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Transverse vibration of nematic elastomer Timoshenko beams
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Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and
displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied
based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the
transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain
the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation,
the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams
are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and
relaxation times provides a possibility of intelligent controlling of their dynamic performance.
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I. INTRODUCTION

Nematic elastomers are one kind of new materials that
simultaneously combine the orientational properties of liquid
crystals and the elastic properties of rubbers. Microscopically,
a nematic elastomer (NE) has a structure constructed by long
polymer molecules and chains, the main stable elements with a
common direction vector or director [1]. The polymer network
is connected by transverse links between the ends of molecules.
These links allow the rotations of individual molecules like
ball pivots [2,3]. From the mechanical viewpoint, this means
that a NE is strongly anisotropic on the macro level, and in
addition to the traditional strains, it might have additional
rotational degrees of freedom. Therefore, NEs display a
soft elasticity characterized by vanishing shear stresses for
a range of longitudinal strains applied perpendicular to the
nematic direction, which results in large deformations under
small applied forces [3–5]. In addition to their unusual static
properties, NEs also display novel dynamic properties. It is
found that an internal relaxation of the nematic director leads
to a dynamic mechanical softening of NEs, that is, dynamic
soft elasticity [6–10]. What is more, nematic elastomers have
novel responses to external stimuli, such as electric fields,
temperature, and light. These properties of soft matter have
attracted increasing interest of researchers in the fields of mi-
croelectronics, biomechanics (actuators or artificial muscles),
and nanomechanics in the context of a possible nontraditional
matrix. Adequate modeling of NEs becomes an important issue
for prospective applications in crucial fields.

Recently, more and more works have been done to in-
vestigate the dynamic mechanical performance of nematic
elastomers. Terentjev and Warner [5,11] developed a linear
viscoelastic theory of liquid crystal elastomers in a hydro-
dynamic (low-frequency) limit. Then, on the basis of linear
viscoelastic theory, Fradkin et al. [12] studied the acoustic
waves in nematic elastomers under a low frequency. Singh [13]
studied the reflection of homogeneous elastic waves from the
free surface of a nematic elastomer half space. Zakharov [14]
studied the properties of surface and edge waves in solids
with a nematic coating. Yang et al. [15] investigated Rayleigh
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wave propagation in nematic elastomers. Jin et al. [16] studied
the light-induced nonhomogeneity and gradient bending of
a photochromic liquid crystal elastomer (LCE) beam, and
proposed a gradient model for the light-induced bending of
a photochromic LCE beam and its nonlinear behaviors, con-
sidering the optochemical process and the nematic-isotropic
phase transition [17]. Warner [18] studied the mechanical and
optical bending of nematic elastomer cantilevers. Li et al. [19]
modeled the transient temperature distribution and the bending
kinetics of a liquid crystal elastomer cantilever under the radi-
ation of a laser diode (LD) light. Ábrahám et al. [20] presented
a dimensionless parametric study of nematic photoelastomer
beams under the combined effects of light and mechanical
loads to show how the number of stress-free layers depends on
the dimensionless parameters. An et al. [21] described a finite
element method (FEM) to model the buckling of a constrained
LCE beam working as a valve for microfluidic flow when
heated. Li et al. [22] studied the light-driven bending vibration
of a liquid crystal elastomer cantilever beam.

It is seen that these works to some extent exhibit the
dynamic behavior of nematic elastomers and the properties
of nematic elastomers in external stimuli. However, different
from the general viscoelastic materials, the existence of the
director as well as the director rotation definitely leads to
particular behavior of NE structures. More investigation
should be carried out to further disclose the dynamic
responses of nematic elastomer structures for the purpose
of the structural design based on nematic elastomers. In
this paper, the transverse vibration of a nematic elastomer
beam is investigated based on the viscoelastic theory in
the hydrodynamic limit and Timoshenko beam theory.
The governing equation for the transverse vibration of a
Timoshenko nematic elastomer beam is derived. The influence
of the nematic director, the rubber relaxation time, and the
director rotation time on the vibration properties of nematic
elastomer beam is discussed. Finally, the conclusion is given.

II. THE VISCOELASTIC CONSTITUTIVE RELATION OF
NEMATIC ELASTOMERS

Figure 1 gives a diagrammatic sketch of NE structures and
director rotation. In fact, the linear viscoelasticity of nematic
elastomers has been well studied. The governing equations
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FIG. 1. Diagrammatic sketch of nematic elastomers: (a) micro-
scopic picture: polymers are average spherical in the isotropic state
(I) and elongated in the nematic state (N); the director n points
along the long axis of the shape spheroid; (b) director rotation in
prolate elastomers (the long axis of the spheroid points along the
nematic director n) toward the elongation diagonal direction; (c)
director rotation in oblate elastomers (the long axis of the spheroid
is perpendicular to the nematic director n) toward the compression
direction; in order to distinguish the director after rotation from the
director before rotation, the initial state of the director is marked as
n0; εnl is the symmetric shear strain and δn is the variation of director
orientation due to the shear strain.

have been proposed by Terentjev et al. [11] and Fradkin
et al. [12] by applying the variation principle to the Lagrangian
density amended by the Rayleigh dissipation function, that is,
L − T Ṡ = ρu̇2/2 − F (u,�) − T Ṡ(u̇,�̇), with independent
variables u and �.

Here the elastic potential energy density in a solid takes the
form

F = c1(n · ε̃ · n)2 + 2c2tr[ε̇](n · ε̃ · n) + c3(tr[ε])2

+ 2c4[(n × ε̃) × n]2 + 4c5[n × (ε̃ · n)]2

+ 1
2d1[n × �]2 + d2n · ε̃ · [n × �], (1)

and the Rayleigh dissipation function (entropy production
density) is a quadratic form of the corresponding velocities

T Ṡ = a1(n · ˙̃ε · n)2 + 2a2tr[ε̇](n · ˙̃ε · n) + a3(tr[ε̇])2

+ 2a4[(n × ˙̃ε) × n]2 + 4a5[n × ( ˙̃ε · n)]2

+ 1
2γ1[n × �̇]2 + γ2n · ˙̃ε · [n × �̇], (2)

where u is the displacement vector, ε̃ is the deviator of
the symmetrical strain tensor ε, � = ∇ × u/2 is the shear
induced local rotation angle of rubber, δn is a small variation
in the undistorted nematic director due to the shear strain, and
� = � − [n × δn] denotes the difference between the local
rotation angle and the rotation angle of the director [n × δn].
The stiffness set ci corresponds to the transversal isotropy with
the direction n along axis z. T is the temperature and S the
entropy; ai are viscous coefficients. di denotes the rotational
stiffness with the relations for the relaxation times ai = ciτR ,
γ1 = d1τ1, and γ2 = d2τ2. In principle, the relaxation times
for various ai will differ, and they also differ from τ1 and
τ2. However, there is a significant separation between these
two groups of characteristic time scales, that is, between
the polymer-specific Rouse time scale τR , and τ1, τ2. The
director rotation time, τ1, has been identified by Terentjev
and Warner [11] and experimentally measured as 10−1 to
10−2 s [23,24]. In contrast, the characteristic time of rubber

relaxation τR is much shorter, of the order of the Rouse time
of the corresponding polymer chains, which can be as low
as 10−5 to 10−6 s. Accordingly, the small differences between
the values of τR for different deformation modes are ignored.
Moreover, due to the demand on positive definiteness of the
Rayleigh function, that is, Eq. (2), it follows that a constraint
γ 2

2 � 8a5γ1 should be maintained, and consequently we have
τ 2

2 � 8c5d1τRτ1/d
2
2 .

By applying the variation principle to the combined La-
grangian and Rayleigh function with respect to their variables
(coordinates and corresponding velocities), the governing
equations of motion of viscous nematic solids are obtained
by neglecting the effects of Frank elasticity on the director
gradient, that is,

ρü = ∇ · σ ,

n × [(d1 + γ1∂t )n × � + (d2 + γ2∂t )n · ε] = 0. (3)

When we choose the z axis to lie in the undistorted director
n, the components of the viscoelastic stress tensor σ take the
form

σxx = (1 + τR∂t )(C11εxx + C12εyy + C13εzz),

σyy = (1 + τR∂t )(C12εxx + C11εyy + C13εzz),

σzz = (1 + τR∂t )(C13εxx + C13εyy + C33εzz),

σyz = 2(1 + τR∂t )C44εyz + d2(1 + τ2∂t )	1/2,

σxz = 2(1 + τR∂t )C44εxz − d2(1 + τ2∂t )	2/2,

σxy = 2(1 + τR∂t )C66εxy, (4)

with

C11 = 2
9c1 − 4

3c2 + 2c3 + 20
9 c4,

C12 = 2
9c1 − 4

3c2 + 2c3 − 16
9 c4,

C13 = − 4
9c1 + 2

3c2 + 2c3 − 4
9c4,

C33 = 8
9c1 + 8

3c2 + 2c3 + 8
9c4,

C44 = 2c5, C66 = 1
2 (C11 − C12) = 2c4. (5)

The elastic constant c3 is dominated by the bulk modulus
B and c3 = B/2 [12]. The bulk modulus is independent of the
configurational entropy of the polymer chains and determined
by molecular forces resisting the compression of a liquid,
which results in B of approximately 109 to 1010 Pa, much
greater than the typical value of rubber modulus, μ0, which is
around 105 Pa [12].

In order to seek the solutions of the displacement in the
usual form u = u∗e−iωt [25], where u∗ is the amplitude vector
and ω is frequency, the effective stress σ is rewritten in the
following form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σxz

σxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=(1 − iωτR)

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 2CR

44 0 0
0 0 0 0 2CR

44 0
0 0 0 0 0 2C66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εxz

εxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)
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FIG. 2. The relationship between the renormalized shear modulus
and the frequencies (a) for different τ1/τ2 with r = 3, τ2 = 10−4 s,
τR = 10−5 s; and (b) for different r with τ1 = 10−2 s, τ2 = 10−4 s,
τR = 10−5 s. The blue lines represent the real part of CR

44 and the red
lines represent the imaginary part of CR

44.

where the effective transversal stresses have a nonclassical
form with the renormalized shear modulus,

CR
44 = 2c5 − d2

2

4d1

(1 − iωτ2)2

(1 − iωτ1)(1 − iωτR)
. (7)

It can be seen that the renormalized shear modulus is
frequency dependent. Besides, c5, d1, and d2 are all related
to the chain anisotropic parameter r (r = l‖/l⊥ measures the
anisotropy of the average chain shape spheroid, that is, the
deviation from a sphere; l‖ and l⊥ are the effective lengths of
steps in the directions parallel and perpendicular to director n).
Then Fig. 2 plots the relationship between the renormalized
shear modulus CR

44 and the frequencies with different τ1/τ2 and
r . The blue lines are the real part of CR

44 which are called storage
moduli, and the red lines are the imaginary part of CR

44 which
are called loss moduli. The storage modulus defines the amount
of elastic energy stored in the material and the loss modulus

z 

x 

L 

(a) (b) 

L 

x 

z 

h n 

b 

FIG. 3. The diagrammatic sketch of (a) a Timoshenko beam
made of nematic elastomers; and (b) the undistorted director n
having an initial angle θ with the z axis (θ is positive while it is
counterclockwise).

is directly related to the viscous dissipation [5]. It is seen that
the real part of CR

44 increases quickly from zero and then tends
to a constant value with the further increasing of frequencies.
For the imaginary part of CR

44, it first decreases significantly
along with the increase of the frequency, while after a critical
transition frequency, the imaginary part of CR

44 is increased.
When frequency gets to a certain value, the imaginary part of
CR

44 tends to a stable value, and NEs reach a rubber plateau.
This stable value is dependent on τ1/τ2, but if the frequency is
large enough, it may approach zero. The nematic elastomers
display dynamic soft elasticity at low frequency, and there
is a transition from a liquid crystal response at a relatively
low frequency to a rubber performance at a relatively high
frequency. In Fig. 2(a), the larger the value of τ1/τ2 is, the
smaller the critical transition frequency will be, and the larger
the stable value is. As shown in Fig. 2(b), when r = 1, the real
part of CR

44 is a constant and the imaginary part of CR
44 is zero,

which corresponds to the pure isotropic viscoelastic material.
When r > 1, bigger r leads to larger absolute values of the
real and imaginary parts of CR

44, while it has no effect on the
critical transition frequencies.

Considering the plane-section assumption for beam theory,
the effective stress σ can be simplified as⎡

⎣σxx

σzz

σxz

⎤
⎦ = (1 − iωτR)

⎡
⎣C11 C13 0

C13 C33 0
0 0 CR

44

⎤
⎦

⎡
⎣εxx

εzz

γxz

⎤
⎦. (8)

When the direction of the undistorted director n has an
initial angle θ with z axis at an initial undeformed state (shown
in Fig. 3), the effective stress σ is⎡
⎣σxx

σzz

σxz

⎤
⎦ = (1 − iωτR)T−1

⎡
⎣C11 C13 0

C13 C33 0
0 0 CR

44

⎤
⎦(T−1)T

⎡
⎣εxx

εzz

γxz

⎤
⎦,

(9)

where

T =
⎡
⎣ cos2θ sin2θ 2 sin θ cos θ

sin2θ cos2θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2θ − sin2θ

⎤
⎦. (10)

III. GOVERNING EQUATION OF MOTION FOR THE
NEMATIC ELASTOMER BEAM

Due to the special properties, nematic elastomers have
been exploited for a wide spectrum of applications, such as
actuators, motors, and device applications. A very interesting
example is that they can be used in artificial muscles [26]. A
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beamlike structure made of nematic elastomers is an applicable
model of an artificial muscle. As seen as Fig. 3, the undistorted
director n has an initial angle θ with the z axis. Based on the
Timoshenko beam theory, the displacements of an arbitrary
point in the beam along the x, y, and z axes can be written as

Ũ (x,z,t) = zφ(x,t),

Ṽ (x,z,t) = 0,

W̃ (x,z,t) = w(x,t), (11)

where w(x,t) is the transverse displacement at the neutral axis
of the beam, φ(x,t) is the rotation of the cross section, and t is
time. Employing the plane-section assumption, the formulas
of the strain for a Timoshenko beam are given as

εxx = z
∂φ

∂x
,

εyy = εzz = εxy = εyz = 0,

γxz = ∂w

∂x
+ φ, (12)

where εxx is the axial strain and γxz is the shear strain.
Then according to Eq. (9), we have

σxx = (1 − iωτR)
{[

4CR
44sin2θcos2θ

+ (C11cos2θ + C13sin2θ )cos2θ

+ sin2θ (C13cos2θ + C33sin2θ)
]
εxx

+ [−2CR
44 sin θ cos θ (cos2θ − sin2θ )

+ sin θ cos θ (C11cos2θ + C13sin2θ )

− cos θ sin θ (C13cos2θ + C33sin2θ )
]
γxz

}
, (13)

σxz = (1 − iωτR)
{
[(C11 − C13) sin θ cos θcos2θ

−2CR
44 sin θ cos θ (cos2θ − sin2θ )

+(C13 − C33)sin2θ sin θ cos θ ]εxx

+ [
CR

44(cos2θ − sin2θ )
2 + (C11 − C13)sin2θcos2θ

−(C13 − C33)sin2θcos2θ
]
γxz

}
. (14)

The bending moment Mx and shear force Qx are
determined as

Mx =
∫

A

σxxz dA, (15)

Qx =
∫

A

ksσxzdA, (16)

where A is the cross-sectional area of the beam and ks is the
shear correction factor depending on the shape of the cross
section of the beam. Using the displacement components and
stress components, Eq. (3) can be rewritten in the following
form:

∂σxx

∂x
+ ∂σxz

∂z
= ρ

∂2Ũ

∂t2
,

∂σxz

∂x
+ ∂σzz

∂z
= ρ

∂2W̃

∂t2
, (17)

where ρ is the mass density of the nematic elastomer.
Integrating Eq. (17), we have

∫
A

∂σxx

∂x
zdA +

∫
A

∂σxz

∂z
zdA =

∫
A

ρ
∂2Ũ

∂t2
zdA,

∫
A

∂σxz

∂x
dA +

∫
A

∂σzz

∂z
dA =

∫
A

ρ
∂2W̃

∂t2
dA. (18)

Substitution of Eqs. (11), (15), and (16) into Eq. (18) leads to

∂Mx

∂x
− Qx = ρI

∂2φ

∂t2
,

∂Qx

∂x
= ρA

∂2w

∂t2
, (19)

where I is the second moment of area. By making use of Eqs. (12)–(16), the equation of motion for the nematic elastomer
Timoshenko beam is given as

(1 − iωτR)
[
4CR

44sin2θcos2θ + 2C13sin2θcos2θ + C11cos4θ + C33sin4θ
]
I
∂2φ

∂x2
− (1 − iωτR)ksA

[
CR

44(cos2θ − sin2θ )
2

+ (C11 − 2C13 + C33)sin2θcos2θ
](∂w

∂x
+ φ

)
= ρI

∂2φ

∂t2
,

(1 − iωτR)ksA
[
CR

44(cos2θ − sin2θ)
2+(C11 − 2C13 + C33)sin2θcos2θ

](∂2w

∂x2
+ ∂φ

∂x

)
= ρA

∂2w

∂t2
. (20)

IV. THE NATURAL FREQUENCIES AND EIGENMODES OF THE NEMATIC ELASTOMER TIMOSHENKO BEAM

Assume that the displacement component has the form [27]

w =
∞∑

m=1

e−iωmtWm(x), φ =
∞∑

m=1

e−iωmtψm(x), (21)

where ωm (m = 1,2,3, . . .) is a complex frequency, and Wm(x) and ψm(x) are complex functions to be determined which are the
mth mode functions of the transverse displacement and the rotation.
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Substitution of Eqs. (7) and (21) into Eq. (20) yields

(1 − iωmτR)

{
4

[
2c5 − d2

2

4d1

(1 − iωmτ2)2

(1 − iωmτ1)(1 − iωmτR)

]
sin2θcos2θ + 2C13sin2θcos2θ + C11cos4θ+C33sin4θ

}
I
d2ψm

dx2

− (1 − iωmτR)ksA

{[
2c5 − d2

2

4d1

(1 − iωmτ2)2

(1 − iωmτ1)(1 − iωmτR)

]
(cos2θ − sin2θ )

2 + (C11 − 2C13 + C33)sin2θcos2θ

}

×
(

dWm

dx
+ ψm

)
= −ρIω2

mψm,

(1 − iωmτR)ksA

{[
2c5 − d2

2

4d1

(1 − iωmτ2)2

(1 − iωmτ1)(1 − iωmτR)

]
(cos2θ − sin2θ )

2 + (C11 − 2C13 + C33)sin2θcos2θ

}(
d2Wm

dx2
+ dψm

dx

)

= −ρAω2
mWm. (22)

Introduce a series of dimensionless coordinates and parameters, which are given in Appendix A. Equation (22) is then rewritten
as the following dimensionless form, that is,[

4λ1(1 − i�mτ ′
R) − β1

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ g1(1 − i�mτ ′
R)+2g2(1 − i�mτ ′

R) + g3(1 − i�mτ ′
R)

]
d2ψ̄m

dξ 2

−
[
λ2(1 − i�mτ ′

R) − 1

4
β2

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ ζ (1 − i�mτ ′
R)

](
dW̄m

dξ
+ ψ̄m

)
= −g4�

2
mψ̄m,

[
λ2(1 − i�mτ ′

R) − 1

4
β2

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ ζ (1 − i�mτ ′
R)

](
d2W̄m

dξ 2
+ dψ̄m

dξ

)
= −α�2

mW̄m . (23)

Uncoupling Eq. (23) yields the following ordinary differ-
ential equation in the variable W̄m, that is,

A1
d4W̄m

dξ 4
+ B1

d2W̄m

dξ 2
+ C1W̄m = 0 , (24)

where A1, B1, and C1 are given in Appendix B. In addition,
α, β1, β2, g1, g2, g3, g4, and ζ in Appendix A are related to
the chain anisotropic parameter r . When r tends to 1, NEs
are degenerated to isotropic viscoelastic solid (Fig. 1), and the
governing equation of motion is reduced to

−(1 − i�mτ ′
R)2g4

d4W̄m

dξ 4
− g4�

2
m(1 − i�mτ ′

R)(α + 1)

× d2W̄m

dξ 2
+ [

α(1 − i�mτ ′
R)�2

m − αg4�
4
m

]
W̄m = 0. (25)

Here we consider the hinged-hinged boundary condition,
which means that both ends of the beam are restrained by
hinged support. Because the hinged support only restrains the
displacement and bending moment, it demands

W̄m(0) = W̄m(1) = ψ̄ ′
m(0) = ψ̄ ′

m(1) = 0. (26)

The numerical solution procedure of Eq. (24) is presented
in Appendix C. Then we can obtain the dimensionless natural
frequency fm and decrement coefficient sm. Correspondingly,
W̄m(ξ ) and ψ̄m(ξ ) are the mth dimensionless mode functions
of the transverse displacement and the rotation. Generally, both
W̄m(ξ ) and ψ̄m(ξ ) are complex. The complex modal functions
imply that the phase of the response is not a constant and thus
the material particles of the NE beam do not pass through
equilibrium simultaneously.

V. NUMERICAL RESULTS

In this section, the natural frequencies and decrement
coefficients of a hinged-hinged NE beam are considered. In
order to verify the validity of the present formulation, we first
consider the situation that the nematic elastomer degenerates
to the general isotropic viscoelastic solid by setting r = 1.
The parameters are chosen as E = 7 × 109 Pa, G = 2.6923 ×
109 Pa, τR = 1.069 × 10−6 s, ρ = 2000 kg m−3, L = 0.4 m,
L/h = 7, ks = 5/6 [27]. The first ten natural frequencies and
decrement coefficients of a hinged-hinged nematic elastomer
beam is calculated and compared with the results given by
Chen et al. [27] for a pure viscoelastic Timoshenko beam.

Figure 4 shows that excellent agreement of the results is
obtained, which verifies the suitability and reliability of the
present solution method in the analysis of the free vibration
characteristic equations of the hinged-hinged nematic elas-
tomer Timoshenko beam.

Based on the above method, the natural frequen-
cies and the corresponding decrement coefficients of a
hinged-hinged nematic elastomer Timoshenko beam are
calculated. Unless otherwise stated, the parameters for
NEs used in the calculation are from Ref. [15]: c1 =
2c2 = 2c4 = μ0 = 5 × 105 N m−2, c3 = 5 × 108 N m−2, c5 =
μ0(r + 1)2/8r , d1 = μ0(r − 1)2/r , d2 = μ0(1 − r2)/r , ρ =
103 kg m−3, τ1 = 10−2 s, τ2 = 0.5 × 10−4 s, τR = 10−5 s. The
length of the nematic elastomer beam is L = 0.4 m, the
thickness is h = 0.04 m, and shear correction factor is
ks = 5/6.

Internal relaxation of nematic directors leads to the dynamic
softening of NEs. The dimensionless director rotation times
τ ′

1 and τ ′
2 are two important parameters. The variations of

the first and fourth order dimensionless natural frequencies
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FIG. 4. Comparison of (a) the dimensionless natural frequencies;
(b) decrement coefficients obtained by the present model and those
given in Ref. [27].

and decrement coefficients with respect to τ ′
1 are given in

Figs. 5 and 6, respectively. In the calculation, we have r = 3
(anisotropic case) and r = 1 (isotropic case). The cyan part
corresponds to r = 1, i.e., the isotropic viscoelastic solid with
no director relaxation. In this situation, the dimensionless
natural frequency and decrement coefficient are independent
of the dimensionless director rotation time τ ′

1 and initial angle
θ , and the cyan part is a flat surface. When r �= 1, as shown
in Figs. 5 and 6, the natural frequencies increase slightly
with the increasing of dimensionless director rotation time
τ ′

1, while the decrement coefficients decrease dramatically at
first, then slowly, and finally tend to a constant value along
with the increase of τ ′

1. At the higher eigenmode, the natural
frequencies are less affected by τ ′

1, while the director rotation
time has an obvious effect on the dissipation. It is easy to find
that the director initial angle θ has a significant influence on
the natural frequencies and decrement coefficients. The natural

FIG. 5. The effect of τ ′
1 on the first-order (a) dimensionless

frequencies and (b) decrement coefficients with r = 3, τ2 = 0.5 ×
10−4 s, τR = 10−5 s (the cyan part corresponding to r = 1; the color
coding shows the corresponding values).

frequencies and decrement coefficients are symmetric to the
initial angle and change periodically along with the variation
of θ . The variation of natural frequencies and decrement
coefficients presents a V mode when θ is among 0 to π/2,
which means it decreases first to a minimum value and then
increases with the increasing of θ . However, it is noticed
that the variation of the first-order natural frequency with
respect to the director initial angle θ presents a W mode when
τ ′

1 < 2 × 25, with the values of the first-order frequencies less
than those when r = 1, and the decrement coefficients greater
than those when r = 1. Different from the V mode, it appears
that there are four θ leading to a same natural frequency
for a certain τ ′

1. In addition, they have different decrement
coefficients. This is due to the dynamic soft elasticity of NEs.
When θ = π/4, the natural frequency of the NE beam closes to
the transition frequency from liquid crystal response to rubber
response (Fig. 2). The deviation of θ from θ = π/4 may cause
the variation of Im(CR

44) cross the transition frequency and have
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FIG. 6. The effect of τ ′
1 on the fourth-order (a) dimensionless

frequencies and (b) decrement coefficients with r = 3, τ2 = 0.5 ×
10−4 s, τR = 10−5 s (the cyan part corresponding to r = 1; the color
coding shows the corresponding values).

the same values at different frequencies near the transition
one, which leads to the W mode near θ = π/4. When the
natural frequencies of NE beams are away from the transition
frequency, it would be the V mode. The mode variation due to
the dynamic soft elasticity of NEs would benefit the vibration
analysis of NE beams near the transition frequency. For the
fourth-order frequencies and decrement coefficients, they are
all greater than those when r = 1. This can be explained from
Fig. 2; that is, the real part of CR

44 increases relatively slowly
with the frequency at a small τ ′

1. Then the wider the frequency
range in which the real part of CR

44 is smaller than that when
r = 1 is, the smaller the natural frequency is, which is due to
smaller storage modulus. In the same way, since the imaginary
part of CR

44 is zero when r = 1, the absolute value of the
imaginary part of CR

44 is always nonzero when r �= 1, and
the decrement coefficients are greater than that when r = 1.
Moreover, the effect of τ ′

1 on the frequencies and decrement
coefficients is evident for all modal orders and not given here
anymore.

FIG. 7. The effect of τ ′
2 on the first-order (a) dimensionless

frequencies and (b) decrement coefficients with r = 3, τ1 = 10−2 s,
τR = 10−5 s (the cyan part corresponding to r = 1; the color coding
shows the corresponding values).

Figures 7 and 8 show the effect of dimensionless director
rotation time τ ′

2 and the director initial angle θ on the
dimensionless natural frequencies and decrement coefficients
of NE beams. It can be seen that the natural frequencies are
decreased with the increase of the director rotation time τ ′

2 for
both of the lower and higher eigenmodes. When r = 1, the
dimensionless natural frequency and decrement coefficient
are independent of the dimensionless director rotation time
τ ′

2 and initial angle θ , and the cyan part is a flat surface.
As shown in Fig. 7(a), the variation of the first-order natural
frequencies with respect to the director initial angle θ presents
a W mode for all of τ ′

2 while θ is among 0 to π/2, and
the values at the middle vertex equal those when r = 1. At
the fourth eigenmode, the natural frequencies and decrement
coefficients are generally greater than those when r = 1, and
display V mode with the variation of the director initial angle,
reaching the minimum values at θ = π/4. With the increasing
of τ ′

2, the first eigenmode of the decrement coefficients is less
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FIG. 8. The effect of τ ′
2 on the fourth-order (a) dimensionless

frequencies and (b) decrement coefficients with r = 3, τ1 = 10−2 s,
τR = 10−5 s (the cyan part corresponding to r = 1; the color coding
shows the corresponding values).

affected, whereas it decreases slightly at the fourth eigenmode,
indicating that the higher the order of the eigenmode is, the
more significantly the decrement coefficients are affected by
τ ′

2. Moreover, it shows that τ ′
2 plays a relatively greater role

than τ ′
1 in the parameter study of NEs.

The influence of the dimensionless rubber relaxation time
τ ′
R and the director initial angle θ on the dimensionless natural

frequencies and decrement coeffcients is plotted in Figs. 9
and 10, respectively. It can be seen from Figs. 9 and 10 that
dimensionless rubber relaxation time τ ′

R has fewer effects on
the natural frequencies, whereas the decrement coefficients
increase linearly. And the higher the modal order is, the more
significantly the decrement coefficients are increased with the
increase of τ ′

R . This agrees well with the behavior of general
isotropic viscoelastic beams. NEs possess the characteristics
of general isotropic materials. It is noticed that the rubber
relaxation time τ ′

R has great effects on the dissipation of NE
beams when r = 1, which is less affected by the director

FIG. 9. The effect of τ ′
R on the first-order (a) dimensionless

frequencies and (b) decrement coefficients with r = 3, τ1 = 10−2 s,
τ2 = 0.5 × 10−4 s (the cyan part corresponding to r = 1; the color
coding shows the corresponding values).

rotation time τ ′
1 and τ ′

2. When r > 1, the variation of the
natural frequencies and decrement coefficients present a V

mode while θ varies from 0 to π/2 with larger values than
those at r = 1. However, at the first eigenmode, the variation
of natural frequencies also displays a W mode with a small
middle vertex value equal to that when r = 1.

From the results above we can see that the chain anisotropic
parameter has great effects on the natural frequencies and
decrement coefficients of NE beams. In order to clearly
manifest the influence of r , Fig. 11 gives the dimensionless
natural frequencies and the decrement coefficients at different
eigenmodes. Here L = 0.6 m is used to obtain lower natural
frequencies. In the calculation we have τ1 = 10−2 s, τ2 =
0.5 × 10−4 s, τR = 10−5 s. In Fig. 11, the natural frequencies
increase linearly with the increasing of modal order m, and
the larger the value of r is, the larger the slope is. It is noticed
that the decrement coefficients have a sudden increase when
the anisotropic parameter r is bigger than 1, which is due
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FIG. 10. The effect of τ ′
R on the fourth-order (a) dimensionless

frequencies and (b) decrement coefficients with r = 3, τ1 = 10−2 s,
τ2 = 0.5 × 10−4 s (the cyan part corresponding to r = 1; the color
coding shows the corresponding values).

to the transition from isotropic viscoelasticity (r = 1 with no
director relaxation) to anisotropic viscoelasticity (r > 1 with
shear flow and director relaxation). It is also seen that at higher
eigenmode, the decrement coefficients increase slightly along
with the increasing of r , whereas at the lower modal order,
the decrement coefficients decrease with the increasing of r ,
which is due to the dynamic soft elasticity in a low-frequency
limit for NEs.

In order to see clearly this variation due to the dynamic soft
elasticity, Fig. 12 gives the first five decrement coefficients
versus corresponding natural frequencies with different r . The
symbols represent the decrement coefficients at the eigenfre-
quencies. Comparison with Fig. 2(b) reveals that the transform
of CR

44 from liquid crystal response to rubber performance
with respect to the frequency causes the slope variation of the
decrement coefficients. Before NEs reach a rubber plateau,
the greater the r is, the smaller the decrement coefficients at the
eigenfrequencies are. The decrement coefficients have larger

FIG. 11. The first five dimensionless (a) natural frequencies and
(b) decrement coefficients with different chain anisotropic parameter
r when τ1 = 10−2 s, τ2 = 0.5 × 10−4 s, τR = 10−5 s.

slopes due to the variation slope of CR
44 with respect to the

frequency. Near the critical frequency at which NEs transform
to a rubber response, the NE beams with different r have almost
the same decrement coefficients at the eigenfrequencies,
which is due to the independence of the critical transition
frequency on the anisotropic parameter. Along with the further
increase of the frequency, the slope becomes stable, and
larger r corresponds to larger decrement coefficients at the
eigenfrequencies, which is caused by larger absolute values
of imaginary parts of CR

44 at larger r . The variation of the
decrement coefficients reflects that the dynamic soft elasticity
has distinct effects on the dissipation of the NE beams.

The real and imaginary parts of the modal functions of
the NE Timoshenko beam with hinged-hinged ends at the
first and fourth eigenmodes are shown in Fig. 13. It is found
that the real and imaginary parts of the modal functions
are almost the same in value but opposite in sign, and the
amplitudes of the higher modal functions are smaller than
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FIG. 12. The variation of decrement coefficients of the first five
eigenmodes with respect to natural frequencies for NE beams with
differernt anisotropic parameter r .

those of lower modal functions. The amplitude of the NE beam
with r > 1 is bigger than that in the isotropic viscoelastic state
(r = 1), which means that the nematic elastomers have a better
deformation capability than ordinary isotropic viscoelastic
materials, because the NEs have additional rotational degrees
of freedom and display dynamic soft elasticity.

In order to manifest the influence of the director initial
angle on the model functions, Fig. 14 shows the variation of
the modal functions with respect to the director initial angle
θ . For convenience, only the real parts of the first and fourth
order modal functions of NEs beam are plotted. The results
show that the amplitudes are decreased first and then increased
with the increase of θ . The amplitudes have minimal values
when the director initial angle θ is about π/4. This is because
in this situation the principal stress direction is along π/4,
that is, the direction of the director. So the director has little
rotation, and the deformation capability is weakened.

VI. CONCLUSIONS

This paper investigates the transverse vibration of a nematic
elastomer beam based on the linear viscoelasticity theory and
the Timoshenko beam model. The purpose is to master the
vibration regularity so that we can prevent the damage of
vibration and make better use of NE beam. The results show
that the dynamic performance of the nematic elastomer beams
is obviously different from general isotropic viscoelastic ones,
whose dissipation only depends on the rubber relaxation time.
For NE beams, the director dissipation and rotation have
significant effects on their performance. Nematic elastomers
have a better deformation capability than ordinary isotropic
viscoelastic materials. Summarizing the results above we
conclude the following:

(1) Director relaxation has great effects on the vibration of
NE beams. The NE has its unique features by director rotation
rather than general isotropic material. Along with the increase
of τ ′

1, the natural frequency of the NE beam is increased with

FIG. 13. (a) The real part and (b) the imaginary part of the first
and fourth order modal functions of NE Timoshenko beam with
hinged-hinged ends with τ1 = 10−2 s, τ2 = 10−4 s, τR = 10−6 s.

decreased dissipation coefficients. But the influence becomes
weak at higher eigenmodes. However, along with the increase
of τ ′

2, the natural frequency is decreased and the dissipation is
less affected. The effects of the rubber relaxation time τ ′

R on
the natural frequencies are small, but the dissipation is greatly
increased along with the increase of τ ′

R at higher eigenmodes.
(2) The chain anisotropic parameter r has great effects

on the natural frequencies and decrement coefficients of
NE beams. When r = 1, NE beams degenerate to general
viscoelastic ones, and the director relaxation has less effect on
its vibration. But the dissipation is increased linearly along
with the increase of rubber relaxation time. When r �= 1,
the natural frequencies and the values of vibration amplitude
increase with the increase of r , and the decrement coefficients
have a sudden increase due to the variation from isotropic
viscoelasticity to anisotropic viscoelasticity. The slope of
decrement coefficient versus frequency is larger for bigger
r since the nematic elastomers display dynamic soft elasticity
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FIG. 14. The effect of director angle on the real parts of (a) the
first and (b) fourth order modal functions of NE Timoshenko beam
with hinged-hinged ends with τ1 = 10−2 s, τ2 = 10−4 s, τR = 10−6 s;
the color coding shows the corresponding values.

at low frequency. Near the frequency at which NEs reach a
rubber plateau, NE beams with different r have almost the
same decrement coefficients at the eigenfrequencies, which
is due to the independence of the transition frequency on the
anisotropic parameter.

(3) The director initial angle θ also has great influence
on the dynamic properties of NE beams. Both the natural
frequencies and decrement coefficients present a periodical V

mode with the increasing of director initial angle θ . However,
in the first eigenmode, the variation of natural frequencies with
respect to θ presents a periodical W mode while τ ′

1 < 2 × 25.

The vibration amplitudes change periodically with respect to
θ . The amplitudes of NE beams are first decreased and then
increased along with the increase of the director initial angle,
achieving the minimal value at θ = π/4. These theoretical
foundations are of great significance for the design of NEs
especially for when we utilize or prevent the resonance of
NE structure. By adjusting the director initial angle of the
NE beam, we can control the natural frequency, decrement
coefficient, and vibration amplitude of the NE beam.

The above results clarify the influence of intrinsic parame-
ters of NEs on the dynamic properties of NE beams. Consid-
ering the availability of property controlling through external
stimuli, the sensitivity of dynamic performance of NE beams to
director initial angle and relaxation times provides a possibility
of intelligent controlling of their dynamic performance.
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APPENDIX A: DIMENSIONLESS COORDINATES AND
PARAMETERS

The dimensional coordinates and parameters are defined as

ξ = x

L
, ψ̄m = ψm, W̄m = Wm

L
, τ ′

R = τR

L

√
C11

ρ
,

τ ′
1 = τ1

L

√
C11

ρ
, τ ′

2 = τ2

L

√
C11

ρ
, �m = ωmL

√
ρ

C11
,

λ1 = I sin2θcos2θ

ksAL2
, λ2 = (cos2θ − sin2θ )2, α = C11

2ksc5
,

β1 = d2
2 I sin2θcos2θ

2ksc5d1AL2
, β2 = d2

2 (cos2θ − sin2θ )
2

2c5d1
,

g1 = C11Icos4θ

2ksc5AL2
, g2 = C13I sin2θcos2θ

2ksc5AL2
, g3 = C33I sin4θ

2ksc5AL2
,

g4 = C11I

2ksc5AL2
, ζ = (C11 − 2C13 + C33)sin2θcos2θ

2c5
.

(A1)

APPENDIX B: COEFFICIENTS A1, B1, AND C1 IN EQ. (24)

The three coefficients A1, B1, and C1 in Eq. (24) are derived
as

A1 =
[

4λ1(1 − i�mτ ′
R) − β1

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ g1(1 − i�mτ ′
R) + 2g2(1 − i�mτ ′

R) + g3(1 − i�mτ ′
R)

]

×
[
λ2(1 − i�mτ ′

R) − 1

4
β2

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ ζ (1 − i�mτ ′
R)

]
, (B1)
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B1 =
[

4λ1(1 − i�mτ ′
R) − β1

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ g1(1 − i�mτ ′
R)+2g2(1 − i�mτ ′

R) + g3(1 − i�mτ ′
R)

]
α�2

m

+ g4

[
λ2(1 − i�mτ ′

R) − 1

4
β2

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ ζ (1 − i�mτ ′
R)

]
�2

m, (B2)

C1 = αg4�
4
m − α

[
λ2(1 − i�mτ ′

R) − 1

4
β2

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ ζ (1 − i�mτ ′
R)

]
�2

m. (B3)

APPENDIX C: THE SOLUTION PROCEDURE OF EQ. (24)

The characteristic equation of Eq. (24) is

A1r
4
m + B1r

2
m + C1 = 0. (C1)

Solving Eq. (C1), we have

rm1,rm2 = ±
√

−B1 +
√

B1
2 − 4A1C1

2A1
, rm3,rm4 = ±

√
−B1 −

√
B1

2 − 4A1C1

2A1
. (C2)

Then the solution of the ordinary differential equation, Eq. (24), can be expressed as

Wm(ξ ) = Cm1(eξrm1 + Cm2e
ξrm2 + Cm3e

ξrm3+Cm4e
ξrm4 ). (C3)

According to the relation between Wm(ξ ) and ψm(ξ ) in Eq. (23), the ψm(ξ ) can be derived as

ψm(ξ ) = Dm1(eξrm1 + Dm2e
ξrm2 + Dm3e

ξrm3+Dm4e
ξrm4 ), (C4)

where the relations between coefficients Cmj and Dmj are

Dm1 = α�2
m + Hr2

m1

−Hrm1
Cm1, Dmj = α�2

m + Hr2
mj

−Dm1Hrmj

Cm1Cmj (j = 2,3,4),

H = λ2(1 − i�mτ ′
R) − 1

4
β2

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

+ ζ (1 − i�mτ ′
R). (C5)

Combining Eq. (23) with Eq. (26), we have

Wm(0) = 0, ψ
′
m(0) = pmWm(0) − W

′′
m(0) = 0,

Wm(1) = 0, ψ
′
m(1) = pmWm(1) − W

′′
m(1) = 0, (C6)

where

pm = −α�2
m

/
H. (C7)

Substitution of Eq. (C3) into Eq. (C6) yields⎡
⎢⎣

1 1 1 1
erm1 erm2 erm3 erm4

Bm1 Bm2 Bm3 Bm4

Bm1e
rm1 Bm2e

rm2 Bm3e
rm3 Bm4e

rm4

⎤
⎥⎦

⎡
⎢⎣

1
Cm2

Cm3

Cm4

⎤
⎥⎦Cm1 = 0, (C8)

where

Bmj = pm − r2
mj (j = 1, 2, 3, 4). (C9)

For the nontrivial solution of Eq. (C8), the determinant of the coefficient matrix must be zero, which leads to

(erm1 − erm2 )(erm3 − erm4 )(Bm1Bm2 + Bm3Bm4) + (erm1 − erm3 )(erm2 − erm4 )(−Bm1Bm3 − Bm2Bm4)

+ (erm2 − erm3 )(erm1 − erm4 )(Bm2Bm3 + Bm1Bm4) = 0. (C10)

By numerically solving Eq. (C10), one can obtain the value of �m, which is a complex number. Separation of the real and
the imaginary parts of �m gives �m = −fm − ism (m = 1,2,3, . . .), where fm is the mth dimensionless natural frequency, and
sm the mth dimensionless decrement coefficient representing the speed of amplitude attenuation. Correspondingly, Wm(ξ ) and
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ψm(ξ ) are the mth dimensionless mode functions of the transverse displacement and the rotation. And one can obtain the modal
function of the hinged-hinged nematic elastomer beam as follows:

Wm(ξ ) = Cm1

{
eξrm1 + eξrm2 [(erm4 − erm3 )Bm1 + (erm1 − erm4 )Bm3 + (erm3 − erm1 )Bm4]

(erm3 − erm4 )Bm2 + (erm4 − erm2 )Bm3 + (erm2 − erm3 )Bm4

+ eξrm3 [(erm2 − erm4 )Bm1 + (erm4 − erm1 )Bm2 + (erm1 − erm2 )Bm4]

(erm3 − erm4 )Bm2 + (erm4 − erm2 )Bm3 + (erm2 − erm3 )Bm4

+ eξrm4 [(erm3 − erm2 )Bm1 + (erm1 − erm3 )Bm2 + (erm2 − erm1 )Bm3]

(erm3 − erm4 )Bm2 + (erm4 − erm2 )Bm3 + (erm2 − erm3 )Bm4

}
, (C11)

where Cm1 can be obtained from the orthogonality condition of vibration mode functions:

∫ 1

0

{
α
(
�2

n − �2
m

)
Wn(ξ )Wm(ξ ) +

[
g4

(
�2

n − �2
m

) + iτ ′
R(λ2 + ζ )(�n − �m) + β2

4

(1 − i�nτ
′
2)2

1 − i�nτ
′
1

− β2

4

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

]

× ψ̄n(ξ )ψ̄m(ξ ) +
[
iτ ′

R(λ2 + ζ )(�n − �m) + β2

4

(1 − i�nτ
′
2)2

1 − i�nτ
′
1

− β2

4

(1 − i�mτ ′
2)2

1 − i�mτ ′
1

]
[Wn

′
(ξ )Wm

′
(ξ ) − Wm(ξ )ψn

′
(ξ )

+Wn
′
(ξ )ψ̄m(ξ )] +

[
iτ ′

R(4λ1 + g1 + 2g2 + g3)(�n − �m) + β1
(1 − i�nτ

′
2)2

1 − i�nτ
′
1

− β1
(1 − i�mτ ′

2)2

1 − i�mτ ′
1

]
ψn

′
(ξ )ψm

′
(ξ )

}
dξ = 0.

(C12)
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