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Self-diffusion in two-dimensional binary colloidal hard-sphere fluids
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We present a systematic experimental study of the dynamic behavior of monodisperse and bidisperse two-
dimensional colloidal hard-sphere fluids. We consider the diffusive behavior of the two types of particles for
systems with a variety of compositions and total area fractions. In particular, we measure the short- and long-time
diffusion coefficients for both species independently. We find that the short-time self-diffusion coefficients
show an approximately linear dependence on the area fraction and that the long-time self-diffusion coefficients
are well described by an expression dependent upon only the area fraction and contact value of the radial
distribution function. Finally, we consider the effect of composition change and find some variation in the
long-time self-diffusion coefficients, which we ascribe to the complex packing effects exhibited by binary systems.
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I. INTRODUCTION

Elucidating the relationship between the structural and
dynamic properties of fluids has long been a problem [1–4],
with, in recent years, particular effort toward understanding
this link in the case of the glass transition [5–10]. Colloidal
systems, which allow for the study of both the structure
and dynamics at a single particle level in real time, play an
important role in addressing condensed matter issues. For
example, colloidal monolayers have been used to study melting
phenomena [11–14], the properties of gels have been explored
using colloid-polymer mixtures [15,16], and colloidal particles
which are confined or subjected to external fields have been
used to probe particle dynamics in complex landscapes [17–
21]. In particular, binary colloidal systems, comprised of
two differently sized components, are a popular model glass
forming system [22–24] due to the required suppression of
crystallization they afford. These binary systems, however,
also exhibit interesting dynamical and structural phenomena
away from the glass transition [25–27].

One of the simplest dynamical properties is the self-
diffusion of particles, and numerous studies of this fundamen-
tal transport mechanism in three-dimensional (3D) colloidal
systems, both monodisperse [4,28–31] and bidisperse [25,32–
35], have been performed using both scattering techniques and
confocal or optical microscopy. The dynamic properties of
two-dimensional (2D) systems, and in particular of hard-disk
systems, have also been the subject of many theoretical
[36,37] and simulation [38–41] studies. For this case, the
corresponding experimental realization is described as quasi-
2D, consisting of a monolayer of particles with a 3D solvent,
and a range of these systems, differing with respect to the
interface and method of confinement, have been considered
[3,40,42–57]. In the case of binary systems, however, the
motivation to study the glassy behavior of the system has
resulted in a focus on behavior at high area fractions [42,58].

The self-diffusion coefficient for a colloidal sys-
tem at infinite dilution, D0, in 3D is predicted to
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be [59]

D0 = kBT

3πησ
, (1)

with η the viscosity of the solvent and σ the particle diameter.
For two-dimensional systems this expression often requires
modification to account for the method of confinement, for
example by using Faxen’s correction to describe the increased
friction experienced by a particle close to a wall [60]. As the
total area fraction, φt , of the system is increased, hydrodynamic
and direct interactions between particles act to reduce the
measured diffusion coefficient and introduce new time scales
into the system [61]. As a result, two diffusion coefficients can
be defined based upon the time scale over which the system
is considered and the corresponding short- and long-time
self-diffusion coefficients may be obtained from the particle
dynamics in the limits of short and long times, respectively.

Even at relatively low packing fractions, direct and long-
ranged hydrodynamic interactions make a full theoretical
description of self-diffusion extremely complex [61]. In a
previous study [62], however, we have shown that for our
monodisperse colloidal system, the long-time self-diffusion
coefficient scaled by D0 is in excellent agreement with that
from Monte Carlo simulations of hard disks. Crucially, these
simulations do not include hydrodynamic interactions, imply-
ing that hydrodynamic interactions effectively do not affect
the area-fraction dependence of the long-time self-diffusion
coefficient in experiment. Therefore, it should be possible to
describe the φt dependence of the long-time self-diffusion
coefficient, also in binary fluids, using theoretical expressions
that consider only the effect of direct interactions.

Here we study the short- and long-time self-dynamics of
monodisperse and binary quasi-2D colloidal fluids, previously
shown to structurally behave as hard-disk systems [63]. To
achieve this we consider the variation of the long- and
short-time self-diffusion coefficients over a wide range of
compositions and area fractions. From these measurements
we test the applicability of simple theoretical expressions to
describe the observed behavior, where at long times we con-
sider expressions which only consider direct interactions. As
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FIG. 1. (a) Scanning electron microscopy image of the (dried) binary colloidal mixture studied. (b) Typical optical microscopy image of
a system at q = 0.50 and φt = 0.64. (c) State diagram, from [63], showing the different system compositions studied, where the dashed lines
denote systems of approximately the same composition, q.

such, we provide an extensive characterization of the dynamics
of monodisperse and binary quasi-2D hard-sphere systems.

II. EXPERIMENTAL METHODS

A. Colloidal model system

The quasi-two-dimensional colloidal system, as introduced
in Ref. [63], is composed of melamine formaldehyde parti-
cles (Microparticles GmbH) with hard-sphere diameters of
σs = 2.79 and σl = 4.04 μm. Figure 1(a) shows an image
from scanning electron microscopy of the binary mixture of
particles, and Fig. 1(b) a typical optical microscopy image.
The particles are dispersed in a 20/80 v/v% ethanol/water
mixture and sediment onto the base of a glass sample cell
to form monolayers of varying total area fraction, φt , where
for binary systems φt = φs + φl , with φs and φl the area
fractions of the small and large particles, respectively. The
gravitational lengths are 0.07 and 0.02 μm for the small and
large particles, respectively, and thus out-of-plane fluctuations
are negligible. The composition of the system is described by
the parameter q, where q = φl/φt with φl the area fraction of
the large component. Six different systems with q values of
approximately 0, 0.17, 0.37, 0.50, 0.71, and 1 are considered,
such that we examine the full state space for binary systems,
as shown in the state diagram in Fig. 1(c) (taken from [63]).

B. Video microscopy

The system is imaged at a rate of two frames per second
for up to 45 min using a simple video-microscopy setup,
consisting of an Olympus CKX41 inverted microscope with a
40× objective and equipped with a PixeLink CMOS camera
(1280 × 1080 pixels). Standard particle tracking software [64]
was used to obtain particle coordinates, with an error of
12 ± 10 nm in the particle position [63]. Typically between
3000 and 4000 particles per frame were found for the highest
values of φt , with the large and small particles distinguished
based upon the brightness of features.

C. Data analysis

The mean-squared displacement (MSD) is calculated from
particle trajectories as

δr2(t) = 〈[ri(t) − ri(0)]2〉, (2)

with ri(t) the position of particle i at time t and 〈. . . 〉 the
average over multiple particles and different time origins.
For binary systems, the MSD is calculated separately for the
subsets of small and large particles. The short- and long-time
self-diffusion coefficients are determined from the initial and
long-time behavior of the MSD as

D
s,l
S = lim

t→0

δr2(t)

4t
and D

s,l
L = lim

t→∞
δr2(t)

4t
. (3)

Here, the superscript denotes the type of particle (i.e., small s

or large l) and the subscript denotes the type of diffusion (i.e., S
for short time, L for long time). For each binary system studied,
four diffusion coefficients may therefore be calculated; short-
time diffusion for small particles (Ds

S), short-time diffusion
for large particles (Dl

S), long-time diffusion for small particles
(Ds

L), and long-time diffusion for large particles (Dl
L). Note

that D
s,l
0 is the self-diffusion coefficient at infinite dilution.

III. RESULTS AND DISCUSSION

A. Monodisperse system

We first consider self-diffusion in monodisperse colloidal
fluids of either small (σ = 2.79 μm) or large (σ = 4.04 μm)
particles, corresponding to the lines q = 0 and q = 1 in
Fig. 1(c). Note that here we reexamine the self-diffusion of
the monodisperse systems, previously discussed in [62], to
validate, for a well-understood system, the expressions we
later use to consider the self-diffusion in binary fluids. The
mean-squared displacement for a range of total area fractions
at q = 0 is shown in Fig. 2(a). The MSD displays linear,
diffusive regimes at short and long times, with the onset of
a plateau at intermediate times for high area fractions [10,65].
Qualitatively, there is no difference in the behavior seen for
the two differently sized systems.

Short- and long-time self-diffusion coefficients were ob-
tained from the initial and long-time slopes of the MSD
[Eq. (3)] and are shown as a function of the total area fraction
in Fig. 2(b). For both the small and large particles, the short-
and long-time self-diffusion coefficients decrease with φt

consistent with the increased hindrance to the motion of the
particles as the area fraction increases [61]. An estimate of D0

is obtained by an extrapolation of the measured self-diffusion
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FIG. 2. (a) Mean-squared displacements of monodisperse systems of 2.79 μm particles (q = 0) at various φt . Inset is the approach of the
function δr2/4t to its limiting long-time value for φt = 0.15 and 0.51. Here the black dashed line indicates the value of DL, and the shaded
region the mean error in the MSD in the long-time limit. (b) Diffusion coefficients for the monodisperse small and large particle systems, scaled
by the diffusion coefficient at infinite dilution, D0 (see Table I). The dashed line shows the prediction for the short-time diffusion coefficient
from Eq. (4) with α = 0.85 and the solid line the prediction for the long-time diffusion coefficient from Eq. (5) with β = 1.675. Inset is the
linear fit from Eq. (6) used to compute β.

coefficients at low φt to φt = 0 and these values for the
monodisperse systems, i.e., q = 0 and 1, are shown in Table I.
The extrapolated values vary slightly, but are consistent with
the value of D0 as predicted by Eq. (1) when the presence of the
wall is accounted for by Faxen’s correction [60]. We estimate a
maximum uncertainty in the value of the diffusion coefficients
of approximately ±3% by considering the approach of δr2/4t

to its limiting value at long times. Typical examples of the
behavior of this function at two values of φt are shown in the
inset to Fig. 2(a). Here, black dashed lines indicate the value
of DL and the shaded region represents the mean error on
the MSD in the long-time limit, where the long-time limit is
defined to include all points for which DL lies within the error
bar of the MSD.

At low area fractions, the short-time diffusion coefficient is
expected to vary linearly with φt [28,31,66,67] as

DS

D0
= 1 − αφt . (4)

For our monodisperse systems, the area fraction dependence
of DS was discussed previously in [62], with the values of
α, determined from a linear fit, found to be 0.87 ± 0.06 and

TABLE I. Experimental values of the self-diffusion coefficients at
infinite dilution (Ds/l

0,S/L), determined by an extrapolation of the short-
and long-time diffusion coefficients for small and large particles to
φt = 0. Diffusion coefficients are measured in μm2 s−1 and for a
range of compositions q.

q Ds
0,S Ds

0,L Dl
0,S Dl

0,L

0.00 0.0438 0.0420
0.17 0.0411 0.0363 0.0260 0.0249
0.37 0.0460 0.0420 0.0274 0.0251
0.50 0.0561 0.0478 0.0339 0.0274
0.71 0.0466 0.0405 0.0289 0.0250
1.00 0.0266 0.0267

0.84 ± 0.04 for the small and large systems, respectively. This
fit, with an average value of α = 0.85, is shown in Fig. 2(b),
and is in good agreement with our data, even at relatively
high area fractions. These values of α are lower than that
predicted in 3D [68], consistent with previous studies of quasi-
2D systems [48,49,69].

The change of the long-time self-diffusion coefficient with
φt is expected to be more complex as this may be dependent
on both hydrodynamic and direct interactions, though there is
no consensus as to how hydrodynamic interactions affect DL

[41,52,54,70–73]. In spite of this, we have previously shown
that for our colloidal system at long times the behavior is in
excellent agreement with results from Monte Carlo simulations
of hard disks, which importantly do not include hydrodynamic
interactions [62]. As such, we now compare the long-time
behavior to simple theoretical expressions, which describe
only the effect of direct interactions on the self-diffusion coef-
ficient. The term accounting for direct interactions is expected
to depend sensitively on the structure of the system and has
been described by an expression of the form [2,29,37,74]

DL = D0

1 + βφtg(σ )
, (5)

where g(σ ) is the contact value of the radial distribution
function and β a constant. Theoretical studies suggest that
β = 2 in both 3D [2,29,74] and 2D [37] consistent with
analyses considering the area fraction dependence of the
long-time self-diffusion coefficient to first order in φt [75,76].
In spite of this, in 2D the expression has been seen to fail
for higher area fractions, requiring the use of additional terms
from mode-coupling theory to describe the behavior [37].

To test the applicability of a purely structural expression of
the form of Eq. (5) to describe DL over the entire range of φt ,
we rewrite Eq. (5) as

D0

DL

− 1 = βφtg(σ ), (6)

012614-3



THORNEYWORK, AARTS, HORBACH, AND DULLENS PHYSICAL REVIEW E 95, 012614 (2017)

t(s) t(s) 

δr
2 (

t) 
(μ

m
2 )

 

δr
2 (

t) 
(μ

m
2 )

 

σ=2.79μm σ=4.04μm 

φt 

(a) (b) 

FIG. 3. Mean-squared displacement of (a) small and (b) large particles in a binary system with composition q = 0.37. Values of φt in
panel (b) refer to both plots. Insets show the MSD for (a) small and (b) large particles in systems of varying composition, q = 0 → 1, but an
approximately constant area fraction of φt = 0.4.

and fit this expression to our experimental data. Here, β is
a constant to be determined and g(σ ) the expression for
the contact value from scaled particle theory [77], which
we have previously shown to describe g(σ ) very well for
our system [63]. The resultant linear fits produce values of
β = 1.62 ± 0.06 for the 2.79 μm system and β = 1.73 ± 0.09
for the 4.04 μm system. A comparison of the experimental
data to Eq. (6) with an averaged value of β = 1.675 is shown
in the inset of Fig. 2(b), where linear behavior is seen across
the whole range of area fractions. The value of β as measured
from our experiments is somewhat different to the value of 2
expected from theory, but while the origin of this difference
in the value of β is unclear, we find that the general form
of Eq. (6) describes the experimental data well. We show the
comparison between the experimental long-time self-diffusion
coefficient and Eq. (5) in Fig. 2(b) and – as expected from the
linear fit to Eq. (6) – good agreement is seen over the whole
range of densities for both monodisperse systems. With our
experimental data we therefore demonstrate the applicability
of a simple expression, Eq. (5), that directly links the structure
and long-time dynamics in the system. It should be noted
however, that if the prediction of Eq. (5) is compared to the
simulation in [62], it provides a good estimate of DL at low

and intermediate area fractions, but shows different qualitative
behavior at high φt .

B. Binary system

Next, we consider the particle dynamics in binary colloidal
hard-sphere fluids. To this end, we first plot the MSD for
both the small and large particles in a binary system for fixed
composition of q = 0.37 and increasing total area fraction in
Fig. 3. As for the monodisperse case, the MSD has linear
regimes at short and long times and shows clearly the onset
of subdiffusive behavior at high φt . The same qualitative
behavior is seen for both the small and large particles for
all compositions considered. It is also possible to compare
the MSD for binary systems of the same total area fraction
but with different compositions and these results are shown
as insets in Figs. 3(a) and 3(b) for φt ≈ 0.4 and compositions
q = 0 → 1. This comparison is more difficult, because our
sample preparation method makes it difficult to fix φt .
Consequently, we see approximately the same behavior for the
small and large particles across the state diagram, with small
variations in total area fraction obscuring any differences in
the MSD due to the composition change.

FIG. 4. Short- and long-time self-diffusion coefficients for (a) small and (b) large particles in a binary system at q = 0.37. Filled circles
show the long-time self-diffusion coefficient and open circles the short-time self-diffusion coefficients, with the dashed line from Eq. (4) with
α = 0.8 in (a) and α = 0.75 in (b). The ratio of the long-time self-diffusion coefficients for the large and small particles is shown in (c).
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TABLE II. Experimental values of α and β for the small and large
particles in the binary systems for different compositions q and for
the two monodisperse systems (q = 0 and 1).

q αs αl βs βl

0.00 0.87 ± 0.06 1.62 ± 0.06
0.17 0.69 ± 0.09 0.73 ± 0.10 1.35 ± 0.04 1.13 ± 0.06
0.37 0.75 ± 0.05 0.82 ± 0.04 1.32 ± 0.01 1.01 ± 0.02
0.50 0.91 ± 0.07 0.93 ± 0.07 1.43 ± 0.05 1.08 ± 0.04
0.71 0.85 ± 0.10 0.80 ± 0.08 1.17 ± 0.03 0.90 ± 0.04
1.00 0.84 ± 0.04 1.73 ± 0.09

In Fig. 4 we show the short- and long-time self-diffusion
coefficients for the small and large particles as a function
of φt for the binary system with q = 0.37. For all systems
the self-diffusion coefficient decreases with increasing total
area fraction, as seen for the monodisperse system. The
extrapolated values for D0 for the small and large particles for
short- and long-time self-diffusion are similar to those for the
monodisperse systems, see Table I, with all values consistent
with the Einstein expression [Eq. (1)] when corrected for the
presence of the wall [60]. From the short-time self-diffusion
coefficient, we again obtained the values of α for the large
and small particles, which are presented in Table II for the
four compositions considered. Here, it can be seen that values
of α for large and small particles in systems of the same
composition are very similar and that all values of α are within
error of that of the monodisperse systems.

Consistent with D scaling inversely with the particle size
[Eq. (1)], the values of DL and DS are greater for the small
particles than those of the large particles in a binary system
at a certain area fraction and composition. However, as φt

increases there appears to be a convergence in the values of
DL for the two different particle sizes, suggesting that at high
area fractions the diffusive behavior is dictated to a lesser
extent by the particle size. This can be seen in the variation
of the ratio of the long-time self-diffusion coefficients for the
small and large particles, as shown in Fig. 4(c), where the value

becomes closer to unity with increasing φt . While the value
of this ratio at low φt is consistent with the ratio of the D0

values for the small and large particles (see Table I), it does
not exactly correspond to the size ratio. We believe this may
be due to the effect of slightly different Faxen’s corrections for
the small and large particles.

We now again attempt to describe the long-time self-
diffusion coefficient in the binary fluids using an expression
that only accounts for direct interactions. We consider an
ansatz for mixtures of particles based upon Eq. (5),

Di
L

Di
0

= 1

1 + βiφt [xigii(σii) + xjgij (σij )]
, (7)

where i,j indicates particle identity, i.e., small or large,
xi,j = Ni,j /N is the number fraction of small or large particles,
and gij (σij ) is the contact value of the partial radial distribution
function with σij = (σi + σj )/2. To account for mixtures of
particles, we have expressed the structural dependence as a
linear combination of the contact values of the partial radial
distribution functions. These contact values are determined
as for the monodisperse system and agree well with the
theoretical expression [78] for gij (σij ) [63]. As with the
monodisperse system, we calculate values of β by considering
the linear fit that arises from a rearrangement of Eq. (7). Unlike
the values of α, values of β are systematically larger for the
small particles (see Table II), with an example of the linear fits
for the q = 0.37 system shown in the inset of Fig. 5.

A comparison between the experimental long-time self-
diffusion coefficients and Eq. (7) for small and large particles
at all four compositions is shown in Fig. 5. Here, Di

L is
plotted against φi to better demonstrate the quality of the
agreement. In general the experimental data are well described
by Eq. (7). Since this expression only considers the effect of
direct interactions on Di

L, this agreement also suggests that the
convergence in the long-time self-diffusion coefficients of the
two differently sized particles at high area fraction [Fig. 4(c)]
arises from the complex packing effects seen in binary
systems [79].

(a) (b)

FIG. 5. Long-time self-diffusion coefficients for the four binary systems for (a) small and (b) large particles with the prediction from Eq. (7).
Here, self-diffusion coefficients for each component are plotted against the area fraction of that component for clarity. Inset is an example of
the linear plot used to calculate β for the (a) small and (b) large q = 0.37 systems.
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q

FIG. 6. Ds
L/D0 as obtained from Eq. (7) using the experimentally

determined values of β (see Table II) for small particles in a
binary system. Here the expression is plotted as a function of φt

to demonstrate the variation with composition q. Inset is the total
area fraction at which the scaled long-time self-diffusion coefficient,
Ds

L/D0, is equal to 0.5.

It was not possible to see significant composition de-
pendence of the MSD (Fig. 3) due to the difficulty in
preparing systems with varying q but sufficiently similar
φt . A comparison of the fits to the Di

L data shown in
Fig. 5, however, does allow small composition effects on
Di

L to be probed. Consequently, in Fig. 6 we show Eq.
(7) computed with the values of β for the small particles
in the monodisperse (q = 0) and binary (q �= 0) systems.
Additionally, the inset of Fig. 6 shows how the value of φt at
which the scaled long-time self-diffusion coefficient, Ds

L/D0,
is equal to 0.5, varies with composition. Note that similar
results are obtained for the large particles (data not shown).
Notably, in all four binary systems the long-time self-diffusion
coefficients are larger than in a monodisperse system of the

same area fraction. The exact effect of composition change,
however, is not clear, although the system which exhibits the
fastest self-diffusion is that with approximately equal numbers
of large and small particles. The complex dependence on
composition seen here is consistent with previous studies of
structural relaxation in binary systems [79], where properties
were seen to depend upon the composition and exact size ratio
in an extremely complex manner.

IV. CONCLUSIONS

We have systematically studied the self-dynamic behavior
of quasi-2D binary colloidal hard-sphere fluids over a wide
range of total area fractions and a variety of compositions.
Mean-squared displacements show the expected behavior
with increasing φt for a system approaching the onset of
the glass transition. The short- and long-time self-diffusion
coefficients for both the small and large particles decrease with
increasing area fraction as the motion of the particles becomes
more hindered. However, at high area fractions the values of
the long-time self-diffusion coefficients for small and large
particles appear to converge. Both the short- and long-time
self-diffusion coefficients can be well approximated by simple
expressions in terms of the total area fraction. In particular,
the long-time behavior can be described by considering only
the effect of direct interactions using a relationship based on
the structure of the system, consistent with our previous work
[62]. Finally, the long-time self-diffusion coefficients in binary
systems exhibit a mild composition dependence related to the
structure and packing within the system.
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