly leave out these factors [14].
We have modified these models by including a method for
calculating contact area differences between grains, which
drive the amount of charge exchanged during a collision.
When two real objects collide, they deform slightly such
that they develop an approximately flat contact area between
them, across which trapped electrons are able to move. By
assuming each collision exchanges a size-independent number
of electrons from each grain, Lacks and Levandovsky neglect
the effect of grain size differences and assume electron transfer
rate is independent of collision area. This area is determined
by the size and collision energy of the grains, and therefore
increases with increasing grain size. Experiments on sphere-to-
surface contact charging have demonstrated that the exchanged
charge is indeed proportional to contact area, and that contact
area can be varied through changes in collision speed and
sphere size [18,30,31]. While the contact area formulation in
Kok and Lacks’ work also suggests a proportional relationship
between collision area and transferred charge, it requires that
grains are treated as hard spheres, so that changes in collision
energy have no effect on the charge [14].

In the model we develop below, we include the effects
of grain size on the number of electrons transferred per
collision and extend Lacks and Levandovsky’s model from
a finite number of discrete grain sizes to a continuous
distribution function. As with the population balance model,
we assume that all grains of approximately the same size can
be represented by a single average grain, and we track its
behavior over time to estimate the accumulated charge. We
will also attempt to determine whether or not this model more
accurately represents real granular mixtures than other related
models, why it differs from experimental observations, and the
implications for our understanding of granular tribocharging
as a whole. The results of this model will be explored in future
experiments to examine the accuracy of the inclusion of the
collision area term and the conditions under which it has an
effect on the charging.

III. GRAIN CHARGING MODEL

For the purposes of this model, we will adopt the charge
transfer mechanism proposed by Lowell and Truscott [16,17]
and further elaborated by Lacks and Levandovsky [9,11].
Each grain is assumed to be a solid sphere of radius R; its
surface area is therefore 4πR2. The surface area density of
trapped high-energy electrons is ρH and is initially the same
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for all grains. Its value at time t = 0 (before charge exchange
due to mixing) is given by ρ0, at which time all grains are
electrically neutral. According to the trapped electron model,
each collision exposes some number of high-energy electrons
that each have a random probability of being transferred; we
will denote this probability as fH . In addition, we will assume
that each collision involves some characteristic contact area
Aij , where the colliding grains have radii Ri and Rj . We
will further assume that the relative speed between grains is
size-independent and equal for all grains, and they are all
composed of the same material; therefore, the contact area is
a function of the grains’ radii only. This allows us to express
the number of high-energy electrons transferred from a grain
of radius Ri to a grain of radius Rj as fHρH,iAij . Note that
the average surface density of electrons ρH,i is a function of
time, and therefore varies throughout the mixing process.

A. Collisions

In order to estimate the collision rates between grains, we
assume that all grains move at approximately the same speed,
and therefore that the average relative speed between two
grains is a constant, here called vr . For very small particles,
the kinetic energy is frequently governed by thermal effects
and the electromagnetic force, resulting in size and/or charge
dependencies for the particle speed. However, we will assume
for this model that the motion of the grains is dominated by
some other external force that gives each grain an average
speed of vr relative to the other grains in the bulk, e.g., a
uniform acceleration applied to a bed of loose grains. See
Fig. 1 for an illustration of this collision process.

We can use the relative speed between grains to estimate the
collision rates as grains move through the mixture. Consider a
single grain of radius Ri moving against a background of grains
of radius Rj . The first grain moves with speed vr relative to
the background grains. In some time �t , the grain moves a
distance vr�t . In this time, it collides with any grains whose

FIG. 1. Diagram of physical system considered. Grains with a
normalized size distribution given by g(R) are mixed in a container
of volume Vc. Mixing is performed by moving the container with
average speed vr , such that the grains inside also move with average
speed vr . The grains are then assumed to move in random directions
with average speed vr as well. When a grain of radius Ri collides
with a grain of radius Rj , some contact area is formed in region
Aij . High-energy electrons in this region are capable of transferring
between the two grains and settling into stable low-energy states.

centers are a distance Ri + Rj from the axis of its motion.
Therefore, the moving grain collides with any grains within
the volume π (Ri + Rj )2vr�t . If our control volume is Vc and
there are nj grains with radius Rj in the mixture, then the rate
at which our grain of radius Ri collides with grains of radius
Rj is ωij , where

ωij = πvrnj

Vc

(Ri + Rj )2. (1)

B. Size distribution

Previous tribocharging models have been developed specif-
ically for application to size distributions consisting of two
discrete sizes [9,12]. These models are restrictive, as unsieved
granular mixtures in nature are more accurately represented
by continuous size distribution functions. While bidisperse
mixtures are much easier to manipulate analytically and are
relevant to simple tribocharging experiments, they cannot
explain or predict phenomena in natural granular mixtures.
Thus, we will consider charge exchange in an arbitrary
continuous grain size distribution.

Consider a mixture of grains with a probability distribution
of radii given by g(R). That is, the fraction of grains in the
mixture with a radius within dR of R is g(R). The distribution
is normalized such that

∫ ∞
0 g(R)dR = 1. As a result, the

number of grains with radius Rj (defined as nj ) is equal
to n0g(R)dR, where n0 is the total number of grains in the
mixture. To find the value of n0, we define the total mass of
the mixture as M0; we use this parameter because of the ease
with which this is directly measured in experiments. Using this
definition, and defining the mass density of grains as ρM , we
can determine n0 by integrating the mass of all grains in the
mixture as follows:

M0 = 4

3
πρMn0

∫ ∞

0
R3g(R)dR. (2)

The use of a continuous size distribution also has important
implications for the collision rate. Recall that the collision rate
ωij depends upon the number of grains nj of radius Rj in the
mixture. When we expand this term, we get a differential
term dRj in the definition of ωij . This will be important
when we calculate the rate at which high-energy electrons
are transferred to the mixture background.

C. Electron transfer rates

We begin by considering the rate at which a single grain
of radius Ri loses electrons to low-energy states on grains
of radius Rj during mixing. We have previously derived an
expression for the frequency of such collisions ωij , as well
as an expression for the number of electrons transferred per
collision at a given time t . Suppose that the charge and number
of acquired electrons on a grain does not affect the rate at which
it continues to donate or acquire electrons during collisions. We
can then write an expression for the rate at which high-energy
electrons on a grain of radius Ri are lost:

d

dt
(ρH,i)|Rj

= −ωijfH ρH,iAij

4πR2
i

. (3)
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This expression gives only the rate at which electrons are lost
to grains in a narrow band of radii around Rj . To obtain the
rate at which the grain loses electrons to all other grains in
the mixture background, we integrate this expression over the
range of all grain sizes Rj :

dρH,i

dt
= −αiρH,i, (4)

αi = vrn0fH

4R2
i Vc

∫ ∞

0
Aij (Ri + Rj )2g(Rj )dRj . (5)

For the time being, since we have not defined an expression
for Aij , we cannot evaluate this integral. We shall find that
for most size distributions, it will be necessary to evaluate this
integral numerically.

1. Electron loss fraction

In the previous section, we defined the average rate at which
a single grain of radius Ri , representing the average grain of
that radius, loses high-energy electrons to grains of radius
Rj . As we saw, this rate is given as a continuous function
(averaged over the discrete collision events that happen over
much smaller time scales) and is directly proportional to the
electron density ρH,i(t). Suppose that we wished to find the
fraction of all electrons currently being transferred from a grain
of radius Ri that were going to grains of a specific size Rj .
This quantity is critical to understanding the nature of size-
dependent charge separation. We note that this quantity, here
called fij , can be equivalently described as the ratio between
the rate of electron transfer to size species Rj , given by Eq. (3),
and the rate of overall electron transfer to grains of all sizes,
given by Eq. (4):

fij = Aij (Ri + Rj )2g(Rj )dRj∫ ∞
0 Aik(Ri + Rk)2g(Rk)dRk

. (6)

We have replaced the variable of integration Rj in the
denominator with the dummy variable Rk , to distinguish it
from the actual variable Rj in the numerator, the size of the
grain band with which our single grain is colliding. Note that
the electron density cancels out, and the fraction of electrons
transferred is a constant fraction with a dependence on grain
radii and the size distribution only. Importantly, we note that
we can now express the rate of change of the high-energy
electron population in the following simple ways:

dρH,i

dt

∣∣∣∣
Rj

= fij

dρH,i

dt
= −αifijρH,i . (7)

2. Collision area

Now that we have identified all the required relationships
to make predictions about the average final charge, we turn
our attention to the collision area. For the analysis up to this
point, we have assumed that each grain is a hard sphere of
a particular radius R. The contact area between two perfectly
spherical hard grains is simply a point, but such a model neither
contributes to our understanding of granular tribocharging nor
fits experimental data regarding tribocharging in general. In
experiments on rubbing flat surfaces together, the exchanged
charge is directly proportional to the area exposed to contact,

and collisions between small grains slide against each other
rather than simply rebound at a point contact [18,30,31]. From
this observation, we may conclude that the exchange of charge
in real collisions between grains will be heavily dependent on
the size of the grains. Specifically, because electron transfer in
other systems tends to depend on the surface area, we expect
to see a similar area dependence in sliding grain collisions.

The inclusion of a collision area term is a stark departure
from the typical approach used in many granular tribocharging
models. The model developed by Lacks and Levandovsky,
and frequently employed to make predictions in various
tribocharging experiments, assumes that a constant number of
electrons (frequently one) is transferred during each collision.
This is analogous to the assertion that 1 = fH AijρH,i(t), using
the framework developed for our model. While this appears to
create problems due to the fact that ρH,i loses its dependence
on time, we note that in the loss fraction fij (which we
will later see is the most important term in predicting the
final charge), the electron density divides out. Therefore, in
calculating the final charge on the grains, the result is identical
to the assumption that Aij is a constant and also divides out.
Other models have also been developed to include a contact
area term, especially that of Kok and Lacks [14]; however,
we believe that our implementation better represents what
is known about the relationship between collision speed and
transferred charge. In using a “maximum tunneling distance”
as the effective boundary of the contact area, Kok and Lacks
have developed a framework in which the effective contact area
is different for the two grains, due to the difference in surface
curvature [14]. In our model, the contact area is the same for
the two grains, which agrees with previous experiments and
models exploring the effect of collision energy on contact area
and transferred charge [15–18].

In Gugan’s treatment of Hertz’s theory [32], the collision
area is given in terms of the collision speed U , reduced

radius R∗ = RiRj

Ri+Rj
, reduced mass M∗ = mimj

mi+mj
= 4πρMR3

i R
3
j

3(R3
i +R3

j )
,

and effective elastic coefficient X∗ = 1−ν2
i

Ei
+ 1−ν2

j

Ej
= constant.

Because we are here assuming that all grains are of the same
material, they all have the same density, modulus E, and
Poisson’s ratio ν. We have also assumed that the relative speed
between any two grains is vr , so all factors involving only
these terms can be dropped for simplicity:

A2.5
ij = 16.4v2

r M∗R2
∗X∗ ∝ M∗R2

∗. (8)

Now we expand these quantities and solve for Aij :

Aij ∝ rijRiRj , (9)

rij = 21.2RiRj(
R3

i + R3
j

)0.4
(Ri + Rj )0.8

. (10)

Because we are considering an area term, we have rearranged
the expression so that it can be written as the product of the
radii of the involved grains and a nondimensional term rij . Note
that this looks very similar to the square of the reduced radius
defined above. This makes logical sense, as real collisions are
not simply point contacts and will involve an amount of contact
area highly dependent on the size and shape of the grains.
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IV. STEADY-STATE GRAIN CHARGE SOLUTIONS

A. Solutions for continuous size distributions

To predict the grain charge at some time t after the initiation
of mixing, we must first calculate the rate at which a single
grain accumulates low-energy electrons. Consider now that
each grain of radius Rj gives a fraction fji of its high-energy
electrons to grains of radius Ri . The rate at which electrons
are given in this way after some time t is −4πR2

j njfji
dρH,j

dt
.

Therefore, if we divide this quantity by ni , the number of grains
of radius Ri , we get the rate of low-energy electron settling
on the average grain of size Ri . Using Eq. (4), the change
in charge QL,ij (t) contributed by these low-energy electrons
from grains of radius Rj is

dQL,ij

dt
= −4eπαjR

2
j fji

nj

ni

ρH,j . (11)

To obtain the overall contribution to the charge from all other
grain sizes, we simply integrate this expression over all sizes
Rj . Meanwhile, the grain is also losing high-energy electrons
due to each of these collisions. The rate at which it loses
electrons can be given as the rate of change of surface electron
density (found above) multiplied by the surface area and
electron charge −e:

dQH,i

dt
= −4eπR2

i

dρH,i

dt
= 4eπαiR

2
i ρH,i . (12)

The overall rate of change of the charge of a single grain of
radius Ri will be given by the sum of these rates:

dQi

dt
= dQH,i

dt
+

∫
dRj

dQL,ij

dt
. (13)

Recall from Eq. (4) that the surface electron density can
be written as an exponential decay function, with ρH,i(t) =
ρ0e

−αi t . We can make this substitution and integrate over time
to obtain an expression for the actual charge at time t :

Qi(t) = 4eπρ0

[
R2

i (1 − e−αi t ) −
∫ ∞

0
R2

j fji

nj

ni

(1 − e−αj t )

]
.

(14)

The above expression accounts for the fact that, at time t = 0,
the grains are electrically neutral. By taking the time to infinity,
we get an expression for the charge once all high-energy
electrons have settled into low-energy states. This causes
the exponential terms to die out, leaving only the following
expression:

Qi,final

= 4eπρ0

(
R2

i −
∫ ∞

0

R2
jAij (Ri + Rj )2g(Rj )dRj∫ ∞

0 Ajk(Rj + Rk)2g(Rk)dRk

)
.

(15)

Equation (15) is an expression for the final charge on a grain
of arbitrary size Ri in a mixture of grains with size distribution
g(R) after all mobile charges have settled into their preferred
states. From the definition of the contact area, we can see that
these integrals do not have an obvious closed-form solution
(although the complexity is significantly reduced by applying
Lacks and Levandovsky’s equal contact area assumption). In

addition, the use of an arbitrary size distribution function also
prevents us from directly solving the integral in the general
case. Therefore, solutions to the final charge equation must be
obtained through numerical integration. This will be especially
useful in the case of unusual size distribution functions, such
as Taylor series curve fits to granular mixtures found in nature,
where analytical solutions introduce unnecessary complexity.

B. Solutions for discrete size distributions

Although a continuous size distribution is a better approxi-
mation of a real granular mixture than a set of discrete sizes, it is
still instructive to explore how this model behaves in the case of
a discrete size distribution, in order to allow comparison to both
Lacks and Levandovsky’s original model and to experimental
observations. As discussed previously, most existing models to
predict charging in laboratory mixtures employ a discrete size
distribution, typically of only two primary grain radii, which
we will here call R1 and R2, where R1 is the larger size. This
size distribution can be represented by a sum of two Dirac delta
functions, which can be thought of as infinitely narrow normal
distributions such that only two grain sizes are represented.
Therefore, our size distribution will look like

g(R) = k1δ1 + k2δ2

k1 + k2
, δi = δ(R − Ri). (16)

The weights k1 and k2 are related to the mass of each size
species. The mass of a single species i is given by the following
expression:

Mi = 4πρMn0kiR
3
i

3(k1 + k2)
. (17)

We can define a set of nondimensional constants d = R2
R1

< 1

and m = M2
M1

> 0. We will find that this greatly simplifies our
analysis. Plugging the mass relationships and nondimensional
constants into our expression for the size distribution, we
obtain the following:

g(R) = d3δ1 + mδ2

d3 + m
. (18)

Since we have already obtained an expression for the final
charge, we need only plug this size distribution into Eq. (15)
and solve. Consider first the charge on grains of radius R1, the
larger size species. The grain charge expression contains two
nested integrals. The integral in the denominator of Eq. (15),
here represented by I0, is

I0(Rj ) =
∫ ∞

0
Ajk(Rj + Rk)2g(Rk)dRk. (19)

Note that this expression is independent of Ri , the grain species
size that we are investigating (which here is R1). Now consider
the remaining integral:

I (Ri) =
∫ ∞

0

R2
jAij (Ri + Rj )2g(Rj )

I0(Rj )
dRj . (20)

Finally, we can analytically solve this integral (using the
definition of an integral of Dirac delta functions δk over a
domain containing Rk) and plug this into the expression in
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Eq. (15) for charge on grains of size Ri :

Qi,final

= eπρ0

(
4R2

i − d3Ai1(Ri + R1)2

d3A11 + msA12
− mAi2(Ri + R2)2

dsA21 + mA22

)
.

(21)

Before substituting for Ri , we can first expand Aij in terms of
the grain sizes Ri and Rj . Recall that this term is symmetric
in i and j ; that is, Rij = Rji . Therefore, we can be certain
that R12 = R21. Furthermore, we can simplify the algebra by
defining r = r12 and s = 1

4 (1 + d)2 < 1, which are terms that
appear frequently in the reduced expression. The expression
reduces significantly in the case where i = j :

rii = 21.2R2
i(

2R3
i

)0.4
(2Ri)0.8

= 1, Aii = R2
i , (22)

r = d

(
2

s(1 + d3)

)0.4

, A12 = rR1R2. (23)

Finally, we can substitute the grain radii R1 and R2 for Ri in
Eq. (21) to find the net charge on grains of each species:

Q1,final = 4eπρ0
R2

1msr(m − d)(d − sr)

(d2 + msr)(dsr + md)
, (24)

Q2,final = −4eπρ0
R2

1d
3sr(m − d)(d − sr)

(d2 + msr)(dsr + md)
. (25)

V. ANALYSIS

We can demonstrate that these charge equations obey the
law of charge conservation; that is, the total charge on grains
of size R1 is equal and opposite to the total charge on grains of
size R2, as we have assumed that all grains start out electrically
neutral. The net total charge is Q0 = n1Q1 + n2Q2, where
ni = 3Mi

4πρMR3
i

is the number of grains in the mixture with

radius Ri . Performing this calculation, we get the following
conservation condition:

Q0 = 3M1

4πρMR3
2

(d3Q1 + mQ2) = 0. (26)

From Eqs. (24) and (25), we can see that d3Q1 = −mQ2.
The cancellation of terms resulting in net charge neutrality
supports the validity of the assumptions leading to this model;
although real mixtures will have a wide spread in charge within
grain sizes, our average charge simplification has clearly not
resulted in a violation of charge conservation. In the following
sections, we will explore additional differences between our
charge distribution function and the model proposed by Lacks
and Levandovsky.

A. Comparison of continuous and discrete models

The original models for granular tribocharging considered
only a finite number of discrete grain radii. However, a far
more realistic distribution when the mixture is composed
primarily of specific sizes is a sum of normal distributions.
While even this may not be sufficient to properly model the
size distribution found in most naturally occurring granular
mixtures, it is an instructive example in the differences and

similarities between our continuous model and the discrete
model. We will consider a grain mixture composed of a sum
of normal distributions centered around two primary sizes R1

and R2, given below:

g(R) = k1e
−a1(R−R1)2 + k2e

−a2(R−R2)2
. (27)

Note that, although it is best practice to normalize this
distribution function to

∫ ∞
0 g(R)dR = 1, the fact that the

distribution only ever appears in both the numerator and
denominator of a ratio suggests that the distribution need
only be normalizable, but not actually normalized, as the
normalization factor will divide out. We will also specify that
R2 < R1 and define k = k2

k1
for the sake of convenience and

consistency. Here ki is a factor determining the height of the
Gaussian peak corresponding to the distribution of grains of
size Ri , so that k is the height of the R2 peak relative to that
of R1. The coefficients a1 and a2 in the exponents are related
to the standard deviation of the distributions, a measure of the
width of the peaks. Each of these properties can be calculated
from the experimentally measured size distribution of a sample
of the mixture.

Consider now the case for which R1 = 100 μm, R2 =
50 μm, a1 = a2 = 0.005 μm−2, and k = 8. The size distri-
bution is shown in Fig. 2(a) for a nondimensional form of
Qfinal, where

Q∗ = Qfinal

4eπρ0R
2
1

. (28)

We can calculate the charge distribution for two cases:
the constant contact area assumption made by Lacks and
Levandovsky’s model, and the size-dependent contact area
model using the definition for Aij described above. The
final charge distribution is given in Fig. 2(b). Note that
the constant contact area assumption produces a parabolic
charge distribution, in which smaller grain sizes acquire an
average negative charge while larger grains become more
positively charged. On the other hand, the charge distribution
for the size-dependent contact area model appears more closely
related to a cubic function, with an additional peak near the
small end of the grain size distribution. This means that the
smallest grains actually acquire a positive charge, while many
large grains are also negatively charged.

B. Polarity reversal

The apparent reversed charge polarity in the case of size-
dependent collision area goes against conventional predictions
for granular insulator tribocharging. Lacks and Levandovsky’s
model predicts that mixture properties have no effect on
the polarity, and experiments to date seem to support this
assertion [9–12]. In the following sections, we dissect the final
charge expression given in Eq. (15) to explore the parameters
that determine charge polarity. We find that the definition of
the area term Aij , as well as the mixture parameters d and m,
play a significant role in determining the final charge polarity
in a bidisperse (or nearly bidisperse) mixture.

1. In the bidisperse case

Recall that each of the nondimensional terms m, d, r , and
s is positive for all sizes R1 and R2. Therefore, in Eqs. (24)
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FIG. 2. Nondimensional charge distribution Q∗ =
Q(R)/4eπρ0R

2
1 for a specified size distribution function. (a)

Normalized particle size distribution function g(R) in the form of
Eq. (27), with k2/k1 = 8, a1 = a2 = 0.005 μm−2, R1 = 100 μm,
and R2 = 50 μm. (b) Nondimensional charge distribution function
corresponding to size distribution in (a) (solid line, magnified ×10
for clarity). For comparison, the distribution using Aij = constant is
overlayed (dashed line). Note the large difference in magnitude, and
the additional peak in the distribution for our model at low values
of R.

and (25), while the denominator is necessarily always positive,
the negative terms in the numerator make the sign ambiguous
at first glance. In previous models, the larger grain size in
a bidisperse mixture always acquires a positive charge, a
prediction supported by experimental data; however, these
models did not include an area term Aij . For our model,
we will explore the sign of the numerator of the fraction in
Eq. (24):

sgn(Q1,final) = sgn[(m − d)(d − sr)]. (29)

We can expand the expression d − sr in terms of only d as
follows:

d − sr = d

(
1 −

[
(1 + d)3

4(1 + d3)

]0.4
)

> 0. (30)

It can be trivially shown that the bracketed expression ranges
between 1/4 (as d approaches 0) and 1 (as d approaches 1);
we can be sure then that d − sr is positive for all values of d.
Therefore, the sign of the charge on grains of size R1 is entirely
determined by the simple expression m − d, the difference
between the ratio of masses of the two species and the ratio
of their radii. Specifically, the larger grains will only achieve
the traditionally predicted positive polarity if the ratio of their
mass to the mass of the smaller grains is larger than the ratio of
their radius to the radius of the smaller grains. Unfortunately,
experiments to date cannot confirm or refute this prediction.
This may be due to a general lack of reporting of mass ratios in
granular tribocharging experiments, as this value affects only
the relative magnitude of average grain charge in the models
used and is of significantly less interest than the size ratio d.
In the following section, we will find that this polarity reversal
also appears in the continuous distribution model, but the exact
conditions required to elicit this behavior are more difficult to
describe in closed form.

We have already shown (in Sec. III C 2) that Lacks and
Levandovsky’s simplification of a single electron transfer per
collision is functionally equivalent to the assumption that all
contact areas are equivalent. To better understand the influence
of the area term on the charge polarity, we can once again
calculate the charge on a grain of size R1, with the area term
left as a variable. We are particularly interested in the ratio of
contact areas, so let us define an additional nondimensional
term aij = Aij

A11
. From Eqs. (21) and (28),

Q∗
1 = msa12

(
ma22 − d3 − sa12(m − d)

(d3 + ma12s)(da12s + ma22)

)
. (31)

Although we have not yet defined Aij in this example, we
will make the very basic assumption that, due to the geometry
of the grains, collisions between two larger grains cannot (on
average) have smaller contact areas than collisions between
two smaller grains. Thus we will state only that a22 � a12 � 1.
If the contact areas are equal, then a22 = a12 = 1 and we obtain
the expression found by Lacks and Levandovsky:

Q∗
1 = ms(1 − d)

d(1 + 3d) + m(3 + d)

4(d3 + ms)(ds + m)
> 0. (32)

Because d < 1 by definition, we see that Eq. (32) must always
be positive when the contact area term is neglected. When the
contact area is not neglected, we can determine what properties
Aij must have in order to result in a polarity reversal. Consider
now the sign of Eq. (31):

sgn(Q∗
1) = sgn

[
d

(
s − d2

a12

)
+ m

(
a22

a12
− s

)]
. (33)

Now, both a22
a12

and s have values less than 1, and s > d2 for all
d < 1. Therefore, if a12 < 1 for d < 1 and approaches 1 more
slowly than d2

s
, then the first term will be negative for all values

of d greater than some critical value. Furthermore, the second
term will be negative above a different critical value for d if a22

approaches 1 more slowly than sa12. The relationship between
these rates, and the value of m in the mixture, will determine
the final value of d for which the entire quantity Q1 is negative.
Because we are dealing with areas here, we expect that a22 will
have a d2 dependence and a12 will have approximately a d
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dependence (if any at all). Since a12 is approximately of order
d1, we do in fact expect that the first parenthetical expression
goes as s − d while the second goes as d − s, suggesting that
Q1 is proportional to m − d. This reaffirms our observation of
the polarity reversal derived above in Eq. (29).

2. In the continuous model

It is important to note that, because we are working with
a continuous distribution, the concept of polarity in the sense
used in the discrete model is ambiguous. For example, it can
be shown that for a size distribution composed of two normal
distributions like the one used in Fig. 2(a), the resulting charge
distribution always takes on the approximately cubic form
seen in Fig. 2(b). However, the contribution to the charge from
each Gaussian peak varies in a way that reflects the polarity
reversal seen in the discrete case. This manifests through a
shift in the zeros of the continuous charge distribution; for
example, as the parameters of the size distribution approach the
conditions required for a polarity reversal, the negative region
of the charge distribution shifts toward the larger grain sizes.

FIG. 3. Effect of variation in peak width of size distribution on
charge polarity, for nondimensional charge Q∗ = Q(R)/4eπρ0R

2
1 .

(a) Normalized particle size distribution functions g(R) in the form
of Eq. (27), with k2/k1 = 8, R1 = 100 μm, and R2 = 50 μm. (b)
Nondimensional charge distribution functions corresponding to the
size distributions in (a). Vertical lines at R = R1 and R = R2 provided
as reference.

This causes larger grains to become more negatively charged,
while smaller grains become more positively charged overall.
Figure 3 demonstrates the effect of this phenomenon as the
size peaks vary in width. This illustrates the importance of
using a continuous grain size distribution rather than a simple
discrete size model: the charge distribution is highly dependent
on many parameters ignored by the discrete model, especially
the width of the peaks in the distribution.

We have also seen how the charge polarity depends primar-
ily on m and d in a primarily two-species distribution when the
area term is included. We can plot the nondimensional charge
Q∗

1 on grains of radius R1 against the mixture parameters k

and d to better understand their effect. Recall that we can
write m − d as d(kd2 − 1). Therefore, the polarity reverses
(Q∗

1 becomes negative) with decreasing k and d. In Fig. 4,
we see this trend: the critical value of R2 below which Q∗

1 is
negative occurs at larger values for decreasing k.

3. Compared to previous experiments

The charge transfer model proposed here predicts that, for
certain grain size distributions, larger grains charge negatively
and smaller grains charge positively. This phenomenon has
not been reported in experiments to date, but the lack of
existing experimental evidence could be attributed to a number
of factors. The new polarity distribution is a result of the
inclusion of area-dependent charge transfer because, when
the area dependence is removed, the predictions made by
the continuous distribution model closely match those of the
discrete model. The fact that the polarity reversal in bidisperse
mixtures often appears in between size peaks, where the
number of grains present is comparatively very small, and
that mass ratios are often unreported in experiments, make the
polarity reversal difficult to observe. However, experiments

FIG. 4. Nondimensional net charge Q∗
1 = Q1(R)/4eπρ0R

2
1 on

grains of radius R1 = 100 μm for a size distribution of the form
of Eq. (27), with a = 0.005 μm. As the ratio of the peak heights (k)
increases, the size ratio (d = R2/R1) below which large grains charge
negatively decreases. Note that the charge predicted by the continuous
distribution is very similar to that predicted by the discrete model,
with some variation due to the effect of the nonzero peak width [as
seen in Fig. 3(b)].
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on collisions of spheres suggest that the transferred charge is
indeed proportional to the contact area [18,30,31], suggesting
that our implementation of a contact area dependence is
accurate. Additionally, small grains may have more irregular
surfaces that do not transfer charge as we expect. Many grain
charging experiments occur in atmosphere; some experiments
have shown that charging in vacuum or a neutral gas produces
vastly different charge patterns [15], while others have sug-
gested that humidity from the air adsorbed onto grains creates
conductive paths during collisions that may alter the process
of charge transfer [8,24,33–35]. These possibilities must be
explored to determine what conditions are necessary in order
to correctly predict grain charging.

In particular, the role of surface water in obfuscating
experiment results cannot be understated. Prior experiments
indicate that the presence of an electric field in a granular
mixture can lead to charge exchange during collisions, leading
to a self-reinforcing phenomenon in which the charge separa-
tion continues to grow with continued mixing [1,24]. Zhang
et al. proposed a charge transfer mechanism entirely based
on the motion of dissociated ions in the surface water layer
on the grains, whereby the contact of two grains creates a
conductive path across which these ions can move and leave net
charge on each grain after separation [24]. This phenomenon
may obscure the effect of contact-area-dependent charging
processes that would otherwise dominate the charge transfer
in dry environments like deserts and dusty airless bodies like
the Moon. The fact that charging is known to occur in these dry
environments, however, suggests that these models may still
be accurate, although care must be taken to eliminate surface
water when conducting experiments to compare to the models.

C. Predicted charge magnitude as compared to experiments

In Fig. 2(b), we saw that our contact-area-dependent charge
transfer model predicts a much lower charge magnitude than
existing models for the same size distribution. In fact, it has
been noted that even existing models underestimate the charge
magnitude compared to grain charging experiments, leading to
speculation regarding the validity of the trapped electron model
in general [10]. We believe that the large difference in charge
magnitude and the polarity reversal may be related to a single
phenomenon ignored by the models. In particular, we suspect
that the influence of atmospheric ions or adsorbed humidity
encourages charge transfer in a manner that neglects the effect
of contact area, as discussed in Sec. V B 3. This effect has
been connected to increased charge separation in a number of
experiments [8,15,33]. The fact that many experiments have
been conducted in atmosphere or in the presence of other

gases and have not involved pretreatment of the grains to
eliminate adsorbed water suggests that this confounding factor
may indeed be present, causing the results to diverge from the
idealized case.

VI. CONCLUSION

In the pursuit of a more realistic model for same-material
granular insulator tribocharging, we have built upon Lacks
and Levandovsky’s original model and added size-dependent
charge exchange and the ability to consider arbitrary size
distributions, rather than discrete, bidisperse mixtures. The
predictions made for continuous size distributions are similar
to those made for discrete distributions of a similar form. In the
limit where the continuous distribution approaches a discrete
distribution, the charge predictions converge. We have also
modified the underlying model for charge transfer by including
a dependence on contact area in determining the number of
electrons transferred in each collision. This model predicts
that mixtures of two size species with a smaller population
of larger grains may display a reversed charge polarity
(i.e., large grains charge negatively and small grains charge
positively) compared to Lacks and Levandovsky’s model.
Leading theories on insulator charging suggest that charging
in vacuum or under different humidity conditions may lead
to different charging behavior, especially charge separation
magnitude and polarity of final charge. We are designing an
experiment to test the applicability of our model to granular
tribocharging under various conditions, particularly in vacuum
where the absence of humidity may cause contact area to
play a more significant role. Future experiments will include
pre-experiment baking of the grains to remove the adsorbed
surface water, to ensure charging events are due to grain
surface contact only. By experimentally testing for polarity
reversal in a humidity-controlled environment, we hope to gain
additional evidence in support of, or contradicting, the trapped
high-energy model for triboelectric charging in insulators.
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