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Bistable director alignments of nematic liquid crystals confined in frustrated substrates
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We studied in-plane bistable alignments of nematic liquid crystals confined by two frustrated surfaces by means
of Monte Carlo simulations of the Lebwohl-Lasher spin model. The surfaces are prepared with orientational
checkerboard patterns, on which the director field is locally anchored to be planar yet orthogonal between the
neighboring blocks. We found the director field in the bulk tends to be aligned along the diagonal axes of the
checkerboard pattern, as reported experimentally [J.-H. Kim et al., Appl. Phys. Lett. 78, 3055 (2001)]. The energy
barrier between the two stable orientations is increased, when the system is brought to the isotropic-nematic
transition temperature. Based on an elastic theory, we found that the bistability is attributed to the spatial
modulation of the director field near the frustrated surfaces. As the block size is increased and/or the elastic
modulus is reduced, the degree of the director inhomogeneity is increased, enlarging the energy barrier. We also
found that the switching rate between the stable states is decreased when the block size is comparable to the cell
thickness.
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I. INTRODUCTION

Liquid crystals have been utilized in many applications.
In particular, they are widely used in optical devices such
as flat panel displays [1,2]. Because of the softness of the
liquid crystal, its director field is deformed by relatively weak
external fields [3]. To sustain the deformed state, the external
field has to be constantly applied to the liquid crystal substance.
In order to reduce power consumption, a variety of liquid
crystal systems showing multistable director configurations or
storage effects have been developed [4–23]. In such systems,
a pulsed external field can induce permanent changes of the
director configurations. Liquid crystals of lower symmetries,
such as cholesteric, ferroelectric, and flexoelectric phases, are
known to show the storage effects [4–6].

A nematic liquid crystal in a simple geometry, e.g., that
sandwiched between two parallel plates with homeotropic
anchoring, shows a unique stable director configuration
if external fields are not imposed. By introducing elastic
frustrations, the nematic liquid crystals can have different
director configurations of equal or nearly equal elastic energy
[8–11,21–26]. For instance, either of horizontal or vertical
director orientation is possibly formed in nematic liquid
crystals confined between two flat surfaces of uniformly tilted
but oppositely directed anchoring alignments [8]. Also, it
was shown that the nematic liquid crystal confined in porous
media shows a memory effect [27]. The disclination lines
of the director field can adopt a large number of trajec-
tories running through the channels of the porous medium
[21,22]. The prohibition of spontaneous changes of the defect
pattern among the possible trajectories leads to the memory
effect.

Recent evolutions of micro- and nanotechnologies enable
us to tailor substrates of inhomogeneous anchoring condi-
tions, the length scale of which can be tuned less than
the wavelength of visible light. With them, many types of
structured surfaces for the liquid crystals and the resulting
director alignments have been reported in the past few decades
[9,11,23,28–31]. For example, a striped surface, in which the
homeotropic and planar anchorings appear alternatively, was

used to control the polar angle of the director field in the
bulk [32–34].

Kim et al. demonstrated in-plane bistable alignments
by using a nanorubbing technique with an atomic force
microscope [16,18]. They prepared surfaces of orientational
checkerboard patterns. The director field in contact to the
surfaces is imposed to be parallel to the surface yet orthogonal
between the neighboring domains. They found that the director
field far from the surface tends to be aligned along either
of the two diagonal axes of the checkerboard pattern. More
complicated patterns are also possible to prepare [17].

In this paper, we consider the mechanism of the bistable
orientations of the nematic liquid crystals confined in two flat
surfaces of the checkerboard anchoring patterns. We carried
out Monte Carlo simulations of the Lebwohl-Lasher spin
model [35] and argued their results with a coarse-grained
elastic theory. In particular, the dependencies of the stability of
the director patterns on the temperature, and the domain size
of the checkerboard patterns are studied. Switching dynamics
between the stable configurations are also considered.

II. SIMULATION MODEL

We carry out lattice-based Monte Carlo simulations of
nematic liquid crystals confined by two parallel plates
[21,35–41]. The confined space is composed of three-
dimensional lattice sites (L × L × H ) and it is denoted by
B. Each lattice site i has a unit spin vector ui (|ui | = 1), and
the spins are mutually interacting with those at the adjacent
sites. At z = 0 and z = H + 1, we place substrates, composed
of two-dimensional lattices. We put unit vectors dj on the site
j onS, whereS represents the ensemble of the substrate lattice
sites. We employ the following Hamiltonian for ui ,

H = −ε
∑

〈i,j〉(∈B)

P2(ui · uj )

−
∑
i∈B

P2(ui · e) − w
∑

〈i,j 〉,i∈B,j∈S
P2(ui · dj ), (1)
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FIG. 1. (a) Plots of the scalar nematic order parameter in the bulk
Sb (black circles) and on the surface Sw (red open squares) with respect
to the temperature. (b) Plot of the elastic modulus K (black circles)
of the nematic phase with T . S2

w/K is also plotted with red open
squares.

where P2(x) = 3(x2 − 1/3)/2 is the second-order Legendre
function and

∑
〈i,j 〉 means the summation over the nearest

neighbor site pairs. We have employed the same Hamiltonian
to study the nematic liquid crystal confined in porous media
[21].

The first term of the right-hand side of Eq. (1) is the
Lebwohl-Lasher potential, which describes the isotropic-
nematic transition [35–37]. In Fig. 1, we plot the temperature
dependencies of (a) the scalar nematic order parameter Sb and
(b) the elastic modulus K in a bulk system. The numerical
schemes for measuring them are described in Appendix A.
We note that a cubic lattice with periodic boundary conditions
(L3 = 1283) is used for obtaining Sb and K in Fig. 1. As
the temperature is increased, both the scalar order parameter
and the elastic modulus are decreased and show abrupt drops
at the transition temperature T = TIN, which is estimated as
kBTIN/ε ∼= 1.12 [41].

The second term of Eq. (1) is the coupling between the
spins in B and an in-plane external field e. The last term
represents the interactions between the bulk spins and the
surface directors, that is, the Rapini-Papoular-type anchoring
effect [1,3]. w is the strength of the anchoring interaction. If
dj is parallel to the substrates and w > 0, the planar anchoring
conditions are imposed to the spins at the B sites contacting
to S. This term not only gives the angle dependence of the
anchoring effect in the nematic phase, but also enhances the
nematic order near the surface. In Fig. 1(a), we also plot the
scalar nematic order parameter on a homogenuous surface of
w = ε. The definition of Sw is described in Appendix A. The
nematic order on the surface is larger than that in the bulk Sb

and is decreased continuously with T . Even at and above TIN,
Sw does not vanish to zero. When the temperature is far below
TIN, on the other hand, it is close to that in the bulk Sb.

In this study, we prepare two types of anchoring cells.
In type I cells, we set hybrid substrates. At the bottom
surface (z = 0), the preferred direction dj is heterogeneously
patterned like a checkerboard as given by

dj (x,y) =
{

(0,1,0) if ([x/D] + [y/D]) is even

(1,0,0) if ([x/D] + [y/D]) is odd
, (2)

where [X] stands for the largest integer smaller than a real
number X. D is the unit block size of the checkerboard

pattern. At the top surface (z = H + 1), on the other hand,
the preferred direction is homogeneously set to dj = d t ≡
(cos φt sin θt, sin φt sin θt, cos θt). θt and φt are the polar and
azimuthal angles of the preferred direction at the top surface.
In type II cells, both substrates are patterned like the checker-
board, according to Eq. (2).

We perform Monte Carlo simulations with heat bath
samplings. A trial rotation of the ith spin is accepted,
considering the local configurations of neighboring spins, with
the probability p(�H) = 1/(1 + e�H/kBT ), where �H is the
difference of the Hamiltonian between before and after the
trial rotation. The physical meaning of the temporal evolution
of Monte Carlo simulations is sometimes a matter of debate.
However, we note that the method is known to be very
powerful and useful for studying glassy systems with slow
relaxations, such as a spin glass [21,42], the dynamics of
which is dominated by activation processes overcoming an
energy barrier.

In this study we fix the anchoring strengths at both the
surfaces to w = ε, for simplicity. The lateral system size is
L = 512 and the thickness H is changed. For the lateral
x and y directions, the periodic boundary conditions are
employed.

III. RESULTS AND DISCUSSIONS

A. Bistable alignments

First, we consider nematic liquid crystals confined in
cells with the hybrid surfaces (type I). Figure 2(a) plots
the energies stored in the cell with respect to the azimuthal
anchoring angle φt. Here the polar anchoring angle is fixed
to θt = π/2. The energy per unit area E is calculated as
E(θt,φt) = 〈H(θt,φt)〉/L2 − Emin, where 〈X〉 means the spatial
average of a variable X. Emin is the lowest energy defined as
Emin = minθt,φt〈H〉/L2 at each temperature (see below). E is
obtained after 5 × 104 Monte Carlo steps (MCS) in the absence
of external fields. The cell thickness is H = 16 and the block
size is D = 8. The temperature is changed.

Figures 2(a) indicates the energy has two minima at φt =
±π/4, while it is maximized at φt = 0 and ±π/2. To see
the dependence on the polar angle, we plot E against θt with
fixing φt = π/4 in Fig. 2(b). It is shown that E is minimized
at θt = π/2 for φt = π/4. Hence we conclude that the stored
energy is globally lowest at (θt,φt) = (π/2, ± π/4), so that we
set Emin = 〈H(θt = π/2,φt = π/4)〉/L2 in Fig. 2. This global
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FIG. 2. Dependencies of the stored energy per unit area with
respect to φt at θt = π/2 in (a), and to θt at φt = π/4 in (b). The
liquid crystal is confined in a type I cell of D = 8 and H = 16. The
temperature is changed.
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FIG. 3. (a) Plot of the energy difference �E per unit area against
the temperature. The cell thickness is H = 8 (type I) and the block
size D is changed. (b) Plot of the energy difference per unit area
against the block size. The temperature is T/TIN = 0.89 and the cell
thickness is changed.

minimum indicates that the parallel, yet bistable configurations
of the director field are energetically preferred in this cell. This
simulated bistability is in accordance with the experimental
observations reported by Kim et al. [16]. When a semi-infinite
cell is used, the bistable alignments of the director field would
be realized. Hereafter, we express these two stable directions
with n̂+ and n̂−. That is, n̂± = (1/

√
2,±1/

√
2,0).

Figure 2 also indicates the temperature dependencies of
the stored energies. When the temperature is much lower than
the transition temperature TIN, the curves of E are are rather
flat. As the temperature is increased, the dependence becomes
more remarkable. Figure 3(a) plots the energy difference
between the maximum and minimum of E for fixed θt = π/2
as functions of T . It is defined by the in-plane rotation of
d t as �E = E(θt = π/2,φt = π/4) − E(π/2,0). We plot them
for several block sizes D, while the cell thickness is fixed to
H = 16.

In Fig. 3(a), we observe nonmonotonic dependencies of
the energy difference on the temperature. �E is almost
independent of T when T/TIN < 0.6. In the range of 0.6 �
T/TIN < 0.9, it is increased with increasing T . When T/TIN �
0.9, it decreases with T and it almost disappears if T > TIN.
When T > TIN, the system is in the isotropic state, and it
does not have the long-range order. Thus, it is reasonable
that �E vanishes when T > TIN. When T < TIN, on the
other hand, it is rather striking that the energy difference
shows the nonmonotonic dependencies on T , in spite of that
the long-range order and the resultant elasticity are reduced
monotonically with increasing T (see Fig. 1).

We plot the energy difference �E as a function of D in
Fig. 3(b), where the temperature is T/TIN = 0.89. The cell
thickness is changed. It is shown that the energy difference
�E is increased proportionally to the block size D when D

is small. When the cell thickness is large, on the other hand,
the energy difference is almost saturated. The saturated value
becomes smaller when the liquid crystal is confined in the
thicker cell.

In order to clarify the mechanisms of the bistable align-
ments, we calculate the spatial distribution of the nematic
order parameter. In Fig. 4, we show snapshots of xx and xy

components of a tensorial order parameter at several planes
parallel to the substrates. Using ui(t ′), the tensorial order pa-
rameter Qμν is calculated by averaging 3/2(uμuν/2 − δμν/3)

(a)

(b)

−0.25 0.50
0.00 0.50

FIG. 4. Snapshots of the xx and xy components of the tensorial
order parameter Qμν in the type I cells of the thickness H = 8. The
anchoring direction on the bottom surface (z = 0) is patterned like the
checkerboard, while that on the top surface (z = 9) is homogeneously
along n̂+. The temperature is T/TIN = 0.89. The block size is D = 8
in (a) and D = 64 in (b). Only the snapshots in a small area (1282)
are shown.

in a certain period δt as

Qi,μν(t) = 1

δt

t+δt−1∑
t ′=t

3

2

{
ui,μ(t ′)ui,ν(t ′) − 1

3
δμν

}
, (3)

where t ′ means the Monte Carlo cycle, and μ and ν stand for x,
y, and z. In this study, we set δt = 102, which is chosen so that
the system is well thermalized. The block size is D = 8 in (a)
and D = 64 in (b), and the cell thickness is fixed to H = 8. The
temperature is set to T/TIN = 0.89. The anchoring direction at
the top surface is along n̂+, and we started the simulation with
an initial condition, in which the director field is along n̂+, so
that the director field is likely to be parallel to the surface and
along the azimuthal angle φ = π/4 in average.

Qxx near the bottom surface shows the checkerboard pattern
as like that of the imposed anchoring directions dj . Qxy inside
the block domains is small and it is enlarged at the edges be-
tween the blocks. With departing from the bottom surface, the
inhomogeneity is reduced and the director pattern becomes ho-
mogeneous along n̂+. The inhomogeneities in Qxx and Qxy are
more remarkable for the larger D than those for the smaller D.

In Fig. 5, we plot the corresponding profiles of the spatial
modulations of the order parameter with respect to z. The
degree of the inhomogeneity of Qμν is defined by

I (z) = 1

L2S2
b

∫
dxdy{Qμν(x,y,z) − Q̄μν(z)}2, (4)
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FIG. 5. Profiles of the inhomogeneity of the nematic order
parameter I (z) along the cell thickness z. (a) The cell thickness is
H = 32 (type I) and the temperature is T/TIN = 0.89. The block size
is increased from D = 1 to D = 64. (b) The cell thickness is H = 32
and the block size is fixed to D = 16. The temperature T is changed.

where Q̄μν(z) is the spatial average of Qμν in the z plane and
it is given by

Q̄μν(z) = L−2
∫

dxdyQμν(x,y,z). (5)

Sb is the scalar nematic parameter obtained in the bulk [see
Fig. 1(a)]. Since Qμν ∝ Sb in the bulk, the profiles are scaled
by S2

b in Eq. (4), in order to see the pure degree of the
inhomogeneity of the director field. In Fig. 5(a), we changed
the block size D and the temperature is fixed to T/TIN = 0.89.
It is shown that the degree of the inhomogeneity decays with
z, and it is larger for larger D as shown in Fig. 4. Figure 5(a)
also shows that the decaying length is also increased with
the block size D. Roughly it agrees with D. In Fig. 5(b), we
plot the profiles of I (z) for different temperatures with fixing
D = 16. It is shown that the spatial modulation is increased as
the temperature is increased. This is because the nematic phase
becomes softer as the temperature is increased [see Fig. 1(b)].
When the elastic modulus is small, the director field is distorted
by the anchoring surface more largely.

Based on these numerical results, we consider the bistable
alignments with a continuum elasticity theory. The details of
the continuum theory is described in Appendix B. In our
theoretical argument, the spatial modulation of the director
field due to the heterogeneous anchoring plays a crucial role in
inducing the bistable alignments along the diagonal directions.
After some calculations, we obtained an effective anchoring
energy for D 
 H as

g(φ0) = −cW 2D

K
sin2 2φ0, (6)

instead of the Rapini-Papoular anchoring energy,
−W cos2 φ0/2. Here φ0 is the average azimuthal angle
of the director field on the patterned surface. K is the
elastic modulus of the director field in the one-constant
approximation of the elastic theory, and W represents the
anchoring strength in the continuum description. c is a
numerical factor, which is estimated as c ∼= 0.085 when H/D

is large. g(φ0) has a fourfold symmetry and is lowered at
φ0 = ±π/4 and ±3π/4. The resulting energy difference per
unit area is given by

�Eth = π2K

32H {1 + K2/(8cW 2DH )} . (7)

First we discuss the dependence of the energy difference on
the block size D. Equation (7) indicates that the energy differ-
ence behaves as �Eth ≈ π2cW 2D/(4K), which is increased
linearly with D, when D is sufficiently small. If D is large
enough, on the other hand, the energy difference converges to
�Eth ≈ π2K/(32H ). The latter energy difference agrees with
the deformation energy of the director field, which twists along
the z axis by ±π/4. It is independent of D, but is proportional
to H−1. The asymptote behaviors for small and large D are
consistent with the numerical results shown in Fig. 3(b).

Next we consider the dependence of �E on the temperature.
Equation (7) also suggests �Eth is proportional to W 2D/K

when W 2DH/K2 is small. We have speculated the anchoring
strength is simply proportional to the nematic order as W ∝ Sb.
If so, the energy difference is expected to be independent of
Sb as �Eth ∝ W 2/K ∝ S0

b , since K is roughly proportional to
S2

b . This expectation is inconsistent with the dependence of
the numerical results of �E in Fig. 3(a). A possible candidate
mechanism in explaining this discrepancy is that we should
use the nematic order on the surface Sw, instead of Sb, for
estimating W . Since Sw is dependent on T more weakly than
Sb near the transition temperature [see Fig. 1(a)], W 2/K can
be increased with T . The curve of S2

w/K is drawn in Fig. 1(b).
Thus, the director field is deformed more largely near TIN

as shown in Fig. 5(b), so that the resulting energy difference
shows the increase with T .

Also, Fig. 3(a) shows �E turns to decrease to zero, when
we approach to TIN more closely. In the vicinity of TIN, K is
so small that W 2/K becomes large. Then Eq. (7) behaves as
�Eth ∝ K/H . It is decreased to zero as K with approaching
to TIN. In Fig. 3(a), we draw the theoretical curve of Eq. (7)
with taking into account the dependencies of W and K on the
temperature. Here we assume W = W0Sw with W0 being a
constant. The theoretical curve reproduces the nonmonotonic
behavior of the energy difference qualitatively. After the
plateau of �Eth in the lower temperature region, it is increased
with T . Then it turns to decrease to zero when the temperature
is close to the transition temperature. Here we use W0 = 0.3,
which is chosen to adjust the theoretical curve to the numerical
result.

B. Switching dynamics

Next we confine the nematic liquid crystals in the type II
cells, both the surfaces of which are patterned as checkerboard.
As indicated by Eq. (6), each checkerboard surface gives rise
to the effective anchoring effect with the fourfold symmetry.
Hence, the director field is expected to show the in-plane
bistable alignments along n+ or n− also in the type II cells.

Figure 6(a) plots the spatial average of the xy component of
Qμν at equilibrium with respect to the block size. The equilib-
rium value of 〈Qxy〉 is estimated as Q∞

xy = 〈Qxy〉|t=5×104 in the
simulations with no external field. As the initial condition, we
employ the director field homogeneously aligned along n̂+, so
that Q∞

xy is likely to be positive. In Fig. 6(a), we also draw a line
of 3Sb/4, which corresponds to the bulk nematic order when
the director field is along n+. It is shown that Q∞

xy is roughly
constant and is close to 3Sb/4 for D 
 H . It is reasonable
since the inhomogeneity of the director field is localized within
D from the surfaces. When D > H , on the other hand, Q∞

xy
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FIG. 6. (a) Dependencies of the averaged order parameter on the
block size. The cell thickness is H = 16 (type II). The temperature is
changed. (b) Schematic pictures of the director field near the midplane
in the type II cell of D 
 H .

is decreased with D. When D 
 H , the type II cell can be
considered as a collection of square domains each carrying
the uniform anchoring direction. Thus, the director field tends
to be parallel to the local anchoring direction dj , and then,
Qxy inside each unit block becomes small locally. Only on the
edges of the block domains, the director fields are distorted
and adopt either of the distorted states as schematically shown
in Fig. 6(b). With scaling D by H , the plots of Q∞

xy collapse
onto a single curve.

Then we consider the switching dynamics of the director
field between the two stable alignments with imposing in-plane
external fields e in the type II cells. In Fig. 7, we plot the spatial
average of the xy component of the order parameter 〈Qxy〉 in
the processes of the director switching. The cell size is H = 16,
the block size is D = 16, and the temperature is T/TIN = 0.89.
At t = 0, we start the Monte Carlo simulation with the same
initial condition, in which the director field is homogeneously
aligned along n̂+, in the absence of the external field. As shown
in Fig. 7, the nematic order is relaxed to a certain positive
value, which agrees with Q∞

xy in Fig. 6(a). From t1 = 104, we

0

-0.5

0

0.5
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0.03
0.033
0.035
0.04

FIG. 7. Time sequences of the averaged nematic order along n̂+
in the in-plane switching processes. At t = 0, the director field is
completely aligned along n+. In time intervals 1 × 104 � t < 2 ×
104 and 3 × 104 � t < 4 × 104, the external field is applied along n̂−
and n̂+, respectively. The strength of the external field e is changed.
The temperature is T/TIN = 0.89, and the type II cell of D = 16 and
H = 16 is employed.
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FIG. 8. (a) Time sequences of the averaged nematic order param-
eter 〈Qxy〉 in the switching process. Before �t = 0, the director field
is aligned along n̂+ in average. After �t = 0, the in-plane external
field is applied along n̂−. The temperature is T/TIN = 0.89 and the
cell thickness is H = 16 (type II). The strength of the external field e is
changed. (b) Plots of the characteristic time τ of the switching process
with respect to the block size D. τ is defined as 〈Qxy(�t = τ )〉 = 0.
The temperature is T/TIN = 0.89 and the thickness of type II cell is
changed.

then impose an in-plane external field along n̂−, and turn it
off at t2 = 2 × 104. After the system is thermalized during
t = 2 × 104 and t3 = 3 × 104 with no external field, we apply
the second external field along n̂+ from t3 = 3 × 104 until
t4 = 4 × 104. We change the strength of the external field e.

When the external field is weak (e2 � 0.03), the averaged
orientational order is slightly reduced by the external field, but
it recovers the original state after the field is removed. After
a strong field (e2 � 0.04) is applied and is removed off, on
the other hand, 〈Qxy〉 is relaxed to another steady-state value,
which is close to −Q∞

xy . This new state of the negative 〈Qxy〉
corresponds to the other bistable alignment along n̂−. After
the second field along n̂+ is applied, the averaged orientational
order 〈Qxy〉 comes back to the positive original value, +Q∞

xy .
In Fig. 8(a), we show the detailed relaxation behaviors of

〈Qxy〉 in the first switching after t1. �t means the elapsed time
in the first switching, that is, �t = t − t1. Here we change
the block size D, while we fix the external field at e2 = 0.03
and the cell thickness H = 16 (type II). We note that 〈Qxy〉 at
�t = 0 depends on D as indicated in Fig. 6(a). In Fig. 8(a),
it is shown that the switching rate depends also on the block
size D. Notably, the dependence of the switching behavior is
not monotonic against D.

In Fig. 8(b), we plot the characteristic switching time τ

with respect to the block size D in the cells of H = 8, 16, and
32. The temperature and the field strength are the same those
for Fig. 8(a). The characteristic time τ is defined such that the
average orientational order is equal to zero at τ , 〈Qxy〉(�t =
τ ) = 0. Figure 8(b) shows the characteristic time is maximized
when the block size is comparable to the cell thickness. When
D < H , the switching process is slowed down as the block
size is increased. On the other hand, it is speeded up with D

when D > H . In Fig. 8(b), it is suggested that the dependence
of τ on D becomes less significant as H is increased.

Figure 9 depicts snapshots of Qxy(t) at the midplane
(z = H/2) during the first switching process. The parameters
are the same as those in Fig. 8(a), so that the pattern evolutions
correspond to the curves of 〈Qxy〉 in Fig. 8(a). Figure 9
shows that the switching behavior is slowed down when D is
comparable to H , in accordance with Fig. 8(b). When D < H ,
the snapshot implies the switching proceeds via nucleation and
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FIG. 9. Snapshots of the nematic order parameter Qxy(x,y) at
z = 8 in the type II cell of H = 16. The director field in yellow regions
is along n̂+ and that in blue regions is along n̂−. The temperature is
T/TIN = 0.89 and the block size D is changed.

growth mechanism. From the sea of the positive Qxy , where the
director is aligned along n̂+, the droplets of the negative Qxy

are nucleated. They grow with time and cover the whole area
eventually. Under the external field along n̂−, the alignment of
the director field along n̂− is more preferred than that along
n̂+. Because of the energy barrier between these bistable
alignments, the director field cannot change its orientation
to n̂− smoothly under a weak external field. From Eq. (6),
the energy barrier for the local switching of the director field
between the two stable states is given by �F = 8D2{g(φ0 =
0) − g(π/4)} = 8cW 2D3/K , when D < H . Thus, the slow-
ing down of the switching process with D is considered to be
attributed to the enhancement of the energy barrier. Here we
note that a critical field strength for the thermally activated
switching cannot be defined unambiguously. Since the new
alignment is energetically preferred over the original one even
under a weak field, the director configuration will change its
orientation if the system is annealed for a sufficiently long
period. When the field strength is moderate (e2 ∼= 0.035), the
averaged order goes to an intermediate value, neither of Q∞

xy

or −Q∞
xy in Fig. 7. Such intermediate values of 〈Qxy〉 reflect

large scale inhomogeneities of the bistable alignments (see
Fig. 9). At each block, the director field adopts either of the
two stable orientations. The pattern of the intermediate 〈Qxy〉
depends not only on the field strength, but also on the annealed
time. Under large external fields, on the other hand, the energy
barrier between the two states can be easily overcome, so that
the switching occurs without arrested at the initial orientation
(not shown here).

Regarding the local director field, which adopts either of the
two stable orientations (n̂+ and n̂−), as a binarized spin at the
corresponding block unit, we found a similarity of the domain
growth in our system and that in a two-dimensional Ising model
subject to an external magnetic field. If the switching of the
director field occurs locally only at each block unit, there is

no correlation between the director fields in the adjacent block
units. Therefore, the nucleation and growth switching behavior
implies the director field at a block unit prefers to be aligned
along the same orientation as those at the adjacent block units.

We observed stringlike patterns as shown at �t = 4000 for
D = 1 in Fig. 9. Here we note that they are not disclinations of
the director field. They represent domain walls perpendicular
to the substrates. In the type II cells, we have not observed
any topological defects, although topological defects are
sometimes stabilized in the frustrated cell [21]. The stringlike
patterns remain rather stable transiently. On the other hand,
such stringlike patterns are not observed in the switching
process in the Ising model. This indicates the binarized
spin description of the bistable director alignments may
be not adequate. Under the external field along n̂−, the
director field rotates to the new orientation clockwise or
counterclockwise. New domains, which appear via the
clockwise rotations, have some mismatches against those
through the counterclockwise rotations. The resulting
boundaries between the incommensurate domains are formed
and tend to suppress the coagulations of them more and less,
although the corresponding energy barriers are not so large.

When D > H , the switching occurs in a different way.
The director rotations are localized around the edges of the
blocks as indicated in Fig. 6(b). As D is increased, the
amount of the director field that reacts to the field is reduced.
Although the director fields around the centers of the blocks
do not show any switching behaviors before and after the
field application, they are distorted to orient slightly toward
the field. It is considered that the distortion of the director
field inside the blocks effectively reduces the energy barrier
against the external field. We have not succeeded in explaining
the mechanism of the reduction of the switching time with
D. When D > H , the inhomogeneous director field contains
higher Fourier modes of the distortion. The energy barrier
for each Fourier mode becomes lower for the higher Fourier
modes [see Eq. (B8)]. Thus, such higher Fourier modes are
more active against the external field and they would behave
as a trigger of the switching process.

IV. CONCLUSION

In this article, we studied nematic liquid crystals confined
by two parallel checkerboard substrates by means of Monte
Carlo simulation of the Lebwohl-Lasher model. As observed
experimentally by Kim et al., we found the director field in the
bulk shows the bistable alignments, which are along either of
the two diagonal axes. We attribute the bistability of the align-
ments to the spatial modulation of the director field near the
substrates. Based on the elastic theory, we derived an effective
anchoring energy with the fourfold symmetry [Eq. (6)]. Its
anchoring strength is expected to behave as W 2D/K , when
the block size D is smaller than the cell thickness. As the
temperature is increased to the isotropic-nematic transition
temperature, the elastic modulus K of the nematic phase is
reduced so that the director field is more largely deformed
near the substrates. With this effective anchoring effect, we can
explain the nonmonotonic dependence of the energy stored in
this cell qualitatively.
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We also studied the switching dynamics of the director
configuration with imposing in-plane external fields. Usually,
the switching is considered to be associated with the actual
breaking of the anchoring condition. Thus, the energy barrier
for the switching is expected to be proportional to W [16].
In this article, we propose another possible mechanism of the
switching, in which the anchoring condition is not necessarily
broken. Since the energy barrier is increased with the block
size, the switching dynamics notably becomes slower when
the block size is comparable to the cell thickness.

By solving �F = �εE2/2 × (4D2H ), we obtain a
characteristic strength of the electric field E as Ec

∼=
{8cW 2D/(�εKH )}1/2, where �ε is the anisotropy of the
dielectric constant [see Eq. (B1)]. If we apply an in-plane
external field larger than Ec, the switching occurs rather
homogeneously without showing the nucleation and growth
processes. This characteristic strength is decreased with
decreasing D, so that the checkerboard pattern of smaller D is
preferred to reduce the field strength. With smaller D, however,
the stability of the two preferred orientations is reduced.
If the effective anchoring energy is lower than the thermal
energy, the bistable alignment will be destroyed by the thermal
fluctuation. In this sense, the block size D should be larger than
Dc ≈ (KkBT/8cW 2)1/3, where we assumed that the switching
occurs locally in each block, that is, �F ≈ kBT . For a typical
nematic liquid crystal with K = 1 pN and W = 10−5 J/m2 at
room temperature T = 300 K, it is estimated as Dc

∼= 34 nm.
In our theoretical argument, we assumed the one-constant

approximation of the elastic modulus. However, the director
field cannot be described by a single deformation mode in
the above cells. The in-plane splay and bend deformations are
localized within the layer of D near the surface. On the other
hand, the twist deformation is induced by the external field
along the cell thickness direction. If the elastic moduli for the
three deformation modes are largely different from each other,
our theoretical argument would be invalid. We need to improve
both the theoretical and numerical schemes to consider such
dependencies more correctly. Also, we considered only the
checkerboard substrates. But, it is interesting and important
to design other types of patterned surfaces [17] to append
more preferred functions, such as faster responses against the
external field, to liquid crystal devices. We hope to report a
series of such studies in the near future.
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APPENDIX A: ESTIMATIONS OF THE NEMATIC ORDER
AND THE ELASTIC MODULUS

In this Appendix, we estimate the scalar nematic order pa-
rameter and the elastic modulus in Fig. 1 from the Monte Carlo
simulations with Eq. (1) [21,35–41]. First we consider the bulk
behaviors of nematic liquid crystals, which are described by the

Lebwohl-Lasher potential. Here we remove the surface sites S
and employ the periodic boundary conditions for all the axes
(x,y, and z). We use the initial condition along ui = (1,0,0)
and thermalize the system with the heat bath sampling. The
simulation box size is L3 with L = 128.

It is well known that this Lebwohl-Lasher spin model de-
scribes the first-order transition between isotropic and nematic
phases. In Fig. 1, we plot the xx component of the tensorial
order parameter after the thermalization (t � 5 × 104) as a
function of T . Since the initial condition is along the x axis,
the director field is likely to be aligned along the x axis. We
here regard 〈Qxx〉 as the scalar nematic order parameter Sb.
We see an abrupt change of Sb around kBTIN ≈ 1.12ε, which is
consistent with previous studies [41]. Above TIN, the nematic
order almost vanishes, while it is increased with decreasing T

when T < TIN.
In the nematic phase (T < TIN), the director field n can be

defined. Because of the thermal noise, the local director field
is fluctuating around the average director field, reflecting the
elastic modulus. The elastic modulus of the director field is
obtained by calculating the scattering function of the tensorial
order parameter as [37],

〈|Q̃xμ(q)|2〉T = kBT

A + 4LQ sin2 |q|a/2
, (A1)

for μ = y and z. Q̃xμ(q) is the Fourier component of Qxμ at a
wave vector q. a is the lattice constant, and 〈· · ·〉T means the
thermal average. A and LQ are the coefficients appearing in
the free energy functional for Qμν .

In the case of T < TIN, the scattering function goes to zero
for |q|a ∼= 0. Then, we obtain the coefficient LQ by fitting
〈|Q̃xμ|2〉−1

T with 4(kBT )−1LQ sin2 |q|a/2. LQ is proportional
to the elastic modulus K of the director field n as LQ = KS2

b .
In Fig. 1(b), the elastic modulus K is plotted with respect to T .
It is decreased with increasing T , if T > TIN. This indicates the
softening of the nematic phase near the transition temperature.

Next we consider the effect of the surface term. The surface
effect not only induces the angle dependence of the anchoring
effect in the nematic phase, but also leads to the wetting effect
of the nematic phase to the surface in the isotropic phase
[43]. We set homogeneous surfaces of w = ε at z = 0 and
z = H + 1 as in the main text. The anchoring direction is
dj = (1,0,0). The periodic boundary conditions are imposed
for the x and y directions and the initial condition is along
ui = (1,0,0). The profile of Q̄xx (not shown here) indicates
Q̄xx at z = 1 becomes larger than that in the bulk Sb. This
value is the surface order Sw, which is also plotted in Fig. 1(a)
with red open squares. Notably, Sw remains a finite value even
when T > TIN. In Fig. 1(a), we cannot see any drastic change
of Sw, which is continuously decreased with T .

APPENDIX B: ANALYSIS WITH FRANK
ELASTICITY THEORY

Here, we consider the nematic liquid crystal confined in
the checkerboard substrate on the basis of the Frank elasticity
theory. The checkerboard substrate is placed at z = 0, while
we fix the director field at the top surface like the type I cells
employed in the simulations. The free energy of the nematic

012706-7



TAKEAKI ARAKI AND JUMPEI NAGURA PHYSICAL REVIEW E 95, 012706 (2017)

liquid crystal is given by

F = K

2

∫
d r(∇n)2 − �ε

2

∫
d r(n · E)2

−W

∫
z=0

dxdy(n · d)2, (B1)

where n is the director field. The first term in the right-hand
side of Eq. (B1) is the elastic energy. Here we employ the
one-constant approximation with the elastic modulus K . E and
�ε are external electric field and the anisotropy of the dielectric
constant. Here we do not consider the effect of the electric field.
The third term in Eq. (B1) represents the anchoring energy in
the Rapini-Papoular form. W is the anchoring strength and
d is the preferred direction on the surface at z = 0. For the
checkerboard substrates, we set d according to Eq. (2).

At the top surface, we fix the director field as n(z = H ) =
d t(cos φt, sin φt,0), and the bottom surface also prefers the
planar anchoring. From the symmetry, therefore, we assume
that the director field in the bulk lies parallel to the substrates
everywhere. Then, we can write it only with the azimuthal
angle φ as

n = (cos φ, sin φ,0). (B2)

Also, we assume that the director field is periodic for x and y

directions, so that we only have to consider the free energy in
the unit block (0 � x, y � 2D). With these assumptions, the
free energy per unit area is written as

E = K

8D2

∫ 2D

0
dx

∫ 2D

0
dy

∫ H

0
dz(∇φ)2 − W

2D2

∫ D

0

× dx

{∫ D

0
dy sin2 φ +

∫ 2D

D

dy cos2 φ

}∣∣∣∣
z=0

. (B3)

In the equilibrium state, the free energy is minimized with
respect to φ(x,y,z). Inside the cell (0 < z < H ), the functional
derivative of E gives the Laplace equation of φ as

δE
δφ

= −K∇2φ = 0. (B4)

From the symmetry argument, we have its solution as

φ(x,y,z) = φ0 + (φt − φ0)z/H + �(x,y,z), (B5)

�(x,y,z) =
∞∑

m,n=0

�mn sin
(2m + 1)πx

D
sin

(2n + 1)πy

D

× sinh(πγmn(H − z)/D),

γmn =
√

(2m + 1)2 + (2n + 1)2, (B6)

where φ0 and �mn are determined later.

It is not easy to calculate the second term in Eq. (B3)
analytically. Assuming |�| 
 1, we approximate sin2 φ as

sin2(φ0 + �) ≈ sin2 φ0 + � sin 2φ0 + �2 cos 2φ0. (B7)

Then, we obtain the free energy per unit area as

E = K

2H
(φt − φ0)2 − W

2

+
∑
m,n

[
πK�2

mn sinh(2πγmnH/D)

16D

−4W�mn sin 2φ0 sinh(πγmnH/D)

(2m + 1)(2n + 1)π2

]
. (B8)

First we minimize the free energy with respect to �mn by
solving ∂E/∂�mn = 0. Then, we have

�mn = 16WDsech(πγmnH/D) sin 2φ0

(2m + 1)(2n + 1)γmnπ3K
, (B9)

and

E ≈ K

2H
(φt − φ0)2 − W

2
− c

W 2D

K
sin2 2φ0, (B10)

c =
∑
mn

32 tanh(πγmnH/D)

(2m + 1)2(2n + 1)2π5γmn

. (B11)

In the limit of H 
 D, c converges to c ≈ 0.085, while it
behaves as c ≈ 0.5H/D if H 
 D. Since c is positive, the
last term in the right-hand side of Eq. (B10) represents an
effective anchoring condition [Eq. (6)] in the main text. It
indicates the director field tends to be along the diagonal axes
of the checkerboard surface, φ0 = ±π/4. Then, we minimize
E with respect to φ0 and obtain

E = −W

2
− cW 2D

K
+ K

2H

(φt ∓ π/4)2

1 + K2/(8cW 2DH )
. (B12)

It corresponds to the plots in Fig. 2(a). Here we assumed |φ0 ∓
π/4| 
 1, so that sin2 2φ0

∼= 1 − 4(φ0 ± π/4)2. The resulting
energy difference is obtained as

�E = π2K

32H {1 + K2/(8cW 2DH )} . (B13)

In the strong anchoring limit, we can obtain φ rigorously as

φ(x,y,z) = (φt ∓ π/4)z/H ± π/4

+ 4

π

∑
m,n

1

(2m + 1)(2n + 1)
sin

(2m + 1)πx

D

× sin
(2n + 1)πy

D
sinh(πγmn(H − z)/D).

(B14)

Its energy difference is then given by �E = π2K/(32H ). It is
consistent with Eq. (B13) in the limit of W → ∞.
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