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Effects of flexoelectricity and weak anchoring on a Freedericksz transition cell
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We consider a mathematical model that consists of a nematic liquid crystal layer sandwiched between two
parallel bounding plates, across which an external field is applied. We investigate how the number and type of
solutions for the director orientation within the layer change as the field strength, anchoring conditions, and
material properties of the nematic liquid crystal layer vary. In particular, we focus on how the inclusion of
flexoelectric effects alters the Freedericksz and saturation thresholds.
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I. INTRODUCTION

Over the past several decades, liquid crystals (LCs) and
in particular nematic liquid crystals (NLCs) have emerged
as important industrial materials due primarily to increased
production of electronic devices using liquid crystal displays
(LCDs) [1]. A typical LCD device consists of millions of
pixels, each made of a NLC layer confined between two
parallel plates, and crossed polarizers. The plane of polarized
light passing through the layer may be rotated, to a degree that
depends on the orientation of the NLC molecules within the
layer. The molecular orientation is in turn controlled by the
boundary conditions at the plates (the preferred orientation of
molecules at the boundaries, known as anchoring) as well as
the external forces (usually an applied electric field). The basic
operating principle of a conventional LCD is that the plane of
the polarized light is differently rotated in the “field on” and
“field off” states, hence, the two states appear optically distinct
when viewed through the second polarizer.

NLCs typically consist of rodlike molecules, which have a
dipole moment. An electric field can affect the molecular ori-
entation within an NLC layer via two mechanisms. Applying
an electric field causes the NLC molecules to align parallel or
perpendicular to the electric field direction according to the
orientation of their dipole moment. If the dipole moment is
parallel to the long molecular axis, then the molecules align
parallel to the electric field; in contrast, if it is perpendicular
to the long axis, then they will align perpendicular to the
electric field [2]. In addition to this “dielectric effect,” the
asymmetric nature of the molecules induces a distortion
in the form of molecular splay and bend, the so-called
“flexoelectric effect” [3,4].

The effect of an applied external field on a confined
NLC layer has been widely investigated and the Freedericksz
transition phenomenon has been well understood for many
years now [2,5–7]. A Freedericksz transition cell consists of
a NLC layer bounded between two parallel plates where an
electric field is applied in a direction perpendicular to the
layer. It is observed that in the presence of strong planar
anchoring, the nematic director field (representing the local
average molecular orientation) aligns parallel to the bounding
plates throughout the entire layer, when the applied field
strength is low. As the applied field increases past a critical
value (known as the Freedericksz threshold), a new director
configuration, which aligns partially with the applied field in

the interior of the layer while respecting the strong planar
anchoring at the boundaries, is favored energetically [2].

In the presence of weak planar surface anchoring, the
same observations hold initially as the field is increased.
However, now as the electric field is increased further still,
a second critical value, known as the saturation threshold, is
reached: this is the magnitude of the applied field at which the
director aligns fully with the electric field direction, breaking
the anchoring of the director at the surfaces [8,9]. This is
also often called the weak Freedericksz transition. In this
scenario, three steady-state director configurations exist: (i)
the director aligns parallel to the anchoring orientation at
the boundary (the “horizontal” solution for which anchoring
dominates); (ii) the director aligns parallel to the electric field
(the “vertical” solution for which the electric field dominates);
and (iii) the director adopts a nontrivial solution for which
there is a balance between surface anchoring and electric field
effects.

The classical Freedericksz transition cell model accounts
for the dielectric effect of the applied field but neglects flex-
oelectric effects, and assumes strong planar anchoring at the
cell boundaries. This is the setup considered by most authors,
with a few notable exceptions. Brown and Mottram considered
the effects of flexoelectricity on a Freedericksz cell above
the Freedericksz transition [6]. A theoretical investigation
carried out by Derzhanski et al. [7] studies the effect of
flexoelectricity and surface polarization on a Freedericksz
transition cell as a weak electric field is applied (the applied
voltage considered is strong enough to induce a deformation
in the director field across the layer, i.e., past the Freedericksz
threshold, but deformations are assumed to remain small so
that the equation governing the director angle is linearized).
Four different geometries are considered: (a) a homeotropic
layer (director field is homeotropic throughout the layer in
the absence of an electric field) with an electric field applied
parallel to the bounding substrates (parallel electric field), (b) a
homeotropic layer with an electric field applied perpendicular
to the bounding substrates (perpendicular electric field),
(c) a planar layer (director field is planar in the absence of
an electric field) with parallel electric field, and (d) a planar
layer with perpendicular electric field. Each case is expanded
to include positive and negative dielectric anisotropy and
different anchoring strength at each boundary (16 total cases
considered), but always in the linear deformation regime. In
each case, the authors study the effects of flexoelectricity and

2470-0045/2017/95(1)/012701(14) 012701-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.012701


E. MEMA, L. KONDIC, AND L. J. CUMMINGS PHYSICAL REVIEW E 95, 012701 (2017)

surface polarization and how each of them affect the director
configurations.

In this paper, we consider a setup similar to case (d) in [7],
i.e., a Freedericksz transition cell where an electric field is
applied perpendicular to the NLC layer, which has positive
dielectric anisotropy. We account for both dielectric and
flexoelectric contributions to the free energy, with anchoring
of arbitrary strength at both bounding surfaces. We investigate
how the inclusion of flexoelectricity affects not only the
Freedericksz threshold, but also the saturation threshold,
via a dimensionless material parameter that measures the
ratio of flexoelectric and elastic effects. We also consider
systematically the effect of anchoring strength on the results,
and study how even small changes of the anchoring conditions
can change the outcome dramatically. Where applicable,
we interpret and compare our results with those obtained
by Derzhanski et al. in [7]. While our approach is mainly
numerical (necessitated by the fact that we consider arbitrary
electric field strength so the director governing equation is
nonlinear), we complement our study with some analytical
results.

Our previous related work has focused on two specific
issues of relevance to LCDs. First, we have studied how
anchoring conditions may be tuned to permit bistability, the
existence of two (optically) distinct stable states in the absence
of an applied electric field, in a prototype LCD, using a model
very similar to that considered here [10–12]. Bistability in
LCDs is important since it offers potential for considerable
energy savings: a device can maintain its display configuration
without drawing power. When the display needs to be changed,
individual pixels can be switched to the alternative stable
state by transient application of an electric field. Second,
we have studied the electric field nonuniformities that can
arise in a confined NLC layer across which a voltage is
applied [13]. Most investigations of electric field effects
within such NLC layers assume a uniform field, whereas
in reality the NLC and field interact, leading to gradients in
the field. This paper is concerned primarily with investigating
the bifurcations between distinct solution types; determining
how bifurcation thresholds are affected by material properties
of the system; and in some cases how bifurcations may be
destroyed altogether by small changes in anchoring conditions.
The relevance of our earlier work to this study will be discussed
later, in particular in Sec. III where our simulations enter
regimes in which the uniform field assumption may not be
valid and in Sec. V where we discuss the regime such that
changes in the anchoring conditions can induce bistability.

The paper is laid out as follows: In Sec. II we present the
mathematical model and discuss its nondimensionalization,
leading to the key dimensionless parameters for the system.
In Sec. III we outline our solution scheme, present selected
numerical results, focusing on the effect of flexoelectricity on
the director solution and how our results compare with the
predictions outlined in [7]. In Sec. IV we explore how flexo-
electricity affects the Freedericksz and saturation thresholds in
a Freedericksz transition cell while Sec. V briefly explores how
changes in the anchoring conditions affect the results. In our
investigation, we pay particular attention to the stability of each
director configuration, augmenting our numerical results with
analytical techniques such as the calculus of variations, and
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FIG. 1. Sketch showing the setup and summarizing the key
parameters in dimensional coordinates.

linear stability analysis (LSA), as described in the Appendix.
Section VI summarizes our conclusions.

II. MATHEMATICAL MODEL

We consider a layer of nematic liquid crystal of thickness
h∗, placed between two parallel bounding surfaces at z∗ = 0
and h∗ as shown in Fig. 1. The local average molecular
orientation throughout the layer is described by a unit vector
director field n, which we assume lies in the (x∗,z∗) plane,
with its properties varying in the z∗ direction only. Hence,
we consider a one-dimensional model where the director is
expressed in terms of a single angle θ (z∗) ∈ (−π/2,π/2], the
angle the director makes with the z∗ axis: n = (sin θ,0, cos θ ).
We assume that an electric field E∗ = E∗(0,0,1) is applied
in the z∗ direction, perpendicular to the bounding plates. The
generated field is assumed to be uniform everywhere as if
the field were applied in vacuo. In reality, the molecules
of the NLC layer contain electric dipoles that interact with
the applied field, causing it to deviate from its uniform state.
However, we have shown in prior work [13] that the uniform
field approximation is good under certain conditions, which
we will discuss later after outlining our model and associated
parameters.

The mathematical model is based on the Ericksen-Leslie
continuum theory for nematics where the total energy density
of a liquid crystal layer comprises bulk and surface energy
densities, that are functions of the director orientation n. To
simplify the model, we make the common assumption that
the bend and splay elastic constants are equal in magnitude.
In the presence of a uniform electric field, the bulk energy
density consists of the elastic, dielectric, and flexoelectric
contributions W ∗

e ,W ∗
d ,W ∗

f [2,14,15] given by

2W ∗
e = K∗{(∇∗ · n)2 + [(∇∗ × n) × n]2}, (1)

2W ∗
d = −ε∗

0(ε‖ − ε⊥)(n · E∗)2, (2)

W ∗
f = −E∗ · [e∗

1(∇∗ · n)n + e∗
3(∇∗ × n) × n], (3)

where K∗ is the single elastic constant for the NLC, ε∗
0 =

8.854 × 10−12 C2N−1 m−2 is the permittivity of free space, and
ε‖ and ε⊥ are the relative dielectric permittivities parallel and
perpendicular to the long axis of the nematic molecules. The
flexoelectric effect typically arises because NLC molecules
possess shape asymmetry [4,16]. When they align in an electric
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field, therefore, distortions may be induced. For example, if
molecules are slightly pear shaped, being fatter at one end
than the other, then when all the “pears” align in a field a
splay distortion will be induced due to the fat ends occupying
more space than the thin ends. Similarly, if molecules are
slightly banana shaped, and all the “bananas” align in an
electric field, then a net bend distortion results. Flexoelectricity
is also possible in symmetric polar liquid crystals such as
5CB. In this case, polar liquid crystals tend to form dimers
with antiparallel alignment between molecular dipoles. In the
presence of an electric field, the alignment is not completely
antiparallel leading to a net polarization. This polarization
couples to a bend and splay deformation [4,16]. We note that
the flexoelectric coefficients used in this paper are imported
from experimental literature [4] and account for both dipolar
and quadrupolar flexoelectricity.

It has been observed that the effect of flexoelectricity in
a weakly anchored NLC layer is closely related to surface
polarization [7,17]. In fact, these two effects are so tightly
bound that substantial errors in the flexoelectric coefficients
may be induced when trying to separate the two effects in
experiments [7,18]. Surface polarization can arise as a result
of the asymmetric nature of the NLC molecules and their
interaction with the substrate molecules or as a result of the
spatial dependence of the nematic order parameter in a thin
layer close to an interface [18–21]. Although our study does
not explicitly account for surface polarization, it has been
shown [20] that these effects can easily be incorporated into
the present framework. Specifically, they may be included by
modifying the coefficient of the flexoelectric term in the bound-
ary conditions [upcoming Eqs. (6a)–(6c)]. Our results may
therefore be considered to cover surface polarization effects
also, at least in the symmetric anchoring cases considered for
the majority of this paper.

The total free energy of the system J ∗ (per unit area of
bounding plates) is given as follows:

J ∗ =
∫ h∗

0
W ∗dz∗ + g∗

0 |z∗=0 + g∗
h∗ |z∗=h∗ , (4)

where g∗
{0,h∗} are the surface anchoring energies at boundaries

z∗ = 0,h∗ and, under the assumptions outlined above, W ∗ =
W ∗

e + W ∗
d + W ∗

f simplifies to

W ∗ = K∗

2
θ2
z∗ − E∗2ε∗

0(ε‖ − ε⊥)

2
cos2 θ

+ E∗(e∗
1 + e∗

3)

2
θz∗ sin 2θ, (5)

where the subscript (·)z∗ denotes the derivative: ∂/∂z∗. For
the surface energy contributions, we use the Rapini-Papoular
form [22] g∗

{0,h∗} = (A∗
{0,h∗}/2) sin2(θ − α{0,h∗}), where α{0,h∗}

are the preferred anchoring angles at z∗ = 0,h∗, respectively,
and A∗

{0,h∗} are the associated anchoring strengths. From a
formal mathematical viewpoint, surface anchoring is strong if
the molecules at each surface align exactly with the preferred
anchoring angles at the corresponding surfaces; and it is weak
if the molecules deviate from the preferred orientation. Strictly
speaking, therefore, strong anchoring is achieved only in the
limit A∗ → ∞.

We follow several authors (e.g., Kedney and Leslie [23],
Davidson and Mottram [24], Cummings et al. [11]) in
assuming that the system evolves as a gradient flow to its
total free energy minimum. This process can be represented as
follows:

〈μ∗θt∗ ,η〉 + 〈W ∗
θ ,η〉 + 〈W ∗

θz∗ ,ηz∗ 〉 + [ν̃∗ηθt∗ + ηg∗
h∗θ ]|z=h∗

+ [ην̃∗θt∗ + ηg∗
0θ ]|z=0 = 0,

where 〈A,B〉 = ∫ h∗

0 AB dz∗, the parameter η is a sufficiently
smooth test function, and the parameters μ∗ and ν̃∗ represent
the bulk and surface rotational viscosities associated with
the NLC molecules (see [11,23,24]; for consistency we use
the same notation as our earlier work [11]). Integration by
parts leads to the following evolution equation and boundary
conditions:

μ∗θt∗ = K∗θz∗z∗ − ε∗
0(ε‖ − ε⊥)E∗2

2
sin 2θ, (6a)

ν̃∗θt∗ = K∗θz∗ − A∗
0

2
sin 2(θ − α0)

+ E∗(e∗
1 + e∗

3)

2
sin 2θ

∣∣∣∣
z∗=0

, (6b)

−ν̃∗θt∗ = K∗θz∗ + A∗
h∗

2
sin 2(θ − αh∗ )

+ E∗(e∗
1 + e∗

3)

2
sin 2θ

∣∣∣∣
z∗=h∗

. (6c)

We nondimensionalize Eqs. (5)–(6c) as follows:

z = z∗

h∗ , t = t∗K∗

μ̃∗h∗2 , W = h∗2W ∗

K∗ ,

g{0,1} = g∗
{0,h∗}h

∗

K∗ , A{0,1} = h∗A∗
{0,h∗}

K∗ (7)

(W plays an important role in the calculus of variations
approach used in the Appendix), obtaining the following
dimensionless boundary value problem:

θt = θzz − D sin 2θ, (8a)

ν̃θt = θz − A0

2
sin 2(θ − α0) + F

2
sin 2θ on z = 0, (8b)

−ν̃θt = θz + A1

2
sin 2(θ − α1) + F

2
sin 2θ on z = 1, (8c)

where ν̃ = ν̃∗/(μ∗h∗) represents the dimensionless surface
viscosity and D and F represent the relative strengths of
dielectric anisotropy and elasticity and of flexoelectricity and
elasticity, respectively:

D = h∗2E∗2ε∗
0(ε‖ − ε⊥)

2K∗ , F = h∗E∗(e∗
1 + e∗

3)

K∗ . (9)

We consider the common case in which the molecules align
parallel to the direction of the electric field, rather than
perpendicular to it (i.e, ε‖ − ε⊥ > 0), so D > 0 always in our
model. The parameter F can change sign, if the electric field
direction is reversed. We note that if surface polarization is
taken into account, the governing equations [Eqs. (8a)–(8c)]
remain unchanged and we only need to modify the value of
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F in the boundary conditions as shown in Ref. [20]. In the
following, however, for clarity and to keep the discussion
focused, we will refer only to flexoelectric effects when
considering the influence of the parameter F on results. The
ratio ϒ = F2/D is independent of the applied electric field:

ϒ = 2(e∗
1 + e∗

3)2

K∗ε∗
0(ε‖ − ε⊥)

. (10)

ϒ is thus a material parameter of the liquid crystal layer,
independent of cell design and constant for a specific liquid
crystal material.

With characteristic values of h∗ ∼ 1–20 μm,
E∗ ∼ 1 V μm−1, K∗ = 8 × 10−12 N, e∗

1 + e∗
3 ∼

5 × 10−12 Cm−1–280 × 10−12 Cm−1, and ε‖ − ε⊥ ∼ 5 [4],
the dimensionless parameters F and D can take a wide range
of values [|F | ∈ (5,125) and D ∈ (2,1100)]. Consistently
with this range of values, in Sec. III, we fix |F | and D and
vary the anchoring strength and field direction [sign(F)]
to determine the influence on the director configuration
throughout the layer. In Sec. IV, we vary ϒ (and inherently
F) while keeping D = 10 to explore how flexoelectricity
affects the Freedericksz and saturation thresholds.

The presentation so far assumes a uniform electric field,
but in reality the applied field interacts with the NLC leading
to some nonuniformity. Cummings et al. [13] studied the
validity of the uniform field approximation in our model. They
concluded that the approximation is valid in the large field
limit, when |F | � 1 [with ϒ,A0,A1 ∼ o(|F |)] as well as the
small field limit (with ϒ ∼ |F | � 1 and ϒ−1 ∼ |F | � 1).
In the latter case, the director does not feel the nonlinearity
that arises in the electric potential due to the small field
strength. Caution should, however, be exercised in using the
uniform field approximation in the case where ϒ � 1 (strong
flexoelectric effect) and |F | = O(1). We present simulation
results both in the regime where the uniform approximation
is valid and where it may not be. For the latter cases, we note
that some corrections to the results may be needed.

The parameters A{0,1} in Eqs. (8) represent the dimension-
less anchoring strength at each boundary. In experiments,
typical values for strong anchoring hover around A∗ ∼
10−3 Jm−2 while A∗ ∼ 10−5–10−6 Jm−2 for weak anchor-
ing [25]. Depending on the thickness of the NLC layer,
A{0,1} can take a wide range of values A{0,1} ∈ (125,2500)
(strong anchoring) and A{0,1} ∈ (0.125,25) (weak anchoring).
Consistently with this range of values, in our simulations
we use A{0,1} = 0.1,1,5,10,20 to represent weak anchoring
and A{0,1} = 1000 for strong anchoring. For most of our
work here, we consider the case where anchoring is planar at
both boundaries, α{0,1} = π/2, with equal anchoring strengths
(A0 = A1). This symmetry guarantees monostability (only
one stable director configuration for a given electric field
strength). In cases where asymmetry is introduced (through
anchoring angles), the system can be bistable, admitting two
nontrivial director configurations θn,1 and θn,2 [10,11]; such
cases are briefly considered in Sec. V B.

In the following sections, we use numerical and analytical
methods to determine and investigate solutions to the boundary
value problem given by Eqs. (8) for various electric field
strengths accounting for both dielectric and flexoelectric

contributions. In particular, we focus on how the stability of
each director solution changes with the electric field strength,
and with the material parameter ϒ , which characterizes the
strength of flexoelectricity relative to elasticity. We also extend
our investigation to determine the influence of variations in
the anchoring strength and angles at the boundaries in both
monostable and bistable systems.

III. SOLUTION SCHEME AND NUMERICAL RESULTS

We begin by illustrating some key features of the director
configurations in the classical case where the anchoring at each
boundary is planar (α{0,1} = π/2) and the layer is subjected
to an applied perpendicular electric field. Both “strong” and
“weak” anchoring are considered. We note that the effect
of flexoelectricity for planar (weak and strong anchoring)
angles has been previously investigated [6,7]. Here, we extend
those results to include the effect of flexoelectricity not only
on the Freedericksz threshold, but also on the saturation
threshold (arbitrary electric field strength). In addition, we
consider systems with different anchoring orientations (e.g.,
the nearly planar anchoring case and the hybrid aligned case),
and investigate the structure of each system as the electric
field strength varies. In our numerical simulations, we solve
the boundary value problem given by Eqs. (8) using the
Crank-Nicolson discretization scheme for the linear parts of
the equations. Nonlinear terms are treated explicitly using
the forward Euler discretization scheme [26]. A grid size

z = 10−3 and 
t = 10−4 is found sufficient to produce
accurate results in all cases considered.

Except where explicitly stated otherwise, the initial con-
dition on all of our simulations is taken as θ (z,0) = πz/4.
We note, however, that except for some simulations of
Sec. V B (where asymmetric anchoring conditions may lead
to bistability), all scenarios considered are monostable, and
the final state reached is independent of the initial condition
used. Figure 2 shows the evolution of the director field in
time for two cases: (i) when no electric field is applied
across the layer, (ii) when an electric field of moderate
strength characterized by |F | = 5 and D = 25 is applied.
Strong and weak planar anchoring represented by A{0,1} =
1000 [Fig. 2(a)] and A{0,1} = 5 [Figs. 2(b) and 2(c)], with
α{0,1} = π/2, are considered; for both cases we observe that, in
the absence of an electric field, the director evolution is driven
purely by the anchoring angles, hence, we obtain a director
solution that is parallel to the bounding plates [θ (z,t) = π/2]
throughout the domain (black horizontal lines). In the presence
of an electric field, however, the molecules should tend to align
parallel to the electric field direction since D > 0.

Consistently with our expectations and with the results
of [6], we observe that for a strongly anchored system
[Fig. 2(a)], the director aligns nearly parallel to the applied
field in the interior of the layer and nearly parallel to the
walls close to the boundaries [see red lines in Fig. 2(a)].
Although our model includes both dielectric and flexoelectric
contributions, flexoelectric deformations are not observed here
(as noted also by Derzhanski et al. [7]). Flexoelectricity is
dominated by the surface anchoring in this strongly anchored
case. This may also be seen from the boundary conditions (8b)
and (8c), which are the only place in the model where
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FIG. 2. Evolution of director field in time for α{0,1} = π/2,
with (a) A{0,1} = 1000 (strong anchoring), F = 5, and D = 25, (b)
A{0,1} = 5 (weak anchoring), F = 5, and D = 25 and (c) A{0,1} = 5,
F = −5, and D = 25. All figures show the director evolution in
dimensionless time when no electric field is applied D = F = 0
(black solid lines) and when an electric field of strength F = ±5
and D = 25 is applied (red dotted lines).

the flexoelectricity parameter F and the surface anchoring
strengths A{0,1} appear. These boundary conditions suggest
that it is the ratio of these two parameters that is key in
determining whether flexoelectricity significantly affects the

system behavior. Consistent with [6], we also note from these
conditions that, in the symmetric anchoring case considered
here (A0 = A1, α{0,1} = π/2), ifF = 0, we anticipate symme-
try about the layer’s centerline z = 0.5, but asymmetry when
F = 0. As the anchoring strength A increases for fixed F , we
would therefore expect that the director configuration observed
becomes increasingly symmetric about z = 0.5, and this is
borne out by Fig. 2(a), where F = 5 and A{0,1} = 1000: the
director configuration shown in this figure is almost exactly
the same as in the Freedericksz transition cell where the
flexoelectric effects are neglected and anchoring is strong [6]
(and would be identical to the results of [6] in the formal
limit A{0,1} → ∞).

For the weakly anchored system (A{0,1} = 5) shown in
Figs. 2(b) and 2(c), however, we observe significant asymme-
try about the cell centerline: with an electric field of strength
F = 5, D = 25, the molecules align parallel to the electric
field at the upper boundary z = 1 as well as in the interior [see
red lines in Fig. 2(b)]. This is a consequence of the asymmetric
nature of the molecules discussed earlier which is reflected
in the flexoelectric free energy density [see Eq. (3)]. Due
to the weak anchoring conditions, the flexoelectric distortion
plays an important role in the director alignment and hence
in the response to the electric field [3,7,27]. The direction
of the electric field dictates the sign of F . Figure 2(c)
confirms our expectations that if the sign of F is reversed,
then the director profile is simply reflected about the line
z = 0.5.

For this simple monostable case of symmetric, planar, sur-
face anchoring (α0 = α1 = π/2 and A0 = A1) we next inves-
tigate how flexoelectricity changes the steady-state molecular
orientation of the NLC layer with weak planar anchoring
(α{0,1} = π/2, A{0,1} = 5), when an electric field, above the
Freedericksz threshold but below the saturation threshold, is
applied in the z direction. Neglecting flexoelectricity [F = 0
in Eqs. (8)], but accounting for the weak anchoring, Ref. [8]
has shown that a director solution symmetric about z = 0.5
is the minimum free energy solution. To study the effects of
flexoelectricity, we vary the material parameter ϒ [given by
Eq. (10)] while keeping D fixed and observe how the director
configuration changes as ϒ (and inherently F) is increased.
Figure 3 shows the steady-state director profiles obtained
at large times after solving Eqs. (8) for different values of
ϒ . When ϒ = 0 (black solid curve), we recover the results
of Ref. [8] for weak anchoring but no flexoelectricity. The
molecules align nearly parallel to the electric field direction
in the interior of the layer while at the boundaries there is
a tradeoff between the weak planar anchoring and the field-
aligning dielectric effect. As ϒ increases (strong flexoelectric
effect), the molecules will splay and bend causing the director
to align almost parallel to the electric field in the bulk and at the
upper boundary. Note that ϒ = 10 falls under the case where
ϒ � 1 and F = O(1), where the uniform field assumption
may not be valid [13]. However, assuming that the director
solution we calculate here for ϒ = 10 is not significantly
different than that for the true nonuniform field case, we
conclude that flexoelectricity plays an important role in the
alignment of liquid crystal molecules in the presence of an
electric field and it affects the Freedericksz and saturation
thresholds.

012701-5



E. MEMA, L. KONDIC, AND L. J. CUMMINGS PHYSICAL REVIEW E 95, 012701 (2017)

z
0 0.2 0.4 0.6 0.8 1

θ(
z
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Υ = 0.0
Υ = 0.2
Υ = 1.0
Υ = 5.0
Υ = 10.0

FIG. 3. Director solution θ (z) for different values of the material
parameter ϒ while keeping D = 10. ϒ = 0 corresponds to a NLC
layer with no flexoelectric contribution. ϒ = 1 corresponds to the
director configuration shown in Fig. 2(b).

IV. STABILITY ANALYSIS AND BIFURCATIONS
FOR SYMMETRIC ANCHORING CONDITIONS

We now investigate how changing the flexoelectric strength
affects the Freedericksz and saturation thresholds in a
nematic liquid crystal layer (these thresholds have been
extensively studied in the absence of flexoelectricity, see,
e.g., [2,8,9,14,25]). In order to do this, we first identify certain
properties of Eqs. (8) as well as introduce measures that allow
us to quantify our findings. We observe that, with α0 = α1 =
π/2, in addition to nontrivial director solutions of the type seen
in Figs. 2 and 3 (which we now call θn), the boundary value
problem [Eqs. (8)] admits two additional steady-state solutions
that exist for all values of D, F : θv(z,t) = 0 (a vertical state)
and θh(z,t) = π/2 (a horizontal state). These solutions are
linearly stable only if, when subjected to sufficiently small
perturbations, such perturbations die away and the steady state
is recovered at large times. Linear stability of each solution
type depends on the choice of model parameters, and can be
determined either numerically or analytically (see Appendix
for details of our analytical approach). Solutions gain or lose
stability as model parameters are varied, and this may be
visualized by constructing bifurcation diagrams. In order to
construct such diagrams, we plot the norm || . . . ||2, of the
steady-state director solution, defined as

||θ ||2 =
√∫ 1

0
θ2 dz.

Since the three distinct solutions θh, θn, θv have different
norms, bifurcations between solution types are clearly visible.
Figure 4 illustrates the bifurcation diagram obtained by
plotting ||θ ||2 as a function of F for several different values
of the material parameter ϒ , which characterizes the strength
of the flexoelectric effect. The diagram is obtained using the
continuation method as follows: since we anticipate that the
horizontal state is a unique steady solution at zero field, we use
a weakly perturbed state θ = π/2 − δ as the initial condition
when F = 0. We then slowly increase F from F = 0, always
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FIG. 4. Bifurcation diagram showing ||θ (z)||2 vs F with A0 =
A1 = 5 and α0 = α1 = π/2 for different ϒ , obtained using continu-
ation in F . Ff denotes the Freedericksz threshold and Fs denotes the
saturation threshold with the arrows pointing where the thresholds
occur for each ϒ .

using the solution obtained with the previously used smaller
value of F (forward continuation). We also carry out reverse
continuation using a similar process: since we anticipate that
the vertical state is a unique steady solution at electric field
strengths above the saturation threshold (F > Fs), we use
this state with a small perturbation, θ = δ, as the initial
condition for the largest value of F , and thereafter decrease
F , at each stage using the previous large-time solution as
the new initial condition. When generating our bifurcation
diagrams (Figs. 4–10), both forward and reverse continuations
are carried out to reveal any bistability that might be present for
a range of electric field strengths. In Figs. 4 and 5, however, we
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FIG. 5. Bifurcation diagram showing ||θ (z)||2 vs F with ϒ = 1
for different anchoring strengths: A0 = A1 = 0.1,1,5,10,20,1000
obtained using continuation in F . The portion of the diagram where
||θ ||2 = π/2 represents the horizontal state [θh(z) = π/2], while
||θ ||2 = 0 represents the vertical state [θv(z) = 0]. The intermediate
portion (slowly decaying as |F | increases) represents the nontrivial
solution θn(z) found numerically.
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show results for F � 0 only {since changing the electric field
direction F → −F simply flips the director solution profile θ

about the centerline z = 0.5 [see Figs. 2(b) and 2(c)] leading to
bifurcation diagrams symmetric about the vertical axis}, and
for forward continuation only (since the system is found to be
monostable).

For the range of F values considered here, Fig. 4
shows that, for small values of ϒ (specifically ϒ = 0.5 and
1), three director configurations are found: the horizontal
(||θh||2 = π/2) represented by the upper left portion of the
graph for all ϒ , the nontrivial (0 < ||θn||2 < π/2) and the
vertical (||θv||2 = 0) solutions. In these two cases, the director
configuration transitions as follows: at low F values the
horizontal solution θh is obtained. Then, if F passes a critical
value Ff (Freedericksz transition), the nontrivial solution θn

is observed. As F is increased further still, past a second
critical value Fs (saturation threshold), the vertical solution θv

is observed.
These observations are as expected, but the question of

how flexoelectricity affects these results has not yet been
addressed. Looking at Fig. 4, we observe that both threshold
values increase with ϒ . While the Freedericksz thresholdFf is
present for all values of ϒ considered, the saturation threshold
is only seen for the lowest two values of ϒ , at least for the range
of F values considered here. In order to determine whether
the saturation threshold is present for all ϒ � 0, we use an
analytical approach based on the calculus of variations. We
study specifically the stability of the vertical solution θv = 0.
If it can be shown that θv is always stable for sufficiently large
F , then we may conclude that a saturation threshold Fs should
exist, for all ϒ � 0.

The calculus of variations approach proceeds by directly
seeking minimizers θ (z) of the total free energy J = h∗J ∗/K∗
[where J ∗ is defined in Eq. (4)]. Small perturbations to a mini-
mizer, θ (z) → θ (z) + εη(z),(0 < ε � 1) induce variations in
J : J → J [θ + εη] = J0 + εJ1 + ε2J2 + O(ε3). For θ (z) to
be a free energy minimizer, we require J1 = 0 and J2 > 0 for
all admissible variations η (see Appendix for more details).
Upon obtaining expressions for J1 and J2 [see Eqs. (A6)–(A8)
in Appendix], it may be seen that, for θ (z) = θv = 0 and any
ϒ > 0, we have J1 = 0, and for sufficiently large |F | the
second variation J2 > 0, hence, θ (z) = 0 is a stable solution
for such F . It may also be seen from Eq. (A8) that the larger
the value of ϒ , the larger F must be to guarantee positivity
of J2 for all admissible variations η. Similarly, we are able
to show that the horizontal solution θ (z) = θh = π/2 is stable
for sufficiently small |F |. Hence, the calculus of variations
allows us to conclude that inclusion of flexoelectric effects
in the model does not affect the fundamental mathematical
structure of the system: with the weak anchoring considered
here, both Freedericksz and saturation thresholds (Ff and Fs)
always exist, both being increasing functions of ϒ . We note,
for completeness, that the ϒ = 10 result in Fig. 4 may lie in
the regime where the uniform field approximation begins to
lose validity [13].

We next investigate how the strength of the surface anchor-
ing (here assumed the same at both boundaries) affects results,
for a fixed value of the material parameter ϒ . We consider
a range of anchoring strength values from A0 = A1 = 0.1 to
A0 = A1 = 1000 and obtain a bifurcation diagram by plotting

||θ ||2 as a function of F . As shown in Fig. 5, we observe that
both Freedericksz and saturation thresholds are present for all
except the largest value ofA used, and both thresholds increase
with A. As before, where our numerics are inconclusive, we
may augment with an analytical approach. The calculus of
variations technique outlined earlier again reveals that the
vertical solution θv is stable for sufficiently large F and
finite A. Note that in the limit as A → ∞, positivity of the
second variation J2 > 0 [see Eq. (A8) in the Appendix] is not
guaranteed, as we recover the Freedericksz transition cell with
strong anchoring where the saturation threshold and therefore
the vertical solution disappear.

Figures 4 and 5 verify the prediction of [7] that there exists a
polarity independent flexoelectrically enhanced Freedericksz
transition. Indeed, we find that the Freedericksz threshold
value is independent of the direction of the electric field. In
addition, we observe that the saturation threshold increases
with |F | and it is also independent of the direction of
the electric field. We remind the reader that for the cases
considered in Figs. 4 and 5, the system is monostable:
only one steady director configuration is stable for a given
electric field strength. In the following section, we consider
how breaking the symmetry in the anchoring conditions,
specifically, changing the anchoring strength and anchoring
angles at each boundary, affects the mathematical structure of
the system.

V. STABILITY ANALYSIS AND BIFURCATIONS
FOR ASYMMETRIC ANCHORING CONDITIONS

The coexistence of two (or more) stable director configu-
rations gives rise to the potential for development of bistable
LCD devices, noted in the Introduction. If two stable states
exist at zero field, then contrast between neighboring pixels
could be maintained without use of energy, with an electric
field needed only to switch pixels from one configuration to the
other as needed [10,11,23,24,28,29]. In our model represented
by Eqs. (8) we find that breaking the symmetry of the
anchoring conditions can lead to bistability. In the following
section, we see how such bistability arises, and study the effect
of flexoelectricity on director profiles, with particular attention
paid to how the Freedericksz and saturation threshold are
affected.

A. Asymmetric anchoring strengths

We begin our investigation into anchoring asymmetry by
maintaining planar anchoring at both boundaries (α0 = α1 =
π/2), but allowing anchoring strengths to differ. We keep
the lower anchoring strength constant at A0 = 10 and vary
the upper anchoring strength in the range 1 � A1 � 12. We
expect the system to retain the same qualitative features of
a weak Freedericksz transition cell where all three director
configurations (θh, θn, and θv) seen in Fig. 5 persist despite
the different anchoring strengths at each boundary. However,
due to the loss of symmetry in the anchoring strength and the
inherent dependence of the flexoelectric effect on the direction
of the electric field (see [7]), we now anticipate results for
F < 0 to differ from those for F > 0.
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FIG. 6. Bifurcation diagram showing ||θ (z)||2 vs F with ϒ = 1
for A0 = 10.0 and 1 � A1 � 12 using continuation in F .

Figure 6 illustrates the bifurcation diagram, obtained by
forward continuation in |F | from F = 0, showing the stable
director configurations for a range of values of A1. Here,
as in Figs. 4 and 5, we use a slightly perturbed horizontal
state as an initial condition when F = 0, followed by the
solution obtained with the previous electric field strength when
F = 0 (continuation). For this particular set of simulations,
the size of the Freedericksz threshold, |Ff |, increases with A1

(see inset of Fig. 6). We also observe that the Freedericksz
threshold at positive F , F+

f is different than the Freedericksz
threshold at negative F , |F−

f | for each anchoring strength
considered. This observation confirms and quantifies the pre-
dictions of Derzhanski et al., who stated that if the anchoring
strength is different at each boundary, A0 = A1, there exists
a polarity dependent flexoelectrically enhanced Freedericksz
transition.

Figure 6 also shows that the saturation threshold at positive
F , (F+

s ) appears to be essentially independent of A1; but,
its value at negative F , (F−

s ) depends strongly on A1, with
|F−

s | being an increasing function of A1. The dependence
of the saturation threshold for positive and negative values
of F (denoted by F {+,−}

s ) on A{0,1} can be understood by
considering the behavior of the nontrivial director solution θn

with weak anchoring (recall that this solution exists only for F
values between the Freedericksz and saturation thresholds; see,
e.g., Fig. 2 for the symmetric weak anchoring case). Consider
the case F > 0 first. It is clear from Fig. 2(b) that, where
θn exists, the director behavior is very different at the two
boundaries, respecting the anchoring at z = 0 but aligning with
the field at z = 1. Since the director is already field aligned at
z = 1, we would not anticipate that the anchoring strength
at that boundary will have much effect on the saturation
threshold value at which the director solution switches to the
fully aligned state; the value of A0 will be more important.
When F < 0, however, the situation is reversed: the director is
field aligned at z = 0, while strongly influenced by the surface
anchoring at z = 1 [Fig. 2(c)]. In this case, we expect the value
of A1 to have a significant effect on the saturation threshold,
and this is borne out in Fig. 6.
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FIG. 7. Bifurcation diagram showing ||θ (z)||2 vs F with ϒ = 1
for A0 = A1 = 5 and α0 = 0, α1 = π/2, obtained using continuation
in F .

B. Asymmetric anchoring angles

We next investigate how perturbations in the anchoring
angles can change the structure of the system, in particular,
how the Freedericksz and saturation thresholds are affected.
We begin by considering a system that is somewhat special:
anchoring angles α0 = 0 and α1 = π/2; this is commonly
referred to as the hybrid aligned state, which we here call
the semisymmetric system. The anchoring strengths are set to
A0 = A1 = 5 throughout the section. Inspection of Eqs. (8)
reveals that in this case the horizontal and vertical solutions
θh = π/2 and θv = 0 are still steady solutions, but now we
anticipate that θh may no longer be stable at small nonzero
fields since it is favored by just one (not both) boundaries.
Hence, we expect to see only a saturation threshold as |F | is
increased from zero.

Figure 7 shows the bifurcation diagram for this case. In
obtaining the director solutions for each F , we first use
θ = π/2 − δ as an initial guess when F = 0, and thereafter
use forward continuation in |F | (reverse continuation was
also carried out with identical results obtained; the system is
monostable). We observe that, as anticipated, the horizontal
state is never stable. Instead, the system converges to a
nontrivial state θn, which is stable for small values of |F |.
For large enough |F |, the vertical state θv(z) = 0 becomes
stable while the nontrivial steady state is unstable (or ceases to
exist). This asymmetry in the saturation threshold is due to the
flexoelectricity. We conclude that this system does not have
a Freedericksz threshold, only a saturation threshold, which
occurs at F ≈ −12.5 for F < 0 and F ≈ 2.5 for F > 0.

For F > 0, flexoelectricity helps the director fully align
with the electric field at weaker field strength than for
F < 0. This can be explained in terms of the nontrivial
director configuration for asymmetric anchoring conditions
α0 = 0 and α1 = π/2. In the absence of an electric field, the
director configuration is linear in z, satisfying the anchoring
conditions (8b) and (8c) at the boundaries. As an electric field
is applied in the positive z direction, the molecules in the
bulk and at the upper boundary align with the electric field [cf.
Fig. 2(b)]. Here, however, the molecules at the lower boundary
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FIG. 8. Bifurcation diagram showing ||θ (z)||2 vs F with ϒ = 1
for A0 = A1 = 5 and α0 = π/2, α1 = π/2 − ψ (ψ = 0.1), obtained
using forward continuation in F . Inset located at the upper left corner
shows the director configuration obtained when F = 12.5. Inset
located at the lower right corner shows a zoom of the bifurcation
diagram, to clarify the behavior in the range 12 � F � 13 region.

are already aligned with the applied field, hence, a fairly low
field strength suffices to make the transition from nontrivial to
vertical state. On the other hand, when F < 0, the molecules
at the upper boundary are dominated by the planar anchoring
[cf. Fig. 2(c)], and in this case, a much higher field is needed
to effect the transition from nontrivial to vertical state.

With a clear picture of the system behavior for the two
special cases of (i) equal strength planar anchoring at both
boundaries (α0 = α1 = π/2, symmetric case) and (ii) equal
strength anchoring that is homeotropic at one boundary and
planar at the other (α0 = 0, α1 = π/2, semisymmetric case),
we now investigate how small perturbations to such anchoring
conditions change system behavior. We maintain the anchoring
strengthsA0 = A1 = 5 at each boundary and introduce a small
perturbation ψ to the anchoring angles as follows: (i) α0 =
π/2, α1 = π/2 − ψ , (ii) α0 = 0, α1 = π/2 − ψ , and (iii) α0 =
ψ , α1 = π/2. We set ψ = 0.1 in all simulations that follow.

Figure 8 shows the bifurcation diagram where ||θ (z)||2 is
plotted as a function of F for α0 = π/2 and α1 = π/2 − ψ .
As in the previous cases, we first use a slightly perturbed
horizontal state θ = π/2 − δ as initial condition when F = 0,
and thereafter use forward continuation in |F |. Since the
system is monostable, reverse continuation starting from
|F | = 20 with initial condition θ = δ leads to identical results.
We note that θh and θv are no longer steady-state solutions
that satisfy Eqs. (8) for the given anchoring angles, hence,
we do not expect to observe true Freedericksz and saturation
thresholds. At zero electric field strength, a nontrivial director
solution (nearly horizontal) satisfies the anchoring angles
with ||θ (z)||2 = 1.52. As |F | increases, the nontrivial solution
evolves, becoming rapidly more vertical. Observe that, for
F ≈ 12, it appears that a saturation threshold is reached,
however, closer examination (the inset located at the lower
right corner in Fig. 8) reveals that in fact the director never fully
breaks the surface anchoring to reach the strictly vertical state

θv = 0. A boundary layer near z = 1 persists (see inset located
at the upper left corner of Fig. 8). Note that the bifurcation
diagram shown in Fig. 8 is far from symmetric in F , being
significantly altered from its equivalent (shown in Figs. 4 and 5,
reflected about the vertical axis) when ψ = 0. This asymmetry
is induced purely by the flexoelectric effect. In the absence of
flexoelectricity, ϒ = 0, the bifurcation diagram is symmetric
in F .

We now consider perturbations to the system with
homeotropic anchoring at one boundary and planar anchoring
at the other, with (ii) α0 = ψ , α1 = π/2 and (iii) α0 = 0,
α1 = π/2 − ψ . Once more, θh and θv are no longer steady-
state solutions that satisfy Eqs. (8) for the given anchoring
angles. Hence, we do not expect to observe the Freedericksz
or saturation thresholds. In fact, both cases (ii) and (iii) are
bistable [10,11], admitting two nontrivial director configura-
tions θn,1 and θn,2, hence, we must track both solutions in our
bifurcation diagrams.

Figure 9 shows the bifurcation diagrams for cases (ii) and
(iii), where ||θ (z)||2 is plotted as a function of F for each
solution. Since two director configurations exist in the absence
of an electric field, we obtain two director solutions for each F
by using θn,1 and θn,2 as initial conditions, followed by forward
continuation in |F |. In addition, we use a perturbed vertical
state θ (z) = δ as the initial condition for large |F | followed by
reverse continuation.

Figure 9(a) shows the bifurcation diagram for α0 = ψ

and α1 = π/2. We observe that when |F | is small, two
stable director configurations given by θn,1 and θn,2 exist
(solid black line showing the norm of θn,1 and red dashed
line showing the norm of θn,2). As |F | increases, one of
the solutions disappears; both director solutions have the same
norm. Reverse continuation (green dots) converges to the
director configuration given by θn,1 which means that one can
switch from θn,2 → θn,1 by increasing |F | but not vice versa.
This poses an inconvenience from an applications point of
view since, to be useful, a bistable system must allow two-way
switching (see [10,11] for a more detailed investigation of
bistability and switching).

As already noted, since θh and θv are not solutions to
this perturbed system, there can be no true Freedericksz or
saturation threshold. Similarly to Fig. 8, Fig. 9(a) has an
apparent bifurcation (atF ≈ −12.5) but again the inset reveals
that the solution is never fully vertical.

Figure 9(b) shows the bifurcation diagram for α0 = 0
and α1 = π/2 − ψ . As above, we observe that two director
configurations θn,1 and θn,2 exist for small values of |F |,
indicating that the system is bistable. As |F | increases, the
system loses its bistability. Note that for F ≈ −5 the two
solutions have the same norm in Fig. 9(b): this does not,
however, imply that the director configurations are identical. In
fact when F ≈ −5, θn,1 and θn,2 are distinct solutions, which
just happen to have the same ||θ (z)||2 norm, so the system is
still bistable here. As F increases further, however, the system
can no longer sustain two stable steady states. Figure 9(b)
shows that the system loses bistability at F ≈ −7.4 for F < 0
and F ≈ 2 for F > 0. Beyond these two values the system is
monostable. It is curious to note how different the bifurcation
structures in Figs. 9(a) and 9(b) are, in particular at negative
F values, while the underlying models are so close.
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FIG. 9. Bifurcation diagram showing ||θ (z)||2 plotted vs F with
ϒ = 1 for (a) α0 = ψ and α1 = π/2 and (b) α0 = 0, α1 = π/2 − ψ

(with ψ = 0.1). Anchoring strengths are set to A0 = A1 = 5. Black
solid and red dashed curves are obtained using forward continuation
in |F | while the green dotted curve is obtained using reverse
continuation in |F |.

Finally, we present an example with fully asymmetric
boundary conditions α0 = 0 and α1 = π/3. Here, as in
Figs. 4–9, we plot ||θ (z)||2 as a function of F by using
forward and reverse continuation methods. The behavior of
the system is similar to the perturbed semisymmetric cases
shown in Fig. 9: the system is initially bistable with two
director configurations θn,1 and θn,2 and loses bistability as
|F | increases. Also, θh and θv again do not exist, hence,
there are no Freedericksz and saturation thresholds. As in
Fig. 9, we observe that one can switch only from θn,2 → θn,1

by increasing |F |. Since reverse continuation favors θn,1, we
cannot switch from θn,1 → θn,2 in the asymmetric cases shown
here. This finding exemplifies some of the difficulties inherent
in designing bistable devices.

Figures 6–10 have shown that changing the anchoring
conditions, even slightly, significantly alters the director
configurations present in a Freedericksz transition cell as well
as its bifurcation properties (the Freedericksz and saturation
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FIG. 10. Bifurcation diagram showing ||θ (z)||2 plotted vs F with
ϒ = 1 for α0 = 0 and α1 = π/3. Anchoring strengths are set toA0 =
A1 = 5. Black solid and red dashed curves are obtained using forward
continuation in |F | while the green dotted curve is obtained using
reverse continuation in |F |.

thresholds). In particular, we observe that changing the
anchoring strength A simply increases the Freedericksz and
saturation threshold values. Breaking the symmetry in the
anchoring angles, however, changes the structure of the cell,
eliminating the purely horizontal and vertical states present
in a classic Freedericksz transition cell. In doing so, one can
eliminate both Freedericksz and saturation thresholds.

VI. CONCLUSIONS

We have presented a mathematical model that describes
the evolution of the director field within a confined layer of
nematic liquid crystal where an electric field is applied in the z

direction and the anchoring conditions vary. We investigate in
detail how an applied electric field affects the evolution of the
director field in the presence of both dielectric and flexoelectric
effects for strong and weak anchoring. We observe that for
strong planar anchoring the director aligns vertically in the
direction of the electric field in the interior of the layer and
aligns nearly parallel to the anchoring angles close to the
interface; flexoelectric effects are not observed. In the case
of weak planar anchoring, flexoelectricity significantly affects
the system’s behavior. We find that, at intermediate values of
the electric field strength, the director aligns parallel to the
electric field in the interior of the layer and at one of the
boundaries (which boundary depends on the direction of the
electric field). The key characteristics of a weak Freedericksz
transition cell persist, however: three director solutions (which
we call θh, θn, and θv for horizontal, nontrivial, and vertical
states) exist, only one of which is stable at a given electric
field strength. Solution θh is stable for 0 < F < Ff (the
Freedericksz transition threshold); solution θn is stable for
Ff < F < Fs (the saturation threshold) and solution θv is
stable for F > Fs .

We pay particular attention to the above transition structure
when increasing the effect of flexoelectricity by varying the
material parameter ϒ = F2/D [see Eq. (10)]. We observe
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that both Freedericksz and saturation thresholds increase
with flexoelectricity. In addition, we investigate how the
Freedericksz and saturation thresholds change as anchoring
conditions are varied at each boundary. When the anchoring
strength parameters (A{0,1}) are varied, we observe that the
stability of the director configurations does not change, but
the Freedericksz and saturation thresholds increase with A.
When investigating a system with planar anchoring angles
(α0 = α1 = π/2) while varying the anchoring strength only at
one boundary, we observe that the structure of the system and
the saturation threshold at positive F , F+

s , remain unchanged
(three director configurations exist: θh, θn, and θv). The Freed-
ericksz threshold for both positive and negative F , F {+,−}

f ,
and the saturation threshold for negative F , F−

s , increase in
magnitude with A1. Finally, changing the anchoring angles at
the boundaries (nonplanar anchoring angles) reveals that the
structure and stability of the possible director configurations
change fundamentally. Here, the horizontal and vertical states
are no longer solutions. In some cases bistability is observed,
with more than one nontrivial director solution. We find
that, while bistability is preserved for weak applied fields,
it is typically lost for stronger fields. As the applied field is
increased, the system tends to become monostable.

Finally, in the Appendix, we present two analytical ap-
proaches that help us determine the stability of the director
configurations for the weak Freedericksz transition cells. We
use the calculus of variations to minimize the total free energy
of the system and determine the stability of the horizontal
and vertical director configurations. We also carry out linear
stability analysis by linearizing Eqs. (8) around the purely
vertical and horizontal solutions and we determine whether
perturbations to these solutions exhibit growth or decay in
time. We find that our numerical results are strongly supported
by the analytical ones.
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APPENDIX

We augment our numerical approach in the main paper
by two analytical approaches to determine the stability of
the steady solutions to Eq. (8). The first consists of using
the calculus of variations to calculate the first and second
variation of the total free energy of the system. In certain
cases, we can show that the second variation of a particular
solution θ (a zero of the first variation) is either strictly
positive (energy minimum; stable) or strictly negative (energy
maximum; unstable).

We also use linear stability analysis (LSA) as our second
approach where we linearize Eqs. (8) around the two solutions
that are known explicitly [θv(z,t) = 0, θh(z,t) = π/2] and seek
to determine whether perturbations to these solutions exhibit
growth or decay in time.

1. Calculus of variations

We determine the stability of the steady solutions θv(z) = 0
and θh(z) = π/2 in the presence of an external field. Since

we will consider only the equilibrium solutions, we omit the t

dependence. The total free energy for our system is given by

J =
∫ 1

0
W (θ,θz) dz + g0(θ )|z=0 + g1(θ )|z=1, (A1)

where W , g0, and g1 are the dimensionless bulk and surface
energy densities obtained by nondimensionalizing Eq. (4)
using the scales in Eqs. (7):

W = θ2
z

2
− D cos2 θ + Fθz

2
sin 2θ, (A2)

g{0,1} = A{0,1}
2

sin2(θ − α{0,1}). (A3)

We look for equilibrium solutions θ (z) that minimize J as
follows: let θ (z) → θ (z) + εη(z) (0 < ε � 1): this assump-
tion leads to J → J [θ + εη] = J0 + εJ1 + ε2J2 + O(ε3). For
θ (z) to be a minimizer of J (a stable solution), we require
J1 = 0 and J2 > 0 for all admissible variations η. If on the
other hand J2 < 0, then we have a local maximum of the free
energy, and hence an unstable steady solution. After Taylor
expansion, the expression for J1 takes the following form:

J1 =
∫ 1

0
η[Wθ − (Wθz

)z] dz + η(g1θ + Wθz
)|z=1

+ η(g0θ − Wθz
)|z=0. (A4)

After integration by parts, the second variation J2 can be
expressed as follows:

J2 = 1

2

∫ 1

0
{η2[Wθθ − (Wθθz

)z] + ηz
2Wθzθz

} dz

+ η2(g1θθ + Wθθz
)|z=1 + η2(g1θθ − Wθθz

)|z=0. (A5)

We check the stability of the director solution θv(z) = 0 and
θh(z) = π/2 by evaluating J2 when α{0,1} = π/2 (J1 must
always vanish for any steady solution).

a. Stability of director solution θv(z) = 0

Substituting W and g{0,1} given by Eqs. (A2) and (A3)
into J1 and J2 [see Eqs. (A4) and (A5)] and manipulating the
expressions, we first verify that J1 = 0 for θ (z) = 0, and that
J2 > 0 for sufficiently large F . The first and second variations
are evaluated as

J1 =
∫ 1

0
η[D sin 2θ − θzz]dz

+ η

[A1

2
sin 2(θ − α1) + θz + F

2
sin 2θ

]∣∣∣∣
z=1

+ η

[A0

2
sin 2(θ − α0) − θz − F

2
sin 2θ

]∣∣∣∣
z=0

, (A6)

J2 = 1

2

∫ 1

0
η2[2D cos 2θ − 2Fθz sin 2θ − 2Fθz cos 2θ ] dz

+ 1

2

∫ 1

0
η2

z dz + η2[A1 cos 2(θ − α1) + F cos 2θ ]|z=1

+ η2[A0 cos 2(θ − α0) − F cos 2θ ]|z=0. (A7)
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We assume that the two surface energies are equal, A0 =
A1. Setting θ = θv = 0, J1 = 0 and J2 simplifies to

J2 = 1

2

∫ 1

0

{
2
F2

ϒ
η2 + η2

z

}
dz − A

2
(η2|z=1 + η2|z=0)

+ F
2

(η2|z=1 − η2|z=0). (A8)

Observe that the first term in Eq. (A8) dominates for larger
|F | and we conclude the following: when |F | is sufficiently
large and for finite anchoring strength A and finite values of
ϒ , J2 > 0. This establishes that θ (z) = 0 is a minimum energy
solution and therefore stable.

Similarly, we can determine the sign of J2 in the limiting
case when F → 0 and anchoring is sufficiently strong. We
obtain

J2 ≈ 1

2

∫ 1

0
η2

z dz + η2(−A + F)|z=1 + η2(−A − F)|z=0

for |F | � A, which leads to the following result: when |F | is
sufficiently small and simultaneously A is sufficiently large,
J2 < 0 and θ (z) = 0 is a solution locally maximizing the free
energy and therefore unstable.

b. Stability of director solution θh(z) = π/2

A similar approach is taken to determine the stability of
θh(z) = π/2 for large |F |. We first check that J1 = 0 for
θh(z) = π/2, which a glance at Eq. (A6) confirms. Calculating
the second variation J2 for θh(z) = π/2 by letting D = F2/ϒ

and A0 = A1 in Eq. (A7), we obtain

J2 = 1

2

[ ∫ 1

0
−2

F2

ϒ
η2 dz +

∫ 1

0
η2

z dz + η2(A − F)|z=1

+ η2(A + F)|z=0

]
. (A9)

As before, we conclude that when |F | is sufficiently large and
A is finite, J2 < 0, establishing that θh(z) = π/2 is a local
energy maximizer and therefore unstable.

Similarly, we can determine the sign of J2 for θ (z) = π/2
in the limiting case when F → 0. We obtain from Eq. (A9)

J2 ≈
∫ 1

0
η2

z dz + η2(A − F)|z=1 + η2(A + F)|z=0

and we conclude that when |F | is sufficiently small and
simultaneouslyA is sufficiently large, J2 > 0 and θh(z) = π/2
is a solution locally minimizing the free energy and therefore
stable.

Together with the numerical results, we can conclude that
in the presence of a strong electric field (|F | sufficiently
large), θv(z) = 0 is a stable solution while θh(z) = π/2 is
unstable. If stronger anchoring is imposed on the boundaries,
then a larger value of |F | is needed for θv(z) = 0 to become
stable. In addition, in the presence of a weak electric field
(|F | sufficiently small), and A sufficiently large, the director
solution θv(z) = 0 is an unstable solution while θh(z) = π/2
is stable. We observed numerically that in the presence of
weak anchoring, the saturation threshold increased with A
and ϒ and although we cannot arrive to the same conclusion

analytically, we observe that the sign of J2 depends heav-
ily on the anchoring and electric field strength, indicating
that the stability of the solutions depends strongly on the
parameters A,F .

2. Linear stability analysis

We now use LSA to determine if the director solutions
θv(z) = 0 and θh(z) = π/2 pertaining to a system with weak
anchoring (A{0,1} = 5.0) are stable or unstable. We consider
planar anchoring angles α0 = α1 = π/2 and various electric
field strengths, always keeping ϒ = 1. We approach the
problem as follows: consider a perturbation of the steady-state
solution θ0 of the following form:

θ = θ0 + εω(z,t), (A10)

where ε � 1. Substituting Eq. (A10) into Eqs. (8) and
retaining only the order ε terms, we obtain the following linear
system:

ν̃ωt (z,t) = ωzz(z,t) − 2D cos 2θ0ω(z,t),

ν̃ωt (0,t) = ωz(0,t)

+ [−A0 cos 2(θ0 − α0) + F cos 2θ0] ω(0,t),

−ν̃ωt (1,t) = ωz(1,t)

+ [A1 cos 2(θ0 − α1) + F cos 2θ0] ω(1,t).

(A11)

We solve the linear boundary value problem given by
Eqs. (A11) for θ0 = θv,h(z) = 0,π/2 and determine whether
perturbations to each solution θ0(z) grow or decay in time.
Specifically, we look for solutions of the following form:

ω1(z,t) = e(k2−2D cos 2θ0)t [A cosh kz + B sinh kz], (A12)

ω2(z,t) = e(−k2−2D cos 2θ0)t [A cos kz + B sin kz]. (A13)

Each solution ωi(z,t), i = 1,2, satisfies the linear system given
by Eq. (A11) provided that the coefficients A and B are chosen
to satisfy the boundary conditions. We now consider each case
in detail.

a. Perturbation of hyperbolic type, Eq. (A12)

To obtain a nontrivial solution of type (A12), we need to
solve the following expression:

D1 ≡ Det(ω1) = [k2 − 2D cos 2θ0 + A0 cos 2(θ0 − α0)

−F cos 2θ0)]{(k2 − 2D cos 2θ0) tanh(k)

+ k + [A1 + cos 2(θ0 − α1) + F cos 2θ0] tanh(k)}
+ k[(k2 − 2D cos 2θ0 + A1 cos 2(θ0 − α1)

+F cos 2θ0 + k tanh(k)] = 0 (A14)

and find nonzero values of k that correspond to nontrivial
solutions of Eq. (A11). We find the values of k using the
bisection method and observe that the evolution of ω1(z,t)
in time is driven by the exponential term e(k2−2D cos 2θ0)t .
Specifically, if k2 − 2D cos 2θ0 < 0 for nonzero values of
k that satisfy Eq. (A14), then the perturbation ω1(z,t) → 0
as t → ∞. Similarly, if k2 − 2D cos 2θ0 > 0 for nonzero k
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TABLE I. Evolution of ω1(z,t) = e(k2−2D cos 2θ0)t [A cosh kz + B sinh kz] for θ0 = 0 and π/2 for weak anchoring A0 = A1 = 5 and different
electric field strengths, always with ϒ = 1.

ω1(z,t) = e(k2−2D cos 2θ0)t [A cosh kz + B sinh kz]
θ0(z) α0, α1 F D k limt→∞ ω1(z,t)

0 π/2, π/2 1 1 ±1.9538, ±2.3815 ∞, ∞
π/2 π/2, π/2 1 1 0 N/A
0 π/2, π/2 5 25 ±6.5887, ±7.2620 0, ∞
π/2 π/2, π/2 5 25 0 N/A
0 π/2, π/2 9 81 ±12.0797, ±12.7759 0, ∞
π/2 π/2, π/2 9 81 0 N/A
0 π/2, π/2 20 400 ±27.5223, ±28.2271 0, 0
π/2 π/2, π/2 20 400 0 N/A

satisfying Eq. (A14), then ω1(z,t) → ∞ as t → ∞. Note that
when k = 0, the perturbation ω1(z,t) = Ae(−2D cos 2θ0)t does
not satisfy the boundary value problem given by Eq. (A11)
unless the coefficient A is zero, giving the zero solution.
Before we can draw any conclusions about the stability of
each director solution, we must also consider perturbations
given by Eq. (A13).

b. Perturbation of oscillatory type, Eq. (A13)

Similarly, to obtain a nonzero solution for Eq. (A13), we
need to solve the following expression:

D2 ≡ Det(ω2) = [k2 + 2D cos 2θ0 − A0 cos 2(θ0 − α0)

+F cos 2θ0]{[k2 + 2D cos 2θ0

−A1 cos 2(θ0 − α1) + F cos 2θ0] sin(k)

− k cos(k)} − k{[k2 + 2D cos 2θ0 − A1 cos 2(θ0 − α1)

+F cos 2θ0] cos(k) + k sin(k)} = 0. (A15)

Again, Eq. (A15) is solved numerically using the bisection
method to determine the nonzero values of k that allow for non-
trivial solutions for Eq. (A11). Now, the evolution of ω2(z,t)

in time is driven by the exponential term e(−k2−2D cos 2θ0)t . If
−k2 − 2D cos 2θ0 > 0 for nonzero values of k that satisfy
Eq. (A15), then the perturbation ω2(z,t) → ∞ as t → ∞.
Similarly, if −k2 − 2D cos 2θ0 < 0 then the perturbation
ω2(z,t) → 0 as t → ∞.

c. Stability of solutions θv(z) = 0 and θh(z) = π/2 using linear
stability analysis

We determine the stability of the steady solutions θv(z) =
0 and θh(z) = π/2 by combining the results obtained for
both perturbations ωi(z,t),i = 1,2, as follows: if both expo-
nents in ωi(z,t) are negative (i.e., k2 − 2D cos 2θ0 < 0 and
−k2 − 2D cos 2θ0 < 0) for nontrivial values of k that satisfy
Eqs. (A14) and (A15), respectively, then the perturbations
ωi(z,t) decay in time leading to a stable steady state θ (z). If at
least one expression is positive, then at least one perturbation
ωi(z,t) grows in time leading to an unstable steady state. We
now present two tables that display the values of k that satisfy
Eq. (A11) for each perturbation ωi(z,t), i = 1,2. In addition,
we present the evolution of each perturbation as t → ∞ to

TABLE II. Evolution of ω2(z,t) = e(−k2−2D cos 2θ0)t [A cos kz + B sin kz] for θ0 = 0 and θ0 = π/2 for weak anchoring A0 = A = 1 = 5 and
different electric field strengths, with ϒ = 1.

ω2(z,t) = e(−k2−2D cos 2θ0)t [A cos kz + B sin kz]
θ0(z) α0, α1 F D k limt→∞ ω2(z,t)

0 π/2, π/2 1 1 ±3.4842 ±6.5394, 0, 0, 0
others

π/2 π/2, π/2 1 1 ±2.0930, ±2.8918, 0, 0, 0
others

0 π/2, π/2 5 25 ±3.2333, ± 6.4098, 0, 0, 0
others

π/2 π/2, π/2 5 25 ±3.0228, ±5.8396, ∞, ∞, 0
others

0 π/2, π/2 9 81 ±13.1757, ±6.3418, 0, 0, 0
others

π/2 π/2, π/2 9 81 ±3.1704, ± 6.1932, ∞, ∞, 0
others

0 π/2, π/2 20 400 ±3.1491, ±6.2977, 0, 0, 0
others

π/2 π/2, π/2 20 400 ±3.1339, ±6.26723, ∞, ∞, 0
others
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determine the stability of each director solutions: θv(z) = 0
and θh(z) = π/2 for different electric field strengths.

Based on our LSA results shown in Tables I and II,
for parameter values F = D = 1 and symmetric anchoring
conditions, we conclude that θv(z) = 0 is an unstable steady
state and θh(z,t) = π/2 a stable state. As we increase the
electric field strength to F = 5, D = 25 and F = 9, D =
81, we observe that neither θv(z) = 0 nor θh(z) = π/2 are
stable. In fact, our numerical results show that θn(z) is
the stable solution in this case. Moreover, for a higher
electric field strength F = 20 and D = 400, LSA shows that
θv(z) = 0 is a stable state while θh(z) is unstable. Note that

for all choices of F , D used here, the material parameter
ϒ = 1.

Although these analytical approaches are very useful to
validate our numerical results, they have their limitations. In
the case of the calculus of variations method, we are able to
draw conclusions only in the limiting cases where |F | is small
or large compared to the anchoring strengthA{0,1}. When using
LSA, we are able to linearize only around known solutions,
namely, θ (z) = 0,π/2 and for symmetric anchoring conditions
only. We still rely on our numerical investigation to determine
the stability of the nontrivial steady state as well as asymmetric
boundary conditions.
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