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Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation
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The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the
possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled
cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied.
First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual
island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic
principle is essential for the probabilities of adatom attachment to and detachment from island edges to be
independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment
as the Markovian stochastic process. Second, it is shown that the commonly used definition of the “diffusion”
coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only
provided the attachment and detachment are statistically independent, which is generally not the case for the
diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates
that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation,
our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic
expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly.
The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte
Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion
effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given
monomer interaction with the nucleus edge.
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I. INTRODUCTION

Nucleation is the first stage of new phase formation, which
determines the subsequent phase transition kinetics and is
broadly studied in basic research and applications [1–6]. The
analytical description of steady-state homogeneous nucleation
with discrete [7,8] or continuous [9,10] cluster models is
commonly referred to as the classical nucleation theory (CNT).
Typically, CNT models employ the Fokker-Plank equation
(FPE) formalism for the description of cluster kinetics. That
is, when volume fraction occupied by nucleating clusters is
negligible and the intercluster distances are much larger than
their linear dimensions, the cluster ensemble is described by
a distribution function f (n,t) defined as the volume [or, in
the two-dimensional (2D) case–surface] density of clusters
containing n monomers at time t [11–14]. Following the
common practice of treating n as a continuous variable, the
distribution function evolution is described by the governing
Fokker-Planck equation (here–in the Itoh’s form):

∂f

∂t
= −∂I

∂n
, (1)

where the flux of nuclei, I (n,t), along the size axis n is defined
as

I (n,t) = Af − ∂

∂n
(Bf ), (2)

where A and B are the kinetic coefficients describing the drift
and diffusion rates of clusters in the size space. This function
is normalized per total volume (or surface in 2D) density
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of islands, ρ, that is
∫

f (n,t) dn = ρ. When the cluster size
distribution function is known, many statistical properties of
the nucleation process can be deduced. For example, the barrier
and the rate of nucleation can be found using the steady-state
solution of the FPE.

An important assumption behind the use of the FPE is
the Markovian nature of cluster size evolution, where the
probabilities of absorption and detachment of monomers
at the cluster interfaces are determined by instantaneous
monomer concentrations and do not depend on the monomer
redistribution history. This requirement is easily satisfied in the
case where the monomer capture and emission are rare and
the disturbed monomer concentration in the cluster vicinity
quickly relaxes to the average concentration in the bulk. How-
ever, another frequently met situation, where the cluster growth
rate is limited by diffusion transport of monomers, is much less
straightforward because one has to consider the deviation of the
monomer concentration in the cluster vicinity from the average
one. Indeed, the diffusion profiles of monomers in the cluster
vicinity include monomers previously emitted by the clusters
(Fig. 1), so that the cluster growth has the memory effect. In
order to follow the monomer return to the cluster, one has to
include a history-dependent term in the Langevin equation for
a cluster size [15–17]. Such equation can be reduced to a frac-
tional derivative FPE [18,19], describing abnormal diffusion
in the size space. Alternatively, one can include in the model
an explicit description of the spatial and temporal kinetics of
a monomer concentration field. This restores the Markovian
property, but at the cost of an infinite-dimensional FPE [20].

In this paper we discuss some methodological problems
met in the application of FPE formalism to the description
of diffusion-limited cluster nucleation and suggest a possible
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FIG. 1. Different processes contributing to the diffusion transport
of monomers in the zone of influence of a selected island. Both
currents 1 and 2 contribute to monomer absorption at the island
edge, but only the “net” absorption current 1 is used for the
evaluation of kinetic coefficients. Similarly, current 3 defines the “net”
desorption.

approach to circumvent them. As an example, this approach is
applied to the effect of diffusion on surface island nucleation
and predicts the kinetic barrier for island nucleation, which
is qualitatively different from the earlier predictions (e.g.,
[21–23]).

II. SOME METHODOLOGICAL ASPECTS OF
FOKKER-PLANCK EQUATION DESCRIPTION OF

DIFFUSION-CONTROLLED CLUSTER NUCLEATION

A. The validity of adiabatic approximation

The Markovian description of the cluster ensemble implies
that the probabilities of monomer absorption and desorption
on individual islands are uniquely determined by the island
sizes. In the presence of monomer diffusion profiles, this can
be achieved only approximately, in a special case where the
monomer profiles adjust themselves to any change of a cluster
size much faster than the cluster size changes (this condition
is usually referred to as the adiabatic principle) [24]. In this
case the monomer diffusion profile around a cluster can be
treated as being in one-to-one correspondence with the cluster
size.

After an absorption or emission of a monomer, the
quasi-steady-state diffusion profile in the cluster vicinity
reestablishes after a characteristic time τC ∼ R2

s /D [25],
where D is the monomer diffusion coefficient and Rs , the
characteristic distance from the cluster, where the deviation
of the monomer concentration from the average value in the
system, C0, practically vanishes. The fundamental solution of
the three-dimensional (3D) steady-state diffusion problem is
bounded above at the infinite distance, so the cluster radius
R usually can be a good characteristic lengths, and one can
safely assume Rs ∼ R, whereas in 2D case Rs should be of
the order of the concentration screening length due to the
effect of all sinks in the system. The account of screening or a
limited-size influence zone is essential in the two-dimensional
case, providing the existence of the steady-state solution
itself.

The characteristic time of the island size variation can be
estimated as τR ∼ R/(dR/dt), where R is the island radius
and dR/dt is the growth rate:

dR

dt
∼ v

λ
DC0. (3)

Here v = exp(−ε/T ) is the efficiency of monomer capture
at the cluster boundary, where ε is the additional Gibbs energy
of the monomer jump between the cluster and its proximity
[22] and T is the temperature; λ is the diffusion jump length,
which can be also taken as the width of the cluster boundary.

For the validity of the adiabatic principle, condition
τC/τR � 1 must be fulfilled, which is equivalent to

Rλ

vR2
s

� C0. (4)

In the three-dimensional case (Rs ∼ R) this condition limits
the allowed monomer concentration, though in practice the
limitation is a weak one because CNT is by definition applied
to strongly diluted monomer systems. In the 2D case it can be
easily verified that, as far as the islands are the only monomer
sinks and sources, R−2

s ∼ ρ, where ρ is the surface island
concentration. Then criterion (4) means that for any given
average monomer concentration there exists a certain island
concentration, below which the adiabatic approximation is
inapplicable. In other words, CNT cannot be applied to the
description of very early stages of island nucleation, when ρ

remains below the critical value.
In view of the latter restriction, it is interesting to discuss in

more detail, in which cases Eq. (4) can be satisfied in physical
situations. First of all, the nucleation does not always take
place at ideally flat surfaces. In the case of alternative sinks for
monomers (e.g., steps at vicinal crystal faces) the screening
distance Rs remains nonzero even when the surface density
of islands vanishes. Second, even in the absence of alternative
sinks, the nucleation of islands can occur without any free-
energy barrier (e.g., when the monomer emission is strongly
energetically unfavorable). In this case, the validity of Eq. (4)
becomes a question of time, because the surface density of
islands continuously grows, while the average concentration
of free monomers decreases. Somewhat more complicated is
the nucleation with overcoming of the free-energy barrier. In
this case the surface density of the island also quickly becomes
nonzero due to fluctuatively formed clusters (dimers, trimers,
etc.). Even though these clusters may be subcritical (i.e., on
average they emit monomers easier than absorbing them), they
contribute to the screening, making Rs finite. However, there
is no guarantee that this finite value would become sufficiently
large to satisfy Eq. (4) within any reasonable time.

The restrictiveness of Eq. (4) can be weakened in the case
in which the efficiency of monomer capture by a cluster is
low, v � 1. This situation can arise, e.g., when the capture
of monomers is limited by the availability of places at the
cluster periphery that might accommodate a monomer. When
clusters are pronouncedly faceted, the rate of cluster growth
may be determined by the number of jogs at the cluster edges
(a very similar situation of point defect absorption by an edge
dislocation is considered in [26]).
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B. Cluster diffusion in the size space

Assuming the validity of the adiabatic principle, the kinetic
coefficients A and B should be found from the rates of the
monomer absorption and desorption by the clusters, which
will be referred to below as P (n) and Q(n). The common
expression for A is

A = P (n) − Q(n), (5)

whereas more than one definition of B is possible, though the
most often used one is

B = 1
2 [P (n) + Q(n)]. (6)

A methodological problem that appears in the diffusion-
controlled cluster growth case is the correct definition of P

and Q.
The requirement of the steady-state diffusion in the vicinity

of a cluster imposes a relation between these values, that is
[22,23],

P (n) − Q(n) = J (C0,Ceq,n), (7)

where J is the diffusional current of monomers to the cluster,
which is uniquely determined by the average concentration
of free monomers in the system, the equilibrium monomer
concentration, Ceq, and the cluster size. Being the only
restriction on P and Q, relation (7) fixes P (n) and Q(n)
only up to an additive constant. This is not a big problem
for those applications, where the cluster system behavior is
dominated by the drift term in the FPE. However, in the
nucleation problems, where both the drift and diffusion terms
in the FPE are essential, the uncertainty in the definition of P

and Q can strongly influence the predictions, because B is not
invariant to P and Q changes by the same value. Evidently,
there should exist a certain criterion for the unique selection
of P and Q because it is evidently unphysical that the system
behavior is affected by the arbitrariness of P and Q selection.

To get a hint as to where the problem comes from and how
to deal with it, it is helpful to recall how the FPE (1)–(2) is
obtained. A common way of FPE derivation starts with the
stochastic Langevin equation for island size [11–14],

dn

dt
= A + g(n,t), (8)

where g(n,t) is the delta-correlated function of time:

〈g(n,t ′)g(n,t ′′)〉 = 〈g2(n)〉δ(t ′ − t ′′) (9)

(angular brackets mean the ensemble averaging), which has a
vanishing mean value,

〈g(n,t)〉 = 0. (10)

The kinetic coefficient B in the resulting FPE at any given
time t is proportional to the dispersion of g(n):

B = 〈g2(n)〉 − 〈g(n)〉2

2
= 〈g2(n)〉

2
. (11)

Let us consider a process which includes two kinds of
random events: absorption and desorption. If the correspond-
ing stochastic functions p(n,t) and q(n,t) are delta-correlated
functions of time and

〈p(n,t)〉 = P,

〈q(n,t)〉 = Q,
(12)

then we can use them in Eq. (8), assigning

A = P − Q, (13)

g(n,t) = p(n,t) − P − [q(n,t) − Q]. (14)

The substitution of relation (14) into (11) gives

B = 1
2 (〈p2〉 − P 2 + 〈q2〉 − Q2 − 2〈(p − P )(q − Q)〉).

(15)
In the case in which stochastic functions p and q are

statistically independent, the last term in Eq. (15) disappears
and the kinetic coefficient B is determined by the sum of
dispersions of p and q. If absorption and desorption are
Poisson processes, then their dispersions coincide with the
mean values and Eq. (15) further reduces to Eq. (6).

Thus, the validity of the conventional expression (6)
implies that monomer absorption and desorption by clusters
are independent Poisson processes. The Poisson property
is usually a reasonable assumption [27], but the indepen-
dence of absorption and desorption processes requires special
consideration.

As discussed in the Introduction, the point defect absorption
and desorption cannot generally be considered as statistically
independent, because the absorption includes, in part, recently
detached monomers. It is possible, however, to suggest a phys-
ical approach that guarantees the independence of absorption
and desorption [28]. It is physically clear that when monomers
emitted by a cluster move too far from it, they become involved
in so complicated interactions with other clusters, that the
probability of their return becomes completely uncorrelated
with the emission event. Hence, it is possible to specify around
each cluster its “zone of influence” [29] and demand that
an emitted monomer leaving this zone becomes a part of
the “average” monomer concentration and keeps no memory
about its former kinetics. The sizes of the influence zones
are roughly comparable to the average distance between the
clusters (or, where the monomer diffusion is described in terms
of effective-medium approach, the concentration screening
length [30]). Although an isolated subcritical nucleus is rather
an emitter of monomers, their ensemble as a whole necessarily
provides the monomer sink as a source of its formation
and maintenance. The limited influence zone has a crucial
importance in the 2D case, where it leads to the exponentially
distributed return time of a monomer random walk [31,32] and
can justify the adiabatic principle, allowing the steady-state
solution of a 2D diffusion problem [22].

When defining the absorption rate P , we demand that
it is equal to the average number of monomers arriving
into the influence zone from memory-free average monomer
concentration. Correspondingly, Q includes only that part
of the emitted monomers that leave the zone of influence.
Thus, defined “net” absorption and desorption processes are
independent from each other by definition.

This treatment is closely related to the problem of the cor-
relation factor for defect-mediated diffusion [33,34], though
we deal here with the diffusion in the cluster size space, rather
than in the real space.
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III. KINETIC COEFFICIENTS AND
NUCLEATION BARRIER

In this section we apply our approach to the nucleation in
two-dimensional geometry. To be specific, we model the decay
of a supersaturated solution of adatoms on the surface of a
solid. However, the approach can be equally well applied to
other 2D problems (clustering in layered structures, growth of
thin films, etc.), as well as the nucleation in three-dimensional
systems.

A. Monomer absorption and desorption rates

Let the new phase nuclei be monolayer disk islands with
radii R, determined by the numbers n of monomers that they
contain,

R =
√

nω

π
, (16)

where ω is the island area per monomer. An island grows
and dissolves via monomer absorption and desorption, the
rates of which are determined by the diffusional supply of
adatoms from the surface outside the island and by the adatom
interaction with the island edge.

The rates of monomer absorption and desorption at a
cluster of fixed size will be determined here in the effective-
medium approximation. That is, instead of explicit separation
of the surface into zones of influence for each individual
cluster, we will assume that each cluster is immersed into
an effective medium with the sink strength k2 exactly equal to
the ensemble-averaged sink strengths of all available islands.
This approach gives essentially the same monomer currents
as the explicit cells [30], but allows us to avoid the inessential
complications of solving diffusion equations in finite influence
zones of complicated shape.

In order to find the net absorption rate of monomers, we
consider only monomers coming to the edge of a selected
island outside of its zone of influence, which corresponds
to monomer current 1 in Fig. 1. This can be achieved by
setting the probability of the monomer detachment from the
selected island vanishing. The steady-state spatial distribution
of monomer concentration C1 near a sink satisfies the standard
effective-medium equation [30],

D(∇2 − k2) C1 = 0. (17)

The sink strength k2 is assumed to be constant during the
nucleation stage, though at the later stages of the system
kinetics the account of its time dependence can become
relevant [35–37].

Having in mind that C1 includes only monomers, which
participate in the events 1 and 4 (Fig. 1), the boundary
conditions should be written down as

C1|r→∞ = C0, (18)

2πR

ω
D∇C1

∣∣∣∣
r=R

= P1, (19)

where the absorption rate P1 is proportional to the monomer
concentration C1(R) at the island edge in the layer of about

FIG. 2. The concentration profiles of monomers, participating in
the separated absorption (C1) and desorption (C2) processes. Their
sum C1 + C2 (dashed curve) provides a diffusional profile in the
vicinity of a selected island, where both processes are taken into
account.

the diffusional jump length λ, and the efficiency of monomer
capture at the edge v:

P1 = 2πR

ωλ
vDC1(R). (20)

The diffusion problem (17)–(20) determines the diffusion
profile (Fig. 2) and gives the unknown monomer concentration
at the island edge in the form [22,23]

C1(R) = C0

1 + u(R)
, (21)

where u(R) depends on the sink strength of all clusters:

u(R) = v

λ

K0(kR)

kK1(kR)
. (22)

Here K0 and K1 are the modified Bessel functions of zero
and the first order, respectively.

The net rate of monomer “escape” from a selected island
(current 3 in Fig. 1) can be found from the diffusion equation
similar to (17),

D(∇2 − k2) C2 = 0, (23)

but with the vanishing average monomer concentration in order
to exclude the monomer flux from outside. This corresponds
to the following boundary conditions:

C2|r→∞ = 0, (24)

2πR

ω
D∇C2

∣∣∣∣
r=R

= −Q. (25)

The net desorption rate Q in Eq. (25) takes into account
only current 3, while the total rate of the monomer desorption
from the island, Q + P2, is determined by the equilibrium
concentration at the island edge Ceq(R) and constitutes
currents 2 (with the absorption rate P2 and the necessarily
equal desorption rate) and 3:

Q + P2 = 2πR

ωλ
vDCeq(R). (26)
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Similar to Eq. (20), the rate of absorption of previously
emitted monomers is given by

P2 = 2πR

ωλ
vDC2(R). (27)

Solving the diffusion problem (23)–(25) for C2, one easily
gets

C2(R) = uCeq(R)

1 + u(R)
(28)

and

Q = 2πR

ωλ
vD

Ceq(R)

1 + u(R)
. (29)

The sum of C1 and C2 (Fig. 2) coincides with the solution
of the full diffusion problem [22,23], which is a consequence
of the linearity of the problem.

At this junction, it is worth mentioning that the treatment
above is very similar to that used in Refs. [15–17], where
even three independent stochastic processes were introduced,
corresponding to net absorption, net desorption, and the
emission of monomers to be returned (currents 1, 3, and 2
in Fig. 1, respectively). However, in our diffusion problem
processes 2 and 3 cannot be independent because their
sum gives the full emission rate (26), which is determined
exclusively by the local structure of the cluster edge and is
unaware of the subsequent career of the emitted monomer.

B. Nucleation barrier

In order to demonstrate the advantage of our approach, let
us use it for the estimation of the steady-state cluster nucleation
rate. In doing it, we assume that the parameters of the island
and monomer systems are such that the adiabatic principle can
be applied. We also assume that the rate of cluster drift A in
Eq. (2) follows the standard assumptions of CNT, namely, it is
a monotonically increasing function of island size, which re-
mains negative when n is below a certain critical value nc � 1.

The general CNT treatment suggests that, after some time
lag, the creation of new clusters (more exactly, the transition
of nuclei into the growth region on the size axis, n > nc)
occurs for some time at a nearly constant rate, Ist [6]. This
rate is known to be determined by the steady-state solution of
Eqs. (1) and (2) and can be written down as [9]

Ist = f0(nmin) B(nmin)

√
1

2π

∣∣∣∣d2ϕ

dn2

∣∣∣∣
n=nc

exp (−ϕc). (30)

Here f0 is the constraint equilibrium size distribution
function, which describes the size distribution of heterophase
fluctuations under zero nucleation rate conditions [Ist(f0) =
0], nmin is the minimum size starting from which the clusters
are identified as clusters, ϕc = ϕ (nc) is the nucleation barrier,
and ϕ(n) is the function determined by the FPE kinetic
coefficients:

ϕ(n) = −
∫ n

nmin

A(n′)
B(n′)

dn′. (31)

Using Eqs. (20) and (29), the kinetic coefficients can be
written down in our approach as

A = P1 − Q = 2πR

1 + u(R)

vD

ωλ
[C0 − Ceq(R)], (32)

B = P1 + Q

2
= πR

1 + u(R)

vD

ωλ
[C0 + Ceq(R)]. (33)

For the equilibrium monomer concentration at the island
edge we use the standard Gibbs-Thomson relation,

Ceq(R) = exp

(
−� − γω/R

T

)
, (34)

where � is the Gibbs energy of monomer evaporation from a
flat island edge, and γ is the edge line tension.

Critical islands correspond to the vanishing drift kinetic
coefficient in the FPE, A(nc) = 0. This gives the following
expression for the critical radius:

Rc = γω

� − T ln(1/C0)
. (35)

In the vicinity of the critical size, where | C0 − Ceq(R) | �
C0, the ratio A/B is reduced to

A

B
= 2

C0 − Ceq(R)

C0 + Ceq(R)
≈ C0 − Ceq(R)

C0
. (36)

Note that expression (36) does not include u(R), which de-
pends on the island edge barrier ε and the sink strength k2 and
which is related to the deviation of the monomer concentration
in the cluster vicinity from the average monomer concentration
C0 in the system. Correspondingly, the nucleation barrier
contains no memory about the presence of diffusional profiles
and the other clusters,

ϕc = πγRc

T
. (37)

In the present formalism, the nucleation barrier (37)
coincides with that expected for nucleation in thermodynamic
conditions, where it is equal to the minimal work of the
cluster formation [7,8]. However, the current approach uses
no assumption of thermodynamic equilibrium and is appli-
cable to nonequilibrium systems. A relevant example is met
in crystals under irradiation [28], where cluster nucleation
involves coprecipitation of radiation-produced vacancies and
self-interstitial atoms, making the introduction of the minimal
work for cluster formation meaningless.

The preexponential factor in expression (30) for the steady-
state nucleation rate can depend on the diffusion profile
via B(nmin) . For the minimum island size one can safely
assume kRmin � 1 and use in Eq. (22) asymptotic relations
for the modified Bessel functions, that is, K0(x) ∼ − ln x and
K1(x) ∼ 1/x. Thus, for small clusters (with R ∼ λ) u(R) can
be approximated by

u(λ) ∼ −v ln (kλ). (38)

A low efficiency for defect accommodation at the cluster
edge (v � 1) makes u(λ) negligible compared to unity and
completely eliminates the effect of the diffusion profile on
B(nmin) and on the nucleation rate. In the opposite case
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FIG. 3. The island nucleation barrier function ϕ(R) correspond-
ing to Eq. (37). The dashed curve illustrates the estimation using
the kinetic coefficient expressions suggested in earlier papers [22,23]
with v = 0.25, k = 0.01 λ−1.

(v � 1), the preexponential factor in Ist decreases as the
logarithm of the sink strength.

The earlier treatments, where the effect of monomer return
is not eliminated from the absorption rate [22,23], underesti-
mated the nucleation barrier, since the diffusion term B in the
FPE was artificially increased (see Fig. 3). Correspondingly,
the nucleation rate, which depends exponentially on the
nucleation barrier, could be largely overestimated.

IV. MONTE CARLO SIMULATION OF THE
DIFFUSION EFFECT

We have demonstrated that in the domain of the adiabatic
principle the adjusted kinetic coefficients (32) and (33)
correspond to a decrease of the nucleation rate in the case
of diffusional cloud formation. However, the situation beyond
the applicability of the FPE requires further analysis. On the
one hand, a diffusional cloud in the nucleus vicinity can
accumulate the evaporated monomers, making them easier
to return [15–17], but on the other hand, it also limits the
monomer supply. Even if the effects would compensate each
other on average, the cluster mobility in the size space could
increase with the process dispersion. In order to estimate the
resulting effect let us consider the simplest system with a single
intermediate layer between the nucleus edge and some average
field of monomers in the bulk [see Fig. 4(a)]. Here n � 1 is
the nucleus size (the number of constituent monomers), and C0

and C1 are the monomer concentrations in the bulk (assumed to
be constant) and within the “diffusional” layer, respectively, so
that the transition rates, indicated in the figure, can be written
as follows:

p = w1C1
√

n,

q =
{

w1Ceq(∞)
√

n exp
[√

nc

n
ln

(
C0

Ceq(∞)

)]
, n > 1

0 , n = 1.

j1 = w0C1
√

n,

j0 = w0C0
√

n,

(39)

FIG. 4. Monte Carlo simulation scheme (a) and the probabilities
of attachment and detachment depending on the island size n (b).

where Ceq(∞) is the equilibrium monomer concentration at
a flat island edge according to (34), w1 is the coefficient of
jumping rate between the island edge and the intermediate
layer, which includes also the absorption probability v and
geometric constants from (20), and w0 is the similar coefficient
for monomer transition between the intermediate layer and the
bulk. In our model system we assume that the diffusional layer
is thin enough to be characterized by the nucleus size

√
n.

Cluster size dependences of p and q for given C1 are sketched
in the Fig. 4(b). Their intersection determines the critical
size nc with respect to the bulk monomer concentration C0.
This definition remains consistent with (35) since the critical
nucleus does not disturb the monomer solution [22].

Actually the value of w1 gives the time scale, and the
reaction controlled case corresponds to very rapid diffusion
w0 � w1, so that the diffusional layer is very fast mixing with
the bulk and C1 = C0. In this case one could obtain the steady-
state nucleation rate either via simulation or a FPE solution
(30). But in order to take into consideration diffusion-limited
processes, when w0 ∼ w1 or even w0 � w1, we will calculate
and compare the distribution of the supercritical (n > nc)
nucleus formation time fc(t). For a known time-dependent size
distribution function f (n,t) it could be found as [11,31,38]

fc(t) = ∂

∂t
Pc(t), (40)

where

Pc(t) = 1 −
∫ nc

0
f (n,t)dn. (41)

Alternatively, having the Monte Carlo sampling of the
transition rates (39) we can find fc(t), starting from the
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FIG. 5. Distribution function of the supercritical island formation
time: Monte Carlo calculations for different kinetic regimes.

initial point

n|t=0 = n0 = 1, C1|t=0 = C0; (42)

and summing up the values of t = −τ ln(γ ) while n � nc.
Here τ = 1/(p + q + j0 + j1) is determined by the total event
frequency, and γ ∈ (0,1] is the uniformly distributed random
value.

The resulting plots of fc(t) are shown in the Fig. 5 for
several ratios of the diffusion jump frequency w0 and the
reaction rate w1. For w0 � w1, which in practice means
w0/w1 more or about 10, the Poisson distribution of the
supercritical island formation time is obtained. According to
[39] it indicates the steady-state nucleation regime, whereas
deviations correspond to a time-correlated process. Thus we
can justify the FPE applicability for not extremely large ratios
w0/w1. However, in the opposite case or even for w0 ∼ w1,
it can be seen that the formation time is systematically
increasing. This means that the diffusional layer in our model
is slowing down the nucleation process, when the diffusion
effect turns out beyond the FPE domain.

V. CONCLUSIONS

Our paper demonstrates that the treatment of cluster
nucleation in terms of the Fokker-Planck equation formalism
meets problems when the cluster growth and dissolution are
controlled by the diffusional transport of monomers. First
of all, the Fokker-Plank equation is applicable to Markovian
processes, which can be justified only provided the diffusion
profiles of monomers quickly adjust themselves to the cluster
size variations. While this requirement is nearly always
satisfied for diluted 3D systems of monomers, in the two-
dimensional case it imposes a restriction on the minimum
cluster density in the ensemble.

Second, we discuss the problem of uncertainty of FPE
kinetic coefficient definition in a system of clusters growing
in a diffusion-controlled regime. It is shown that the common
expression for the “diffusion” coefficient in an FPE [Eq. (6)]
can be employed only if the attachment and detachment of
monomers to clusters are statistically independent processes.
We demonstrate that this restriction makes the definition of
kinetic coefficients unique, and propose a possible approach
to the calculation of kinetic coefficients so that the required sta-
tistical independence of monomer absorption and desorption
was guaranteed.

The above-mentioned general considerations were applied
to the problem of adatom island nucleation on solid surfaces,
resulting in notably different predictions as compared to
the earlier treatments, where these limitations were not
considered. For example, the island nucleation barrier turned
out to be insensitive to the presence of diffusion profiles and
coincided with the conventional thermodynamic expression,
regardless of the fact that no thermodynamic equilibrium had
been assumed. On the other hand, the preexponential factor
of the nucleation rate can explicitly depend on the diffusion
profile parameters.

Monte Carlo simulation was used to evaluate the diffusion
effect beyond the FPE applicability. The increase of the
supercritical nucleus formation time was demonstrated as the
intermediate diffusional layer plays a more prominent role in
the monomer kinetics.
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