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2Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
(Received 17 August 2016; revised manuscript received 29 November 2016; published 10 January 2017)

We use numerical simulations to study the effect of particle friction on suspension flows of non-Brownian
hard particles. By systematically varying the microscopic friction coefficient μp and the viscous number J , we
build a phase diagram that identifies three regimes of flow: frictionless, frictional sliding, and rolling. Using
energy balance in flow, we predict relations between kinetic observables, confirmed by numerical simulations.
For realistic friction coefficients and small viscous numbers (below J ∼ 10−3), we show that the dominating
dissipative mechanism is sliding of frictional contacts, and we characterize asymptotic behaviors as jamming is
approached. Outside this regime, our observations support the idea that flow belongs to the universality class of
frictionless particles. We discuss recent experiments in the context of our phase diagram.
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I. INTRODUCTION

Non-Brownian dense suspensions are central to industrial
processes including oil extraction and food processing, as
well as natural phenomena such as landslides and slurries.
Understanding how such out-of-equilibrium crowded systems
flow remains a great challenge, as such systems can show
shear-thinning, shear-thickening, and shear-banding depend-
ing on the microscopic nature of the interparticle forces,
inertial effects, and the boundary conditions [1–5]. To make
progress in such complex systems, two limiting cases have
received considerable attention. On the one hand, for infinitely
hard frictional particles, dimensional analysis alone implies
that the pressure carried by the particles, p, and the shear
rate ε̇ do not affect the flow independently, but only through
the viscous number J = η0ε̇/p, where η0 is the solvent
viscosity [6]. In particular, the packing fraction φ and the
macroscopic friction μ = σ/p must be functions of J , and
they are found empirically to follow constitutive laws of
the type φ(J ) = φc − aφJ γφ and μ = μc + aμJ γμ [7]. These
laws imply a quasi-Newtonian behavior at fixed φ, with a
viscosity η/η0 ∝ (φc − φ)−γ with γ = 1/γφ . Currently, these
relations are phenomenological, with γ = 1/γφ ≈ 1/γμ ≈ 2.
On the other hand, for frictionless particles more precise
numerical measurements were made [8–10] and yielded
values γ = 1/γφ ≈ 1/γμ ∈ [2.5,2.8]. A microscopic theory
can rationalize these findings and predicts γ = 2.85 and γφ =
0.35 [11,12]. The central idea is that as the density increases,
the network of contacts between particles becomes more and
more constrained: there are fewer and fewer floppy modes
along which particles can flow without overlapping [13]. As
the number of floppy modes vanishes, nondimensionalized
velocity fluctuations diverge as L ∼ J−1/2 [13] and become
correlated on a length scale �c ∼ J−0.15 [11,14]. These results
assume that dissipation stems only from viscous forces; the
extent to which they apply to frictional particles is unknown.

Similar considerations apply to inertial flow of hard
particles: the rheology has a singular dependence on the di-
mensionless strain rate, and the inertial number I = ε̇D

√
ρ/p,

where D is the particle diameter and ρ is the particle den-
sity. Empirically, φ(I ) = φc − aφIαφ and μ(I ) = μc + aμIαμ ,
where αμ ≈ αφ ≈ 0.38 for frictionless particles [15] while

αμ ≈ αφ ≈ 0.85 for frictional particles [8]. In this case, a
theory can explain the flow behavior in the frictionless regime
[11], where dissipation is due only to inelastic collisions,
but the rheology clearly differs when friction is added. For
inertial flow, we recently worked out the phase diagram when
both the friction coefficient μp and the inertial number I are
varied, quantifying the transition from frictionless to frictional
behavior [16]. However, it is not clear how these results
translate to suspensions. Even if one can empirically map the
viscous to the inertial flow curves at certain friction coefficients
and at intermediate shear rates [2], to extend such a map to
arbitrary friction coefficients and shear rates, one needs to have
a detailed knowledge of scaling laws in all regimes, i.e., correct
exponents and the range over which these scalings are valid.

In this work, we characterize the role of friction in
suspensions of hard particles using a combination of numerics
and scaling arguments. We systematically vary the friction
coefficient μp and viscous number J , and we establish a
transition from regimes where energy dissipation is dominated
by viscous forces to a frictional sliding regime in which sliding
friction dominates and physical properties differ, as shown in
Fig. 1. We establish novel scaling behaviors, distinct from
the dry granular case [16], and a scaling relation for the
sliding velocity in this regime, and we provide indications that
dissipation is inhomogeneous in space, unlike in frictionless
systems.

This regime diagram is in striking similarity with the phase
diagram of inertial flow [16], where collisional and sliding
dissipation compete. However, a key difference is that for
inertial flow, the frictional sliding regime ends at I ≈ 0.1,
where it is known that the dense flow regime ends, but as is
visible in Fig. 1, for viscous flow the frictional sliding regime
ends near J ≈ 10−3. There is thus a large range of viscous
number for which dense flows are essentially frictionless. As
we discuss in the Conclusion, this sheds light on previous
experiments.

II. NUMERICAL PROTOCOL

We use the discrete-element method to model the flow of
granular materials with strictly overdamped dynamics; grains
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FIG. 1. Phase diagram of dense non-Brownian suspension flow.
In the frictionless and rolling regimes, the dominant source of
dissipation is viscous drag, whereas in the frictional sliding regime,
dissipation is dominated by sliding friction. The dashed line has
slope 2.

are stiff elastic disks with Coulomb friction, subject to drag
forces modeling their interaction with the solvent. When grains
overlap at a contact α, they experience a harmonic elastic
force �fα with tangential and normal components �fα

T and
f N

α ; the spring constants have a ratio kT = 0.5kN . Coulomb
friction restricts the elastic forces to satisfy | �fα

T | � μpf N
α ;

contacts that saturate this constraint are said to be sliding,
while the rest are said to be rolling. Long-range hydrodynamic
interactions are neglected, as such interactions are believed to
be screened by the dense and disordered solid part of the
suspension; viscous interactions between the particles and the
viscous fluid are modeled by Stokes drag, both forces and
torques. We thereby assume laminar flows, which also seems
to be the dominating case for most Reynolds numbers in
dense suspensions [17]. The insensitivity of bulk rheology
to details of the lubrication interactions and long-range
hydrodynamics for sufficiently dense flows was previously
established [15,18,19].

Systems are initially prepared by sedimenting grains under
gravity in an x-periodic domain. When this is complete, walls
are then constructed from strips of grains near the upper and
lower edges of the domain. Shear is imposed by horizontal
motion of the wall; we perform our numerics at an imposed
global shear rate and constant pressure. Grain stiffness is such
that relative deformation at contacts is 
 = p/kn ≈ 10−3,
within the rigid limit established previously [2]. We work in
two dimensions, and accordingly we use notation in which
torques and angular velocities are scalars.

Since dynamics is strictly overdamped, each particle is
subject to equations of force and torque balance. The former is
0 = �F ext

i + �Fv
i − ∑

j
�fij , where �F ext is the external force, �Fv

i

is the viscous drag force, and �fij is the contact force exerted
on particle j by particle i. The torque balance equation is
0 = τ ext

i + τ v
i − ∑

j τij . For drag forces, we consider a simple

Stokes drag �Fv
i = −η0cd ( �Vi − �V a

i ) and τ v
i = − 4

3η0cdR
2
i (ωi −

ωa
i ), where Ri is the radius of particle i, �V a

i = ε̇yx̂ is the
affine velocity, and ωa

i = ε̇/2. Here cd = 3π/(1 − φ0), with
φ0 = 0.76, is a constant chosen to scale the drag contributions
J to experiments [2]. Its importance is discussed in Sec. X.

The Coulomb friction coefficient is varied from 0 to 10.
For realistic grains, μp is often reported in the range 0.2–0.7,
however smaller values may be relevant for emulsions, foams,

and coated surfaces, and larger values may model the effect of
particle angularity [20].

III. ENERGY BALANCE

Energy conservation is a strong constraint on stationary
flows, as we now show. The energy balance equation is
obtained by contracting the force and torque balance equations
along the velocity field ( �Vi,ωi). The result is

Pext = Dvisc + Dcont, (1)

where Pext = ∑
i

�F ext
i · �Vi + τ ext

i ωi is the power injected
through external forces, Dvisc is the power dissipated through
viscosity, and Dcont is the net power dissipated through contact
forces. The viscous term is

Dvisc = cdη0

[ ∑
i

�Vi · ( �Vi − �V a
i

) + 4

3
R2

i ωi · (
ωi − ωa

i

)]

= cdη0

[ ∑
i

( �Vi − �V a
i

)2 + 4

3
R2

i

(
ωi − ωa

i

)2
]
, (2)

since nonaffine and affine velocities are uncorrelated on
average, i.e.,

∑
i

�V a
i · ( �Vi − �V a

i ) = 0, and similarly for the
torques. The contact term is

Dcont = −
∑

i

�Vi ·
∑

j

�fij −
∑

i

ωi

∑
j

τij

=
∑
ij

�uij · �fij , (3)

where �uij = �Vj − �Vi + �n⊥
ij (Rjωj + Riωi) is the relative ve-

locity of particle j with respect to particle i at their mutual
contact point; �n⊥

ij is a vector perpendicular to the contact
normal �nij . The second equality in Eq. (3) can be established
by direct substitution of the definition of �uij . The work done by
contact forces has both normal and tangential components. The
former is entirely elastic and vanishes on average, reflecting
the fact that elastic forces are conservative. We are left with

Dcont =
∑
ij∈CS

�uT
ij · �f T

ij +
∑

ij∈CR

�uT
ij · �f T

ij

≡ Dslid + Droll, (4)

where CS denotes the sliding contacts and CR denotes the
nonsliding (rolling) contacts. The term Droll can be shown
to vanish on average if the normal force in the contact was
held constant, as it would correspond to the loading of a
transverse spring whose mechanical energy must be bounded.
However, it can be finite for contact force history that includes
sliding periods. We find empirically that for all parameters
probed, Droll � Dslid, as shown in Fig. 2, and Droll will thus be
neglected in scaling arguments below.

To investigate which source of dissipation dominates, we
plot the ratioDcont/Dvisc in Fig. 3. Following our previous work
[16], we can define regime boundaries at the viscous number at
which Dcont/Dvisc = 1. The result is plotted in Fig. 1. We find
three regimes, as discussed above. Note that the transition from
frictionless to rolling is a crossover: throughout this transition
area, dissipation is dominated by viscous drag, but the structure
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FIG. 2. Ratio of sliding dissipation at rolling contacts to that at
sliding contacts.

of the contact network depends strongly on μp, as discussed
below.

IV. SCALING ESTIMATES OF DISSIPATION

In steady state, energy input from the shear stress is �σε̇,
where � is the system volume and σ is the shear stress. For
large systems, additional contributions from fluctuations of the
normal position of the wall are insignificant, thus

Pext = �σε̇. (5)

To estimate the dissipation rate from viscous dissipation, we
consider the velocity scale δV defined as the square root of
the time-averaged second moment of the nonaffine velocity,
i.e., δV = 〈( �Vi − �V a

i )2〉1/2. We expect that the scale of angular
velocity fluctuations is then δω ≈ δV (2/D), where D is the
mean particle diameter. From Eq. (2) we then have Dvisc ≈
7cdη0NδV 2/3, where N is the number of particles in �. It is
convenient to define dimensionless dissipations per particle,
normalizing by �pε̇ ≈ Nπ (D/2)2pε̇/φ. Thus we let D̃visc ≡
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FIG. 3. Ratio of dissipation induced by sliding at contacts to
viscous dissipation at indicated viscous numbers. Unity discriminates
between flows that are dominated either by frictional or nonfrictional
dissipation.

Dvisc/(�pε̇), so that

D̃visc ≈ 28φ

3π

cdη0NδV 2

D2pε̇
≈ 28φ

3π
cdL2J, (6)

where we definedL ≡ δV/(ε̇D). Similarly, the sliding dissipa-
tion rate can be estimated from Eq. (3) asDslid ≈ NcχuT μpfN ,
where Nc is the number of contacts, χ is the fraction of sliding
contacts, uT is the mean sliding velocity, and fN is the mean
normal force. The pressure is related to the normal force by
p ≈ NcfND/(2�). Defining D̃slid ≡ Dslid/(�pε̇), we find

D̃slid ≈ χμp2p�uT /D

�pε̇
= 2μpχLT , (7)

where LT ≡ uT /(ε̇D). Since σ = μp, Eq. (1) reads μ =
D̃visc + D̃cont. Using Dcont ∼ Dslid and Eqs. (1), (6), and (7)
yields

μ ∼ CdJL2, frictionless, rolling, (8)

μ ∼ 2μpχLT , frictional sliding, (9)

with Cd = 28cdφc/(3π ) ≈ 102. We neglect here the variation
of φ with J that induces small corrections to scaling. We now
measure the microscopic quantities L, LT , and χ and show
that they abide by Eqs. (8) and (9).

V. MICROSCOPIC OBSERVABLES

The quantity L ≡ δV/(ε̇D) is the ratio of typical velocity
fluctuations to the affine velocity scale, shown in Fig. 4. We
find that for any μp, L increases and apparently diverges
as J decreases. In the frictionless and rolling regimes, L ∝
(J/μ)−1/2, as follows from Eq. (8). In the frictional sliding
regime, the divergence is weaker: we have approximately
L ∼ (J/μ)−1/3.

The typical sliding velocity uT can differ from δV if flow
is inhomogeneous. We find evidence for this in the frictional
sliding regime, for which a power law appears to be developing
in the accessible range, with approximately LT /L ∼ J 0.3, as
shown in Fig. 5.

In the frictional sliding regime, an important variable
is the fraction of sliding contacts, χ . We plot it in
Fig. 4(c) and show that in this regime it displays a
weak scaling: χ ∼ J 0.1 for μp = 0.3 and χ ∼ J 0.13 for
μp = 0.6. Together with the behavior of L and LT /L,
this is consistent with the constraint from energy balance:
we have χLT /μ = χ (LT /L)Lμ−1 ∼ J 0.1+0.3−0.33μ0.33−1 =
J 0.07μ−0.66. Since μ ≈ μc in this regime, this is very close
to a constant, as predicted by Eq. (9).

In the frictionless and rolling regimes, χ depends strongly
on μp. For μp � 1 we have χ < 0.03, indicating that most
contacts are rolling, and justifying the regime’s name. We thus
find that when crossing from the frictionless to the rolling
regime, although the velocity fluctuations do not display a
strong signal, and the rheology is similar, as shown below,
the contact network is restructuring from having all sliding
contacts to having only rolling contacts.
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FIG. 4. (a,b) Relative fluctuations around the affine velocity field, L, as a function of the viscous number at various particle friction
coefficients. Dashed and dot-dashed lines indicate slopes −1/2 and −1/3, respectively. (c) Fraction of sliding contacts, χ . Dashed and
dot-dashed lines indicate slopes 0.1 and 0.13, respectively.

VI. RHEOLOGY

We now turn to the constitutive relations for the volume
fraction of solid material, φ(J ), and the stress ratio, μ(J ),
shown in Fig. 6. As expected, there is a large dependence on
μp in the values of μc and φc: the stress ratio increases and
the compaction decreases as μp increases at constant J . To
distinguish flow regimes, we consider in Fig. 6(c) the quantity
φc − φ ∼ J γφ . In the rolling regime, we find γφ ≈ 0.30, close
to the prediction of [11,12] for flows dominated by viscosity.
When μp is lowered, but at large enough J to be in the
transition from rolling to frictionless, we observe that the
curves bend. A direct fit for μp → 0 would suggest γφ ≈ 0.5.
However, previous analyses in the frictionless limit showed
that corrections to scaling are large for frictionless particles,
an effect that can be traced back to the smallness of the
constant μc. If these corrections are taken into account, one
finds asymptotic exponents γφ ∈ (0.36,0.39) [9,10,21]. We
thus suggest that within flow regimes dominated by viscosity,
we have γφ ∈ (0.30,0.39). In contrast, for intermediate μp the
curves display a kink close to the transition from viscous to
frictional dissipation; this allows us to fit a much larger slope
γφ ≈ 2/3 within the frictional sliding regime.

VII. PHASE BOUNDARIES

We have shown that for realistic μp, sliding friction
eventually dominates dissipation as jamming is approached.
Consistent with the change in dissipation mechanism, key
observables differ in the frictional sliding regime: the velocity
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FIG. 5. Ratio of mean sliding velocity to velocity fluctuations.
The dashed line indicates LT /L ∼ J 0.3, suggesting flow inhomo-
geneity once one enters in the sliding frictional regime.

fluctuations show a weaker divergence with J , and the fraction
of sliding contacts displays scaling behavior. When μp � 0.1,
the crossover to frictional sliding can be understood theoreti-
cally: inside the frictionless regime, LT ∼ L ∼ (CdJ/μ)−1/2

and χ ≈ 1, so that D̃slid ≈ 2μp(CdJ/μ)−1/2. A crossover to
the frictional sliding regime will occur when this quantity is
O(μ). Since μ ≈ μc at small J , we see that D̃slid ∼ μc at
Jc ∼ 4μ2

p/(Cdμc). The scaling of Jc with μp, and the small
prefactor, are both verified in Fig. 1.

VIII. TRANSITION TO INERTIAL FLOW

It is possible to combine the phase diagram of Fig. 1
with earlier results for strictly inertial flow [16] to estimate
the transition from viscous to inertial rheology. In inertial
dynamics, controlled by the inertial number I = ε̇D

√
ρ/p,

in addition to viscous dissipation and sliding friction, en-
ergy can be dissipated by grain inelasticity. The collisional
dissipation rate, which we denote by Dcoll, was previously
estimated for hard particles in [11,16]. Defining, as above,
D̃coll = Dcoll/(�pε̇), and considering an O(1) restitution
coefficient, it reads [11,16]

D̃coll ≈ IL2. (10)

We assume that this contribution will add to the viscous and
frictional contributions, thus modifying power balance from
Eq. (1) to

μ ≈ (CdJ + I )L2 + 2μpχLT . (11)

Using the scaling behavior of L, χ , and LT in the various
regimes, one can determine from this relation all the possible
transitions.

Consider, for example, the transition when inertia starts
to dominate over viscous dissipation [1,2]. From Eq. (11)
this will occur when I > CdJ . This predicts that the relevant
dimensionless number is

p̃ =
(

I

CdJ

)2

= p
ρD2

C2
Dη2

0

, (12)

which is nominally independent of strain rate, depending only
on the pressure, p, and fixed parameters. This is consistent with
experimental measurements in [1], where the critical shear
stress was found to change by less than a factor of 2 when the
strain rate varies over a decade. This gives strong support to
the microscopic expressions for Dvisc and Dcoll.
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FIG. 6. (a) Stress ratio μ, (b) volume fraction φ, and (c) φc − φ as a function of the viscous number J at indicated particle friction
coefficients. In (c), values of φc were determined by fitting curves in (b). In (c), the dashed slope is 0.30 and the dash-dotted slope is 2/3.

Regarding the relevance of friction, consider flow inside
the frictional sliding regime, where dissipation is dominated
by Dslid. Whether the rheology is viscous, with σ ∝ ε̇, or
inertial, with σ ∝ ε̇2, depends on the magnitude of the
two subdominant dissipation rates, Dvisc and Dcoll. From
Eq. (11) we see that viscous dissipation will be larger provided
J > I/Cd , which defines a criterion for irrelevance of inertial
effects.

Finally, we can sketch the phase diagram when inertial
effects are present, in particular the boundary between regions
dominated by frictional sliding and by other sources of
dissipation. This boundary defines a function J = f (μp),
which from Fig. 1 has an approximately inverted parabolic
shape on logarithmic axes. It satisfies, in particular, f (μp) ∼
μ2

p for μp  1. If regime change is controlled by dissipation,
as we have argued here and in [16], then in the presence of
inertia we need only replace J by J + I/Cd . In particular,
the boundary between the frictional and frictionless regimes
will be modified to J + I/Cd = f (μp). We can check this
relation by comparing with the corresponding boundary of

FIG. 7. Sketch of the phase diagram when inertia is present, in
terms of J , μp , and Stokes number St = I 2/J , where I = ε̇D

√
ρ/p

is the inertial number. Below the colored dome, dissipation is
dominated by frictional sliding, while above it is dominated either
by viscous dissipation or grain inelasticity. Color corresponds to the
value of rescaled confining pressure p̃ = [I/(CdJ )]2 along the critical
surface, distinguishing viscous regimes (yellow, p̃  1) from inertial
regimes (dark blue, p̃ � 1).

the frictional sliding found in [16], where there is a function
I = g(μp). The implied relation g(μp) = Cdf (μp) is con-
sistent with the data for μp < 1; for example, in [16] it was
found that I ∼ μ2

p at small μp, consistent with f (x) ∼ x2.
Also, the peak value of I having a frictional regime is I ≈ 0.1,
which implies a peak value of J having a frictional regime at
J ≈ 0.1/Cd ≈ 10−3, consistent with Fig. 1.

At fixed Stokes number St = I 2/J , the criterion becomes
f (μp) = J + √

J St/Cd , which can be solved for J . The
resulting phase diagram is sketched in Fig. 7 for the range
10−2 < St < 105. Below the colored dome, dissipation is
dominated by frictional sliding. The color corresponds to the
value of p̃: the yellow regions are viscous and the blue regions
are inertial.

In fact, the above analysis suggests that the phase diagram
could more simply be plotted in terms of p̃ directly; this is
done in Fig. 8. In this representation, the boundary between
viscous and inertial regimes is a cut along fixed p̃ ≈ 1.

IX. COMPARISON WITH EXPERIMENTS

To quantitatively compare our findings with experiments,
we need to ensure that our definition of J and the associated

FIG. 8. Sketch of the phase diagram when inertia is present, in
terms of J , μp , and rescaled confining pressure p̃ = pρ[D/(CDη0)]2.
Below the colored dome, dissipation is dominated by frictional
sliding, while above it is dominated either by viscous dissipation
or grain inelasticity. Color corresponds to the value of p̃ along the
critical surface, distinguishing viscous regimes (yellow, p̃  1) from
inertial regimes (dark blue, p̃ � 1).
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FIG. 9. (φc − φ)/φc as a function of the viscous number J at
indicated particle friction coefficients, in comparison with data from
Boyer et al. [7]. The solid line shows φc/φ = 1 + J 1/2, the fitting
form proposed in [7].

normalization of drag forces is reasonably accurate. We
have used a Stokes drag model, where the constant of
proportionality is known, analytically, for a force exerted by
the fluid in the absence of other particles. When particles are
very dense, the drag force is renormalized by an Archimedes
force: the fluid drag is enhanced because most of the volume
is occupied by particles themselves, unlike in the case of
one sphere in an infinite volume of fluid [2,22]. This leads
to the large constant Cd ∼ 102, which translates to the small
transition value Jc. By the definition J = η0ε̇/p, a change
in normalization would correspond to a multiplicative shift
in J . To verify that our normalization is appropriate, and to
compare two dimensions to three dimensions, it is natural to
measure distance from the transition, i.e., J , by comparing
constant values of (φc − φ)/φc. To test this procedure, in
Fig. 9 we reproduce the data of Boyer et al. [7], along with the
fitting form proposed therein, φc/φ = 1 + J 1/2. For J � 10−3,
where most data are taken, the data are close to ours for
μp ∈ (0.1,0.6). The experiment used spheres of two materials:
polymethyl methacrylate (PMMA) for J ∈ (10−5,10−2) and
polystyrene for J ∈ (10−4,10−1), both expected to have a
friction coefficient O(1) in dry conditions. Although we cannot
strongly discriminate between different μp in this comparison,
we conclude that the normalization of J is appropriate.

Our results thus support that experiments probing J � 10−3

are not in the sliding regime, and that dissipation is dominated
by viscous drag. In recent works [23,24], a dimensionless
local shear rate, equivalent to L, was inferred by considering
the rheological properties of suspensions immersed in non-
Newtonian fluids. The analysis of [24] supports thatL ∼ J−1/2

in the range 10−3 < J < 10−1, as predicted from our phase
diagram.

A few experiments, however, investigate dense flows closer
to jamming. In [7], mentioned above, some data for φc − φ

extend down to J ≈ 10−5. These data are close to our
simulation results for μp ∈ (0.3,0.6). Assuming a μp in this
range, our phase diagram indicates that the experiment spans

both frictional and viscous regimes. We expect a crossover
from γφ ∼ 0.35 (but affected by corrections to scaling, as
discussed above) to γφ ∼ 0.67. Since fits to φc − φ are marred
by imprecision in the value of φc, especially at small J , it would
be interesting to focus experimentally on the range J < 10−3

and extractL in particular to seek clear deviations from scaling
laws associated with frictionless behavior.

X. DISCUSSION: RIGID CLUSTERS AND
ELASTOPLASTICITY IN GRANULAR FLOWS?

In the frictional sliding regime, the mechanism of flow
leading to L ∼ J−1/3 and LT /L ∼ J 0.3 calls for an explana-
tion, because it implies strong heterogeneity. In the frictionless
regime, such heterogeneity is absent, consistent with theory
that considers a single velocity scale [11]. One possibility is
that frictional systems become overconstrained, and flow is
elastoplastic, as in models of amorphous solids [25]. In this
scenario, flow can be considered as a series of avalanches.
In two dimensions, such avalanches are similar to slip lines
of extension ξ that locally accumulate a strain of order unity.
Such avalanches lead to approximately rigid-body motion to
an extent ∼ξ perpendicular to the line of slip, so that the
nonaffine velocity during an avalanche is of order Vna ∼ ε̇Dξ ,
i.e., L ∼ ξ . However, within the rigid blocks, the pairwise
relative velocity of particles is negligible; thus the typical
relative velocity Vr obtains its value only from the slip lines,
Vr ∼ Vna/ξ . In this regime, we therefore expect LR/L ∼ 1/L,
where LR = Vr/(ε̇D).

In support of this picture, approximately rigid-body motion
has been suggested to occur in granular flows [26–29].
However, scaling relations from elastoplasticity concerning
microscopic flow heterogeneity have not previously been
tested. Defining Vr ≡ 〈(Vj − Vi)2〉1/2 to be consistent with the
definition of velocity fluctuations, we plot LR/L for μp = 0
and μp = 0.3 in Fig. 10. When L is small, corresponding to
large J , particles move nearly affinely, but still nearby particles
will have a relative velocity; hence we expect LR/L > 1, as
we observe both for μp = 0 and 0.3. However, as L increases
from unity, corresponding to denser flow, the curve for μp = 0
asymptotes near unity, consistent with the theory of [11],
while the curve for μp continues to decrease, approximately
as ∼1/

√
L (dotted line). This provides further support for

flow inhomogeneity in frictional flow, and moreover it appears
distinct from the naive elastoplastic prediction ∼1/L. Our

10-1 100 101 102

100

L R
/
L

μp = 0
μp = 0.3

FIG. 10. Ratio of typical relative velocity to velocity fluctuations.
The dashed line LR/L ∼ L−0.5 is a guide to the eye.
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observations thus do not suggest that a simple rigid block pic-
ture applies. Further investigations are clearly needed to clarify
this point, central to a microscopic understanding of flow.

XI. CONCLUSION

We have provided a map that allows one to classify
suspension flows of hard particles into different regimes. This
map delimits a region where dissipation is dominated by
viscous forces, and where exponents describing constitutive
laws and velocity fluctuations appear identical to those of
frictionless particles—these systems belong to the same
universality class. In this region, we believe that the floppy
mode description of flows [11,12] is accurate. This description
is mean-field, in the sense that dissipation is assumed to occur
rather homogeneously in space.

For J � 10−3, the leading macroscopic effect of friction
is to offset μc and φc, while otherwise the rheology is
hardly altered [30]. However, another regime, coined frictional
sliding, can be identified sufficiently close to jamming. In
this regime, friction dominates dissipation, and asymptotic
behaviors differ. Dissipation appears to be localized in space,
as supported by the presence of multiple velocity scales, such
as the nonaffine velocity and the sliding velocity. For realistic
values of the friction coefficient, we predict a transition, in
an experimentally measurable regime, from a frictionless-type
flow to a frictional sliding regime when the viscous number is
decreased, or equivalently as the jamming point is approached.

Similar observations have been reported for inertial flows.
On the one hand, we showed that a similar phase diagram

can be built in that case by comparing sliding and colli-
sional dissipation [16]. On the other hand, strong kinetic
heterogeneities in frictional systems near jamming have been
reported [27], corresponding in our taxonomy to the frictional
sliding regime. Building a description of this regime and its
microscopic properties characterized here remains a challenge
for the future, both for inertial and overdamped flows.

Finally, the viscous and inertial limits considered here
and in Ref. [16] are two distinguished surfaces in a three-
dimensional phase diagram spanned by μp, J , and the Stokes
number I 2/J . We sketched this diagram here, and we showed
that transitions from viscous to inertial dynamics occur at a
constant stress level, consistent with experiments [1]. In future
work, it would be valuable to map out the intervening regions
in detail.
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[13] E. Lerner, G. Düring, and M. Wyart, Proc. Natl. Acad. Sci.

(USA) 109, 4798 (2012).
[14] G. Düring, E. Lerner, and M. Wyart, Phys. Rev. E 89, 022305

(2014).
[15] P.-E. Peyneau and J.-N. Roux, Phys. Rev. E 78, 011307 (2008).
[16] E. DeGiuli, J. N. McElwaine, and M. Wyart, Phys. Rev. E 94,

012904 (2016).

[17] I. Lashgari, F. Picano, W.-P. Breugem, and L. Brandt, Phys. Rev.
Lett. 113, 254502 (2014).

[18] B. Andreotti, J.-L. Barrat, and C. Heussinger, Phys. Rev. Lett.
109, 105901 (2012).
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