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Effect of curvature on cholesteric liquid crystals in toroidal geometries
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The confinement of liquid crystals inside curved geometries leads to exotic structures, with applications
ranging from biosensors to optical switches and privacy windows. Here we study how curvature affects the
alignment of a cholesteric liquid crystal. We model the system on the mesoscale using the Landau-de Gennes
model. Our study was performed in three stages, analyzing different curved geometries from cylindrical walls
and pores, to toroidal domains, in order to isolate the curvature effects. Our results show that the stresses
introduced by the curvature influence the orientation of the liquid crystal molecules, and cause distortions in the
natural periodicity of the cholesteric that depend on the radius of curvature, on the pitch, and on the dimensions
of the system. In particular, the cholesteric layers of toroidal droplets exhibit a symmetry breaking not seen in
cylindrical pores and that is driven by the additional curvature.
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I. INTRODUCTION

Liquid crystals (LCs) have dominated the display industry
for over 50 years and are of standard use in small everyday
devices [1–3]. Typically, such technology comprises a nematic
LC confined between two flat plates, as in monitors [4,5],
or encapsulated to cavities dispersed in a polymer matrix
(PDLC), as in privacy windows [6–8]. These rely on the fact
that LCs are fluid flexible media extremely sensitive to the
confining surfaces and to applied external perturbations.

Nematics are the simplest of the LC phases. They differ
from the isotropic phase by exhibiting long-range orientational
order, which makes it energetically favorable for the nematic
molecules to be (on average) uniformly aligned. In the pres-
ence of frustration, e.g., imposed by confinement, the nematic
induces the nucleation of topological defects (in the
orientational field) [9,10]. These are small regions of reduced
orientational order that scale with the correlation length and
play a major role in wetting [11], phase transitions [10], and in
the interaction of colloidal particles dispersed in an LC [12].
Their nucleation is particularly important in the physics of
bistable LC devices used in a large scale to indicate the price
of any produce at your local supermarket [13].

Also with a wide range of applications are cholesteric
LCs. From the macroscopic point of view, they differ from
nematics by the fact that they exhibit spontaneous twist that,
on the microscopic level, is the result of being composed
of chiral molecules [9,10]. To the general public they are
probably better known for their application as mood rings and
thermometer strips [14,15] and eWriters [16]. A key feature
of cholesteric LCs important for applications is the ability
to control the reflected light by manipulating its spontaneous
pitch, either by the application of external fields or by changing
the temperature of the LC. This seems to be completely
understood from the point of view of cholesterics confined to
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flat surfaces. However, as the display technology moves toward
softer hardware it is of crucial importance to understand what
is the effect of curvature on the cholesteric pitch.

The development of new soft-lithographic techniques made
possible the controlled production of new PDLC matrices with
droplets of prescribed shapes and nontrivial topologies [17].
Of particular interest are toroidal shapes, for which the
Poincaré-Hopf theorem dictates that the net charge of the bulk
defects is

∑
i qi = 0, in the absence of surface defects. For a

torus on the micrometer scale defects may appear in pairs of
opposite charge [17]. However, as the system size increases
the presence of topological defects becomes energetically
unstable, and for a torus on the millimeter scale, the LC texture
is completely free from topological defects as the LC has other
alternatives to accommodate the orientational frustration [18].
Nonetheless, in some toroidal geometries the liquid crystal
texture may exhibit defects. This happens when two regions of
the confining surface have different boundary conditions [19],
as observed in liquid crystal droplets adsorbed at micrometer
fibers [20,21]. In cholesterics, however, the geometrically
induced frustration can be accommodated by the formation of
nonsingular disclinations (defects), with constant orientational
order, rather than through the usual singular defects [22,23].

In this work we are interested in understanding what is the
role of curvature on the texture of cholesteric liquid crystals
confined to toroidal domains. This manuscript is organized
in the following manner. In the next section we describe
how we model the liquid crystal and briefly describe our
numerical methods. To achieve our aim we have divided
our study into three stages, which are presented in Sec. III.
First, we consider a cholesteric liquid crystal in contact with
a cylindrical substrate and analyze how the cholesteric is
affected by decreasing the radius (increasing the curvature)
of the cylindrical wall. In particular we show how adding
curvature changes the local periodicity of the cholesteric
as a response to emerging bend deformations. Second, we
consider that the cholesteric is confined to a cylindrical pore
and revisit some of the results obtained by Ambrozic and
Žumer [24,25]. Finally, we consider the case of a toroidal
domain and analyze how the curvature of the confining surface
affects the cholesteric texture. We summarize our results in
Sec. IV.
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II. MODEL

We use the Landau-de Gennes model to describe the
cholesteric LC [9]. The order parameter is a traceless,
symmetric second-rank tensor Q that carries information
on the local average molecular orientation, the director
field n, and on the degree of orientational order S; for
uniaxial nematics it takes the form Qij = S(3ninj − δij )/2,
where δij is the Kronecker δ. The free energy is written in
invariant terms of Q and its derivatives ∂Q, FLdG(Q,∂Q) =∫
�

dV [fb(Q) + fe(∂Q) + fq0 (∂Q)] + ∫
∂�

ds fs(Q), with
free-energy densities as [23,26–28]

fb = 2

3
τ Tr Q2 − 8

3
Tr Q3 + 4

9
(Tr Q2)2, (1)

fe = 1

3
(∂kQij )2, (2)

fq0 = 4q0

3
Qilεijk∂jQkl. (3)

Where Tr is the trace operator. The bulk free energy fb

describes the phase transition between the isotropic and the
LC phases; the elastic contribution fe is the same for nematics
while fq0 accounts for the spontaneous twist deformations
observed in cholesteric phases. Here we adopt a dimensionless
model and thus the free energy depends only on two bulk
parameters τ and q0, and length is measured in units of the
correlation length ξ ; as a reference, for a nematic such as
the 5CB at room temperature ξ � 15 nm. τ is a reduced
temperature. Its value determines the equilibrium bulk phase.
q0 = 2π/P0 is the inverse of the cholesteric pitch P0. In this
simple version of the Landau-de Gennes theory we allow
for splay, twist, and bend deformations to have, in the limit
of P0 → ∞ (the nematic limit), the same energy cost, also
known as the one-elastic constant approximation. In nematics
confined to toroidal domains it was found that the textures
depend on the saddle-splay elastic constant K24, which affects
the surface orientation of the LC molecules and induces a
twist on the nematic [18]. We assume this is not as relevant
for cholesterics and choose to neglect this effect in the present
work.

It is worth noting that the reduced temperature is, in reality,
a function of qo and that the cholesteric-isotropic transition
temperature depends on the (inverse) pitch of the cholesteric
LC. Moreover, in the simplified form of Eq. (1) the coexistence
temperature is always at τc = 1. In this work we have set
τ = 0.7τc.

To account for the presence of confining substrates, a
surface free energy can be introduced. We restrict our study
to substrates that impose parallel alignment of the nematic
molecules. In particular, in the full three-dimensional problem
(see below), we consider the Fournier-Galatola planar degen-
erate surface potential [29],

fs = W

2

[
Tr (Q̃ − Q̃⊥)

2 +
(

Tr Q̃ − 3

2
S2

s

)2
]
, (4)

where W � 10 is the reduced surface anchoring constant,
Q̃ij = Qij + Ssδij /2 and Q̃⊥ = PT Q̃P, with the projection
matrix Pij = δij − νiνj ; �ν is the surface normal. The first
term penalizes deviations of the director field from any (local)

parallel orientation on the substrate. The second term forces
the degree of orientational order to coincide with Ss , the
preferred degree of orientational order at the surface. Here
we consider that Ss = Sb = (3/4)(1 + √

1 − 8τ/9), where Sb

is the equilibrium value of the bulk order parameter. In our
2D calculations we have assumed fixed-boundary conditions
(strong anchoring limit) and forced the director to be either in-
or off-plane.

In this work we address the effect of curvature on the
cholesteric pitch. To that end we are interested in measuring the
local pitch P (r) that characterizes the local twist of the director
field n. This is done by evaluating the twist parameter [30,31]
Stw = εijkQil∂jQlk , which is inversely proportional to the
pitch,

P (r)

P0
= −9

4

S2

Stw
q0. (5)

The sign is related to the direction of rotation of the twist
deformation. Stw is negative if the rotation is anticlockwise
and positive if clockwise.

This study was performed in different steps. We first
considered cholesteric systems with either translational or
cylindrical symmetry. This allows to simplify the problem
to two dimensions (2D). Our 2D studies were performed with
COMSOL 3.5a [32], which uses finite elements techniques
to solve the Euler-Lagrange equations that follow from the
minimization of the Landau-de Gennes free energy. Details on
this method can be found in Ref. [33]. Finally, we considered
the full three dimensional problem of toroidal droplets and
minimized the free energy with finite element methods with
adaptive meshing, described in detail in Ref. [34]. In both 2D
and 3D studies our meshes are refined to ensure a numerical
precision < 1% for the Landau-de Gennes free energy.

To investigate the presence of metastable states we have
considered different initial conditions. Starting from the
isotropic phase, corresponding to a fast quench, the cholesteric
may be trapped in a texture with broken symmetry, at
low pitch, which was found to be metastable. For flat and
cylindrical walls (Secs. III A and III B) the global minimum
was obtained by considering that the cholesteric is initially
aligned with its layers parallel to the substrate. For cylindrical
pores starting from an onion-like configuration, where the
cholesteric “layers” are concentric, with uniform pitch P0 was
the best strategy to avoid metastable configurations. Finally,
for toroidal domains the additional curvature guides the system
to a unique state. We also considered initially a nematic
perpendicular to the cross-section and found that the system
converged to the same state.

III. RESULTS

A. Cholesteric near a flat surface

When a cholesteric phase is in contact with a flat substrate
the anchoring on the surface forces the cholesteric LC to
assume a preferred configuration. For example, if the surface
induces planar anchoring, the cholesteric orients its twist axis
in such a way that the cholesteric layers are aligned parallel to
the substrate. If by any means the cholesteric were to align its
twist axis parallel to the substrate, the orientational frustration
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FIG. 1. Schematic of a cholesteric in contact with a wall (dark
bar on the left) of curvature radius R. The pitch P is defined here
as the distance needed for the orientational field to rotate by 2π .
The configuration presented corresponds to the limit of a flat surface
(R → ∞). The color indicates the off-plane (angular, nθ ) component
of the orientational field. White: the director points out of the plane;
Black: the director is in-plane.

imposed by the surface anchoring would induce the nucleation
of evenly spaced defects at the substrate, thus increasing the
free energy of the system. Such configuration is only preferred
if the anchoring on the substrate is homeotropic, as in that case
there is no other configuration with lower energy cost [35].
Here we restrict our study to surfaces with planar anchoring.

In Fig. 1 we show the preferred configuration of a
cholesteric LC near a flat wall (dark bar on the left) with
planar anchoring. The cholesteric twists in the direction
perpendicular to the substrate and forms a layer-like system.
The phase is characterized by a twist pitch P , which is constant
throughout the entire system and coincides with the natural
cholesteric pitch P0 that is an input to the model, and describes
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FIG. 2. (a) Square of the off-plane (angular) component of the
director field n2

θ and (b) cholesteric pitch P as functions of the distance
to the wall d with curvature radii R/P0 = 0.001, 0.01, 0.1, 1, ∞. P0

is the natural pitch of the system. In the inset: maxima of P as a
function of the distance. The dashed lines correspond to P/P0 − 1 ∼
(d/P0)−α with α = 0.01, 0.05 and are represented for comparison.

the undulation of the director field, shown in Fig. 2(a) for
R/P0 = ∞.

B. Adding curvature: From flat to cylindrical surfaces

To address the effect of curved surfaces we consider that
the wall is the surface of a cylinder of radius R, as defined
in Fig. 1. In this case the flat surface corresponds to the limit
R → ∞, for which the cholesteric “layers” are equally spaced
by P0/2. In Fig. 2(a) we show how the square of the off-
plane director component n2

θ varies with the distance to the
wall d for different radii R/P0 = 0.001, 0.01, 0.1, 1,∞. n2

θ

is a harmonic function of the distance varying from 0 to 1.
Clearly, if the radius of curvature is comparable to the natural
pitch P0 then n2

θ is very similar to the one obtain for the
flat wall (R/P0 = ∞). However, if the radius of curvature is
much smaller than the pitch, Fig. 2(a) shows that n2

θ is shifted
significantly and its maxima and minima occur farther away
from the wall when compared with the flat case. This indicates
that as the curvature increases (R decreases) the actual pitch
of the cholesteric deviates from its natural value P0.

Figure 2(b) shows how the local pitch P [defined in Eq. (5)]
varies with the distance to the wall d for different radii R/P0 =
0.001, 0.01, 0.1, 1,∞. For the flat wall the pitch P = P0 is
constant everywhere, as already discussed. As the radius of the
cylinder is decreased the local pitch P undulates close to the
natural pitch value and converges to P0 far from the wall d →
∞. By increasing the curvature of the wall the undulations of P

are more pronounced close to the substrate, but rapidly decay
as d increases. However, for distances d > 0.75P0 the decay is
very slow as can be shown in the inset of Fig. 2(b). The points
indicate the maxima of P and the dashed lines correspond
to P/P0 − 1 ∼ (d/P0)−α , where α = 0.01 (bottom line) and
α = 0.05 (upper line).

The undulating behavior seen here is related to the
compression P < P0 and dilation P > P0 of the cholesteric,
and it comes from the energetic cost associated with a bend
deformation induced by the cylindrical symmetry, allied with
the cholesteric twist. For example, consider the cholesteric
layer in which the off-plane component reaches zero. In this
situation, the bending energy associated with bending such
“layer” is nearly zero. However, the bending energy is large
for the layers in which n2

θ = 1. This indicates that the system
can compromise between dilating the layers with nθ = 0 and
compressing those with n2

θ = 1.
To clarify this, we compare the pitch deviation, P/P0, with

the splay-bend parameter [23,27,31],

Ssb = ∂2Qij

∂xi∂xj

. (6)

In Fig. 3 we plot the results for P/P0 = 0.001, 0.01, 0.1.
Clearly there is a strong correlation between P and Ssb.
When the local pitch P decreases Ssb < 0, and when
it increases Ssb > 0. Additionaly, similar to P , the am-
plitude of Ssb decreases with increasing distance to the
wall. The Ssb parameter is useful to identify regions of
splay and bend. Since in the uniaxial case it can be
rewritten as Ssb = (2S/3)∇ · [n(∇ · n) − n × (∇ × n)], the
Ssb > 0 regions are usually identified as splay regions and
Ssb < 0 as bend regions [23,27,31]. However, it turns out
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FIG. 3. Comparison between (a) the pitch deviations P/P0 and
(b) the splay-bend parameter Ssb, as functions of the distance to the
wall d with curvature radii R/P0 = 0.001, 0.01, 0.1.

that this is not always the case. To understand the val-
ues taken by Ssb consider a cholesteric with concentric
“layers,” e.g., n = [− sin (q0d)y/d, sin (q0d)x/d, cos (q0d)],
where d =

√
x2 + y2, with constant pitch P0. Since ∇ · n = 0

there are no splay deformations. Only bend deformations
contribute to Ssb and the splay-bend parameter becomes

Ssb = 2S

3

[
−q0

sin (2q0d)

d

]
. (7)

This is a harmonic function with an amplitude that decays
with 1/d. This means that, even in the absence of splay
deformations, Ssb can take positive values. It is thus clear that
the changes in the local pitch occur as a response not only to
bend deformations but specially to their variation. As shown
in Fig. 3, as the bend deformations increase the local pitch
decreases to reduce the size of those regions. Additionally,
as the bend deformations decrease the cholesteric dilates, i.e.,
P increases. These effects are more pronounced in regions
of strong curvature and decay as the distance to the wall d

increases.

C. Cholesteric confined to cylinders

We now consider that the cholesteric is confined to a
cylindrical tube of radius r . Such a system was previously
studied by Ambrozic and Žumer [24,25]. Here, we restrict
our study to configurations that have translational symmetry
and consider two different orientations on the surface of the
cylinder, shown in Figs. 4(a) and 4(b) for r/P0 = 1.25 : (i) n is
along the symmetry axis of the cylinder, and (ii) the director is
in-plane and parallel to the surface of the cylinder. In both
cases the cholesteric twists radially forming an onion-like
configuration. As we consider strong anchoring this type of
configuration, also known as radially twisted, was predicted
to be stable by Ambrozic and Žumer [24,25].

Figure 5 shows a cholesteric LC inside a long cylinder
of radius r = 500ξ for different pitch P0 values and the
same two types of boundary conditions shown in Fig. 4. In

FIG. 4. Comparison between the cholesteric configurations for
the no curvature limit [(a) and (b)] and for a curvature radius R = 50ξ

[(c) and (d)]. Systems (a) and (c) have boundary conditions with
φ = 0 and systems (b) and (d) have φ = π

2 . The color represents n2
θ ,

the square of the component of the director along eθ . The gray bars
represent the director field.

the configurations found, the cholesteric at the center of the
cylinder is always pointing off-plane. This means that when
at the boundary the director is also off-plane, the cholesteric
will try to perform (radially) at least a half turn [see Fig. 5(a)].
However, if the n at the surface of the cylinder is in-plane, the
minimum rotation that the cholesteric can perform is 1/4 of a
turn [see Fig. 5(f)]. We have found that under these conditions
the onion-like configuration is a global minimum and that for
low values of the pitch P0 � 0.5r a metastable state with split
cholesteric layers resembling the texture of finger-prints may
occur.

In the bottom row of Fig. 5 we show the splay-bend
parameter for the configurations with off-plane orientation at
the boundary (φ = 0). At the center of the cross-section the
director is off-plane. As it moves away from the center it twists
and its in-plane component increases, thus increasing the bend
deformation (blue regions). After it is completely in-plane the
director continues to twist now reducing the bend deformations
(yellow regions) by decreasing its in-plane component. As
discussed in the previous section this increase and the decrease
in bend deformations induces the contraction and dilation of
the concentric “layers,” respectively.

For both orientations at the surface of the cylindrical pores,
the cholesteric displays an onion-like configuration with the
cholesteric layers arranged as concentric cylinders with a λ+1

nonsingular defect at the center [22,23]. Note that, for low
values of the pitch P0 � 0.5r some of the layers may be
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FIG. 5. Equilibrium configurations for a cholesteric liquid crystal inside an infinite cylinder with radius r = 500ξ and P0/r = 2, 0.5, 0.2.
(a–c) Fixed boundary conditions with director parallel to the long axis of the cylinder. (d–f) Fixed boundary conditions with director tangent to
the limiting circumference. The panels (g) and (h), (i) and (j) correspond to metastable states obtained, respectively, for off-plane and in-plane
boundary conditions. The color represents n2

θ , the off-plane component of the director. The gray bars represent the director field. In the bottom
row (k–o) we represent the splay-bend parameter Ssb for the configurations in the top row. For better viewing and comparison we have restricted
the splay-bend parameter to −15 < SsbP

2
0 < 15.

disrupted. In this metastable state, the system is trapped in
a configuration with split cholesteric layers, particularly those

closer to the center as it is there that the bending energy is
higher. In this case the λ+1 nonsingular defect splits into two

FIG. 6. Cholesteric configurations for a system with radius of curvature R = 50ξ and cross-section r = 500ξ . Panels (a)–(e) correspond
to boundary conditions with φ = 0, and (f)–(j) have boundary conditions with φ = π

2 . The color represents n2
θ , the square of the component of

the director along eθ . The gray bars represent the director field.
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FIG. 7. Configurations of a cholesteric inside a torus, with multiple layers. (a) r

R
= 0.8,

P0
r

= 0.25, (b) r

R
= 0.5,

P0
r

= 0.5, (c) r

R
=

0.25,
P0
r

= 0.5. The color scale refers to n2
θ and the gray bars represent the director field.

λ+1/2 and additional λ+1/2–λ−1/2 pairs appear. It is only in
the torus, discussed in the next section, that this finger-print
texture becomes a global minimum.

D. Full confinement: From a cylinder to a torus

Confining the cholestic LC inside a cylindrical pore clearly
affects the local pitch, not only due to the curvature of the
confining surface but also due to the competing length scales,
the pitch P , and the radius of the cylinder r .

Within good approximation a torus (doughnut) of infinite
principal radius, R → ∞, corresponds to a long cylinder. This
means that as the principal radius of the torus is decreased
the cholesteric layers confined inside the torus should respond
accordingly to the additional curvature as depicted in Figs. 4(c)
and 4(d).

In Fig. 6 we show the cholesteric layers inside a torus
of principal radius R = 50ξ and cross-section r = 500ξ

for different pitch values P0. Again, we consider two
types of anchoring orientations at the surface of the torus:
Figs. 6(a)–6(e) in-plane φ = 0, and Figs. 6(f)–6(j) off-plane
φ = π/2. The (cylindrical) symmetry axis is located on the
left. As in Sec. III B, when the director is parallel to the
symmetry axis there is no additional bending energy associated
to extending that particular region, and whenever the director is
perpendicular to the symmetry axis (off-plane) it is preferable
to contract that region to reduce bend deformations. As a result,
even for the case of concentric layers in the R → ∞ limit the
layers are deformed.

As in the case of a cylindrical pore, when the pitch is small
P0 � 0.5r , the central layers are allowed to break allowing the
outer layers to extend toward the center of the cross-section.
Here this configuration is a global minimum and the extension
of the outer layers is along the equatorial plane of the torus,
indicating that there is a constraint on this extension set by the
additional curvature.

Finally, we considered the full 3D problem. Figure 7 shows
the configuration of cholesteric LCs confined to toroidal
droplets with planar degenerate anchoring; i.e., here the LC
molecules are allowed to align in any direction parallel to
the surface of the torus. As a result, the cholesteric is now
able to relieve some of the built-in stress due to the curved
surface that confines it by taking different orientations around
the same cross-section. As such, the cholesteric exhibits
broken layers that penetrate the surface. We note that on the

equatorial plane, in the inner most region of the surface of
the torus, where the curvature is highest, the director field is
parallel to the symmetry axis, thus preventing an increase in
the free energy of the system through bend deformations.

IV. CONCLUSIONS

In this manuscript we have considered the effect of
curvature on the pitch of a cholesteric liquid crystal. We started
by considering a cholesteric LC in contact with a cylindrical
wall of a given radius. We found that, because of the curvature,
the cholesteric is subjected to additional bend distortions that
influence the orientational field. As a result, the cholesteric
contracts the regions where this bend deformation is higher
and dilates the ones where it is lower, thus changing locally the
value of the pitch P . These distortions were found to be larger
for higher curvatures (thinner cylinders) but rapidly decaying
with the distance to the wall.

When the cholesteric is inside a cylindrical pore the
distortion effect due to the curvature of the confining wall
is again present. Typically, the cholesteric takes an onion-like
configuration with the cholesteric “layers” adopting the form
of concentric cylinders. However, if the radius of the cylinder
is larger than the natural cholesteric pitch, P0/r � 0.5, the
stress from the bend deformations drives the inner most
layers to split and the cholesteric takes a configuration
resembling that of finger prints. However, we found that for
the range of parameters that were investigated, the “finger-
print” configuration is always metastable for the cylindrical
pore.

We then considered the cholesteric to be confined in a
toroidal droplet, with cylindrical symmetry around its symme-
try axis. For an infinitely large torus the cholesteric adopts the
same configurations as in the cylindrical confinement case with
a given cross-sectional radius. As the torus is made smaller
there is a shift in the position of the cholesteric layers that
appears as a result of the additional curvature. The effect is
more pronounced for smaller radii, where some cholesteric
layers split close to the symmetry axis and the cholesteric
takes the finger-print texture.

Finally, we considered the full three-dimensional toroidal
droplet and assumed planar degenerate anchoring on the
surface of the torus. We corroborate the results found for
systems with cylindrical symmetry. Particularly, we found
that the distortion of the natural pitch depends heavily on the
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curvature of the droplet. However, because the system is less
constrained, particularly at the confining surface, we observe
an enhancement of the splitting of the cholesteric layers. It
is only in this case where the LC molecules were allowed to
choose their optimal orientation that the saddle-splay elastic
constant could have an effect.

Our main conclusion is that the curvature, and in particular
that of the toroidal droplets, affects the local orientation of the
cholesteric LC distorting the periodicity of the spontaneous
twist deformation. For the case of confining surfaces, this
results in a symmetry breaking of the cholesteric layers that
depends not only on the curvature of the bounding surface but
also on the pitch and the geometrical parameters.

As a final note, experiments on cholesteric phases of
suspensions of virus reported that the pitch decreases as a
power law of the virus concentration [36,37]. Our results
indicate that in the presence of curved confining surfaces
the local pitch undulates leading to a nonhomogeneous
concentration of virus in such suspensions.
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