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Collective colloid diffusion under soft two-dimensional confinement
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This work presents a numerical and theoretical investigation of the collective dynamics of colloids in an
unbounded solution but trapped in a harmonic potential. Under strict two-dimensional confinement (infinitely
stiff trap) the collective colloidal diffusion is enhanced and diverges at zero wave number (like k~'), due to the
hydrodynamic propagation of the confining force across the layer. The analytic solution for the collective diffusion
of colloids under a Gaussian trap of width § still shows enhanced diffusion for large wavelengths k6 < 1, while
a gradual transition to normal diffusion for k§ > 1. At intermediate and short wavelengths, we illustrate to what
extent the hydrodynamic enhancement of diffusion is masked by the conservative forces between colloids. At very
large wavelengths, the collective diffusion becomes faster than the solvent momentum transport and a transition
from Stokesian dynamics to inertial dynamics takes place. Using our inertial coupling method code (resolving
fluid inertia), we study this transition by performing simulations at small Schmidt number. Simulations confirm
theoretical predictions for the & — O limit [Phys. Rev. E 90, 062314 (2014)] showing negative density-density
time correlations. However, at finite k simulations show deviations from the theory.
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I. INTRODUCTION

Interfaces usually induce the formation of colloid den-
sity gradients which significantly increases their mesoscopic
ordering in layers. This effect is quite general and affects
macromolecules and proteins around cells and organelle
membranes. The layering effect is even stronger in charged
or partially charged colloids near surfaces [1].

In other instances, colloids might be trapped in fluid-fluid
interfaces and interact via capillary forces [2] and also by
electrostatic forces [3]. Nanosize colloids (proteins) frequently
move in planar membranes or vesicles being exposed to
relatively large spatial fluctuations. These “sticking” scenarios,
common in subcellular biology, are also relevant for many
industrial problems involving the spreading of molecules
within things as disparate as food, creams, or crude oil (e.g.,
asphaltenes near water interfaces) and more. Yet another
area of technological applications uses ultrasound forces
(acoustophoresis) to manipulate and confine micron-size col-
loids in layers [4-7]. A standing pressure wave with hundreds
of megahertz or more creates an ultrasound potential which
moves heavy colloidal particles towards two-dimensional traps
formed at the node of the pressure wave (or the valleys
if particles are lighter than the fluid) [6,7]. The resulting
ultrasound potential is harmonic, leading to a Gaussian
colloidal dispersion around the pressure node [7]. Similar
harmonic traps can be obtained by laser tweezers [8]. Other
forms of (non-Gaussian) traps can be prepared using electric
fields (maybe leading to barometric-like density profiles).

The hydrodynamic coupling between the confining force
acting on each individual colloid and their collective motion
leads to surprising effects, most of them detected some
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years ago [9] and recently theoretically and experimentally
revised [10,11]. Basically, momentum conservation implies
that the confining force acting on each colloid has to propagate
to the surrounding fluid. This propagation has the form of
flow field which reaches quite long distances and affects the
motion of distant colloids over the plane. Mathematically, the
constraint can be also holonomic (z; = 0 for each colloid i),
and the confining force can be seen to arise from the nonzero
divergence of the mobility tensor, which is related to the
reduction of entropy imposed across the confining plane. In
the case of a pointwise force in unbounded fluid such flow
perturbation (Oseen) decays like 1/7 and, as a consequence,
the diffusion coefficient of longer and longer colloidal density
fluctuations does increase without bounds. (In particular, the
collective diffusion diverges like D. ~ 1/k, where k is the
wave number.) Somewhat paradoxically, or at least counterin-
tuitive, is the fact that the single-particle diffusion coefficient
might be completely unaware of this anomalous enhancement
of the collective diffusion. In fact, the phenomenon also takes
place in ideal particles (without potential interactions), where,
irrespective of the confinement, the self-diffusion coefficient
is just given by the Stokes-Einstein value Dy = kgT /(67 na)
(where n is the fluid viscosity and a is the particle radius). It
has to be said that such types of hydrodynamic enhancements
do not only take place when the fluid is unbounded in the
three directions. The presence of distant boundaries modifies
the propagation (e.g., 1/r> under the presence of up-and-
down walls [12,13]), leading to yet-unexplained and stronger
variations of this phenomena (diffusion diverging like 1/k'7)
which might also depend on the type of flow slippage near the
wall.

The question we pose here is how this anomalous collective
diffusion becomes normal as the confinement is made softer.
There are several ways to gradually transform a perfect two-
dimensional (2D) confinement into an isotropic 3D distribution
and, as illustrated in Fig. 1, here we study the case where
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FIG. 1. Sketch of the setup of the colloidal assembly trapped in
a soft Gaussian trap of width 4.

the 2D interface of colloids becomes Gaussianly blurred. In
particular, we consider a suspension of colloids confined in
the z direction by a parabolic potential of the form U,(z) =
(ks /2)(z — z0)* applied to each individual colloid. The spring
constant kg controls the width of the Gaussian distribution of
colloids in the z direction,

ks T\ 2
§= : 1)
(%)
This lengthscale governs the collective intermediate scattering
function of colloids under harmonic confinement derived in
Sec. II. Excluded volume and other potential interactions
between colloids adds another lengthscale to the collective
diffusion which partially masks the anomalous hydrodynamic
enhancement. This masking depends on the static structure
factor S(k) details, and here we illustrate the case of repulsive
and attractive potentials of Lennard-Jones type. Another
question which intrigues us is the transition to an inertial
regime taking place at very large wavelengths. If the collective
diffusion scales like D, oc k~!, below some small wave
number k., then collective mass diffusion will eventually
become faster than vorticity diffusion. This issue, an many
others related to this problem, was studied by Dominguez
et al. [14] showing that, for any colloidal system, the crossover
should take place at macroscopic lengthscales k. ~ mm™!,
being proportional to the inverse of the Schmidt number.
Our computational method enables to artificially decrease
the Schmidt number to observe the transition to the inertial
regime and the appearance of damped (oscillatory) density
fluctuations. Results are compared with theoretical predictions
based on for the k — O limit [14].

The manuscript is ordered as follows: In Sec. II we review
the theoretical framework and present the analytical solution
for the collective diffusion of ideal tracers (colloids with no
potential interactions) under soft confinement. In Sec. III A we
present and discuss the results for the strict confinement case,
and the effects of colloidal attractive and repulsive potential
interactions. In Sec. IV we validate the theoretical result for the
collective diffusion of ideal tracers under soft confinement with
simulations and discuss several physical scenarios where this
effect could be relevant. In Sec. V we study the crossover from
overdamped to nonoverdamped density fluctuations where the
inertia of the solvent becomes relevant. The numerical methods
used for simulations including hydrodynamic interactions
(HI), performed with our graphical processors units (GPU)
code FLUAM [15], are explained in Appendix B 1. Simulations
without HI (independent Brownian walkers) were performed
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with the GROMACS package and details are also given in
Appendix B 2.

II. THEORY

One of the most useful quantities to study the dynamics of
colloidal density fluctuations is the intermediate collective dy-
namic scattering function, F,, which can be directly measured
from light-scattering experiments. In this section we derive an
analytical relation for F, defined as the time autocorrelation
of the Fourier transform of the colloid density field,

Fe(k,1) = (p(k,0)p"(K,1o)), 2
with
pk,t) = /,o(r,t)exp(—ik -r)dr, 3)
and the microscopic density
p(r,t) =) 8(r—qi(1)), )
as a function of the Eulerian position coordinate qy, ...,qy

of the colloidal particles at time ¢. Colloidal suspension
normally evolve in so-called Stokes limit, where the transport
of fluid momentum perturbations is much faster than the
single-particle mass diffusion and thus fluid accelerations can
be neglected. Albeit it has been predicted [16] that across
very large wavelengths the collective, mass diffusion becomes
faster than momentum transport. This crossover will be studied
by numerical simulations in Sec. V. The following theoretical
derivation applies strictly to the Stokes limit.

There are several ways to derive analytical expressions for
the time relaxation of colloidal density fluctuations. One can
combine the continuity equation for the colloidal mass and
the Stokes equation for the fluid momenta, as done by Bleibel
et al. [10]." Here we use another standard route (see Dhont’s
book [17]) which, consistently with the Stokes limit, is based
on the Smoluchovsky equation for the N-particle probability
distribution. The conservation of colloidal mass over any
volume is formally written as d,p = —V - J, where the mass
flux is assumed proportional to the density gradient J(r,z) =
— [ D(r — x',t)Vp(r')dr’. Consistent with the Stokes limit,
we have neglected any time-dependent memory in the nonlocal
diffusion coefficient. Applying the Fourier transform to the
resulting equation for p, and using the convolution theorem,
one gets

w = —k’D(k,1)p(K,1). 3)

Multiplying by p*(k,0) in Eq. (5) and performing the ensemble
average one gets a dynamic equation for Fg,

WD epworkn ©

'In principle, this route accesses the long-time diffusion; however, to
do so it requires a linear approximation of the density field fluctuation
and a mean-field approximation for the force field (which is made
proportional to the density gradient to close the equation). Such an
approximation precludes the observation of the distinctive features of
the long-time diffusion regime.
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whose solution in rotationally invariant systems (spherical
colloids) is just

F.(k,t) = S(k) exp[—k* D (k,t)t], @)

with S(k) = (p(k)p*(k)) being the static structure function and
D.(Kk,t) = % fol D(k,t")dt’ the collective diffusion coefficient.

To access to some microscopic expression for the collective
diffusion D,, one can use the Smoluchovsky equation for the
conditional probability distribution function P(q,?|qo,%) (we

use the supervector notation q = qj, . ..,qn),
0P(q.tlqo,t0)
— = LsP(q,]q0,1), ®)

where the Smoluchovsky operator Ly is given by
LsO =V, - M@[V, 90+ ksTV,0], 9)

where the J symbol indicates any function of q, M(q) is the
microscopic mobility of the colloids (which in general depends
on all the particles and contains hydrodynamic couplings) and
®(q) is the potential of mean force, or free energy, of the
colloidal assembly. The equilibrium condition guarantees that
P(q) = Z~ " exp[—BP(q)], with B = 1/kgT and the partition
function given by normalization Z = [ exp[—B®(q)ldg*"
The formal solution of the Smoluchovsky equation for an
assembly of colloids with prepared initial condition §(q — qq)
and qp = q(r = 0) gives the conditional probability for the
system to have a configuration q at time ¢ provided it had
qo at tp. Formally, it is written as P(q,?|qo,%) = exp[ﬁ st —
1)16(q — qo). The time correlator in Eq. (2) can be written as
J dap(k)exp[L(t — 10)][p*(K) P(q,19)] where P(q,1) is the
equilibrium distribution. Integration by parts on this expression
finally leads to an expression which can be written in the form
of an ensemble average at equal times,

Fe(k,1r) = /p*(k)P(qu)eXp[ﬁ’g(f—to)]p(k)dq3N,
(10)

where p(k) = >, exp(—ik - q;) depends on colloid positions
according to Egs. (3) and (4). The ensemble average is notated
as

Fe(k.1) = (p* )™ p(K)). (1n
This expression involves the adjoint operator of Ls,
0= (kgTV, — V,P)- M(q) - V,O. (12)

The short-time expansion of the exponential operator
exp[ﬁ’gt] = 1 + L%t + O(t?) provides a microscopic expres-
sion for the short-time collective diffusion coefficient, D} (k) =
D.(k,t — 0). On one hand, F.(k,t)= S(k)— kzD‘;(t =
0) + O(tz) and also from Eq. (11) Fe(k,t) = S(k) +
(o)L pK)E + O@?) so Dik) = k2 (p(k")Lsp(K)). Af-
ter some simple algebra one concludes?

H(k)

D (k) = Do——— 5K 13)

2For any two phase functions a = a(q) and b(q) partial integration
leads to (a(q)L5b(q)) = —(Vya - M(q) - V,b).
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with H (k) the hydrodynamic mobility function,

ZZ< ”(q) lAﬂ“«Xp[—ik%qj—qi)]>,

(14)

H(k) =

which involves the microscopic diffusion matrix D;; between
pairs. In this work, we focus on wave vectors in the confining
plane (x —y), i.e,, k-z = 0. The hydrodynamic mobility
is usually decomposed as H = H; + H, where the self-
contribution H corresponds to i = j in Eq. (14) and the
cross contribution H, to i # j. The self-contribution involves
self-diffusion D;;(q), which depends on the reflections of
the hydrodynamic perturbations impinging in the rest of the
particles and coming back to the tagged particle. Therefore,
the hydrodynamic contribution to the self-diffusion becomes
important at short distances D;; = 1 + O(a/r)* and reduces
the self-diffusion coefficient D, from the bare free diffusion in
dilute suspension, as the colloidal surface fractions increases,
Dy = Do(1 — a5¢), where o also depends on the interparticle
potential [17].

Here we are more interested in the collective cross-
diffusion, which corresponds to Eq. (14) fori # j. For distant
particles i and j, the microscopic mutual diffusion can be
approximated by the celebrated Oseen tensor,

3a A
D;i(q;;) = DOZ;(l +4;;4;)), (15)

with Dy = kT /(6 na) the Stokes-Einstein relation. §;; =
q;;/qi; is a normalized vector and q;; = q; — q;. The Oseen
expression is a pairwise approximation to the colloid diffusiv-
ity, which enables us to split the ensemble average of Eq. (14)
as N(N — 1) ~ N? equivalent integrals involving pairs. This
permits us to write

~ D N
Hok) = N / Py(qi.qok - % &
0

x exp[—ik - q12]dqidq>, (16)

where the reduced probability  Pa(qi,q2) = [ dqs,
..,qn P(q) has been introduced to collect the integration
over dummy coordinates.

Expression (16) can be analytically evaluated using the
Oseen tensor approximation for the microscopic mobility of
confined suspensions and under the dilute limit. In this dilute
limit P, can be approximated by

1
Py(q1.q2) = A exp{—B[¥(q12) + V(z1) + V(l}, (A7)

where W(q,) is the interaction potential between the generic
particles 1 and 2 and V(z) is the external confining potential
acting on each particle V(z) = (1/2)k,z>. Solving integrals 16
for the cases of ideal colloids (Appendix A),

H.(k) = 3¢§ { B(ka)—l + (1«3)} e* erfe(ks) — %}

(18)
As expected, the hydrodynamic function is governed by

the nondimensional group k8, where § = (kgT/k,)"/? is the
confinement width. We now present results and discuss the

012602-3



PANZUELA, PELAEZ, AND DELGADO-BUSCALIONI

10 $=0.03 +
0.06
0.16 =
032 =®©
. 0.44
o,
<
A A
SR
o :f[l.\x *
T ey
0.1 1 10
ML,

FIG. 2. Hydrodynamic function versus the the ratio L, /A for ideal
colloids at various densities. The hydrodynamic length is L, = (%)a
with ¢ the colloidal surface fraction and a the colloid radius. Dashed
line shows D,/Dg = 1 + 5-(A/Ly).

different regimes: strict 2D confinement k6 <« 1 and soft
confinement k4 ~ 1 and transition to normal 3D diffusion
ké > 1.

III. STRICT 2D CONFINEMENT: § — 0
A. Ideal tracers

For k§ <« 1, wavelengths much larger than the confining
width, Eq. (18) recovers the result for the strict 2D confinement
derived in Ref. [10], leading to anomalous enhancement of
collective diffusion D, ~ k="',

P2D k_1 _
4puom Lyk’

We have introduced the bare free particle mobility ©y =
(6mrna)~" and a characteristic hydrodynamic length,

2 1 2
Ly=— = (-)a, (20)
37 papa 3¢

under the 2D-confinement case. Hydrodynamic couplings
becomes relevant for collective diffusion for wavelengths
larger than L;. Expressing L, in terms of the surface fraction
(¢ < 1) clearly reveals that L, is somewhat smaller but of
the order of the colloid size a so hydrodynamic enhancement
become relevant even at moderate wavelengths. By collecting
terms in Eqgs. (13) and (14) one concludes that

D, 1

— =14 —

Dy Lyk
meaning that at long wavelengths kL, < 1, collective diffu-
sion becomes much faster than self-diffusion. According to
Eq. (20), the hydrodynamic length L, is inversely proportional
to the particle surface fraction L;, ~ ¢ 'a. A series of simu-
lations increasing the number of ideal colloids indeed verifies
this relation. Figure 2 compares Eq. (21) with simulations
obtained for a large range of colloid densities, plotted in
the master curve D.(k)/Dy against A/L;, (with A =2 /k
wavelength of the density fluctuation).

Equation (21) means that under 2D confinement, long
colloid density fluctuations are homogenized much faster
than one would expect from normal diffusion. The time

lim k6 — 0 H.(k) = (19)

2L
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required to homogenize an initial density perturbation with
small wave number k is t© = [k>D.(k)]~' ~ L, /(kDy) =
(2/3¢)[10/(ka)], where 19 = a?/Dy is the colloid diffusion
time. Over this time t; one single colloid has diffused
a distance [, given by [/a ~ (A /a)"*(4m/3¢)'/%. As X is
made larger, this distance / becomes much shorter than the
inhomogeneity of the density perturbation A. This strongly
contrasts with normal diffusion, because in this case the
particle would have diffused a distance [~ A in a time
7 ~ (kDy)~", which is what one certainly expects if the
initial density inhomogeneity is to be blurred away.

The origin of this apparent paradox is the coordinated mo-
tion induced by hydrodynamic forces over the manifold where
colloids move. To illustrate this we made a simulation where
a collection of neutral colloids where initially placed forming
three large density stripes, see Fig. 3. We then measured the rate
at which these patterns spread and studied the effect of hydro-
dynamics by comparison between HI and Brownian dynamics
(BD) simulations without hydrodynamics. Under the presence
of HI, collective diffusion drives individual colloids towards
less-populated regions, faster than self-diffusion does. The vast
majority of research on diffusion in 2D confined environments
(such as membrane lipids [18] and membrane proteins [19])
focus on the mean-squared displacement (MSD) of individual
elements. However, as shown in Fig. 3, no signature of hydro-
dynamic enhanced collective diffusion can be detected in the
MSD of a single colloid, which is the same result as for inde-
pendent Brownian walkers. In real space, the enhanced collec-
tive diffusion is clearly revealed in the van Hove function [20],
here projected according to the symmetry of the stripes,

1
G(x,1) = N< E 8[x — xi(r) +xj(0)]>, (22)
i

which can be decomposed in self (i = j) and collective
(i # j)parts G(x,t) = Gs(x,t) + G.(x,t). Both contributions
to G are plotted in Fig. 3(d) for ¢ = 20a?/D,. The self part of
the van Hove function is similar for HI and BD simulations.
This is also revealed in the MSD of a single neutral colloid
shown in Fig. 3(c), where for t > 15, = a?/Dy, HI and BD
results perfectly match. Hydrodynamic interactions do not
alter the self-diffusion of neutral colloids because ideal tracers
simply do not perturb the fluid. By contrast, the collective part
G, broadens significantly when HI are present, regardless of
colloid-colloid interactions (in these simulations we consider
neutral colloids). The time evolution of the mean-squared
width of the stripes plotted in Fig. 3(b) clearly illustrates a
faster collective diffusion induced by HI.

B. Effects of colloidal short-range interactions

Colloids with steric or potential interactions might present
two different diffusion regimes at large colloid densities. While
the short-time diffusion arises from local colloidal motions, the
long-time diffusion is smaller and represents many escapes
[of individual colloid (self-diffusion) or of collective patterns]
out from the “molecular cages” or “energy traps” created
by surrounding neighbors. Here we considered two types of
short-range interactions: a purely repulsive potential (WCA)
and a Lennard-Jones-type attractive potential (LJ). None of
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FIG. 3. (a) Initial density pattern with stripes. (b) The evolution of the stripes’ mean-squared width and (inset) the density profiles at
t = 207p (with T = a?/Dy) comparing cases with and without (BD) hydrodynamics. (c) The mean-squared displacement of one colloid (note
that HI’s have a negligible effect on self-diffusion). (d) The self G,(x) and collective G.(x) parts of the van Hove function for t = 20tp,

comparing results with and without hydrodynamics.

these systems were observed to present different diffusion
regimes at different times, at least for surface fractions in
the range ¢ < 0.6. This is illustrated in Fig. 4, where we
show the collective intermediate scattering function F,(k,t)
and (in the inset) the self-diffusion coefficient, obtained from
the mean-squared displacement of a colloid. At any wave
number considered, the density-density correlation F(k,t)
decays exponentially, with one only characteristic decay rate,

0
10 T
qw*@,‘ 1 '\6\5\
\\ = 0.8}
8
_ g 0.6 \
é 0.4'. ) ) o
£ 0 02 04 06
=5 0
LL:)
=0.04
107! 008
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FIG. 4. Intermediate collective scattering function F.(k,t) for a
system of WCA colloids versus the scaled time ¢/tp, with tp, =
k*D.(k). The inset shows the self-diffusion coefficient against the
surface fraction ¢ = wa?/L?, the dashed line corresponds to D =
Dy (1 — 1.07¢).

k* D.(k). This means that short and long collective diffusion
coincide, D} = D!.

As shown in Eq. (13), conservative forces enter in the
collective diffusion via the static structure factor S(k), which
is completely flat for ideal colloids S(k) = 1. Depending
on the interaction potential, the effect of the static fluid
structure might reach relatively small wavelengths masking
the hydrodynamics of anomalous collective diffusion en-
hancement. For these short-range potentials, the effect of
the fluid order reaches about 3 times the particle diameter.
To illustrate the effect, Fig. 5(top) compares simulations
with and without hydrodynamic interactions. Only at the
largest wave numbers could we observe deviations between
HI and BD results for D, (k), resulting from the hydrodynamic
enhancement of H(k) ~ k~!. This “masking” of the fluid
structure might induce inaccuracies in the evaluation of the
divergence exponent of the collective diffusion under experi-
mental conditions [12]. Figure 5(b) shows the hydrodynamic
function H (k) against kL; for different densities of WCA
colloids, illustrating the transition to the enhanced diffusion
at low k. At molecular wavelengths the collective diffusion
is heavily influenced by the fluid structure but also by HI.
While the effect of short-range HI’s has been extensively
studied in the 3D space, there is not much information
about how HI’s influence the mobility of close colloids
under confinement. Variations in near-field mobilities might
be relevant for aggregation processes and colloid detachment
(breaking of physical bonds). Here we briefly explore this
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FIG. 5. (a) Collective diffusion coefficient at surface fraction
¢ = 0.38. Solid and dashed lines respectively correspond to BD
(non-HI) and HI simulations. Symbols denote different colloidal
interactions: ideal colloids (squares), WCA (top triangles), and LJ
(down-triangles). (b) The hydrodynamic function H (k) versus the the
ratio A/ L, for colloids interacting with the WCA potential at different
densities. Dashed line shows the asymptotic behavior H(A/L;)
(A/L;)~". (c) H(k) for WCA colloids at surface fraction ¢ = 0.38
and different mobility kernels. Calculations were done by averaging
using Eq. (14) over many colloid equilibrium configurations obtained
from simulations B 1. Dashed line indicates the asymptotic behavior
H(ka) o (ka)™".

effect by comparing an approximation of pairwise mobility
with the corresponding three-body contribution. Three-body
contributions to the mobility arise from the reflections of
the fluid perturbative flow on each particle surface. Here, we
estimate three-body effects by inserting in H, [Eq. (14)] the
formulas for two- and three-body contributions to hard spheres
mobility at the level of the Rotne-Prager approximation (see
Dhont’s book [17]). The comparison, shown in Fig. 5(bottom)
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indicates that three-body effects increase the mobility of
near-by colloids at distances slightly larger than their diameter.
Figure 5(c) also includes the mobility obtained using the Oseen
tensor, which is a valid description for large distances, as can
be seen from the convergence of all mobilities at small k. For
reference, Fig. 5 also includes a direct evaluation of H.(k) from
simulations, obtained on Eq. (13) and independent evaluations
of dynamics D, (k) and structure S(k). Note that the blob model
we used here does not take into account the particle rigidity
(stresslet) and cannot include three-body effects (these would
require multiblobs with rigid constraints [21] or springs [22]).
Figure 5(bottom) shows that for k > 2, the collective diffusion
is controlled by molecular interactions [the D (k) is basically
the same for all the mobilities considered]. Notably, the most
sensible region for D.(k) in terms of hydrodynamic details
(mutual mobility kernel) corresponds to distances of between
4 and 1.5 particle diameters (i.e., 0.5 < k < 2).

IV. SOFT CONFINEMENT: TRANSITION TO NORMAL
DIFFUSION

For wavelengths of the order of the confinement width § or
smaller, Eq. (20) recovers the normal diffusion regime which
for ideal colloids is just H. = 0,

lim k6 > 1, H.(k) — 0. (23)

Simulations for ideal colloids at fixed density and varying
intensity of the confining potential were performed to validate
the prediction of Eq. (18). Results, shown in Fig. 6, indicate an
excellent agreement between theory and simulations, revealing
the gradual transition from enhanced 2D collective diffusion
to normal 3D diffusion taking place around k§ ~ 1. The “2D”
and “3D” nature of the collective diffusion regime is has been
indicated in Fig. 6.

To further investigate the details of this gradual transition
from 3D- to 2D-dominated collective diffusion, we analyzed
the average hydrodynamic force felt by two columns of
colloids (in the z direction) separated by a distance s in
the confining plane. In the strict confinement case (colloids
constrained to move in the z = 0 plane, i.e., “columns” of zero
height) such collective hydrodynamic drag is repulsive and

10% |
10"}
s 10°
e
2 10!
o
107 F
]
107

01 i
Sk
FIG. 6. Collective diffusion under a soft Gaussian trap of width
3, see Eq. (1). Results correspond to ideal colloids at surface fraction

¢ = 0.6. The simulation box is 128 x 128 x 100%3, where /4 is the
fluid grid size (see Sec. B 1). The dashed line correspond to Eq. (18).
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proportional to 1/s? [13]. We denote the location of particle i
as r; = s§; + z;Z with Z the unit vector in the z direction. The
average hydrodynamic force on a tagged colloid i = 1 due
to a colloid i = 2 is uovy = M1,F,, with M, the mutual
mobility. The force on particle “2” is uniquely determined by
the confining potential (ideal particles) so F, = —k;z,Z. The
total force on the column located at s; due to another column
of colloids at s, is obtained by integrating over z; and z,,

£105) = g /dZ1 /d22P2(l'1,1’2)M12(1‘2 —rpFa(rp),

(24)
where we note that the distance |s; — s,| = s is fixed and that
s = s — s points towards s,. Using the modified coordinates
Z = (z1 + 22)/2 and z = (z; — z2) and working out the two-
particle probability P, (which only depends on z coordinates,
see Appendix A) one gets,

£ S B 2
= — X —_ .
A= m LT T @ e

where § = s/§ and Z = z/§ are scaled distances in the plane
from column 1 to column 2 and in height. The integral can be
evaluated to finally provide

(25)

fr1 = k,aF ()8,

2 2
32\/_ expls /8][@ +4)K0( 8) —s2K1<s§>:|,
27

(26)

F(s) =

where K and K; are modified Bessel functions of the second
kind and § an unit vector in the plane.

The mutual force f>; ~ ksa is proportional to the confining
“spring constant” in the z direction, k;, meaning that the
enhancement of mutual diffusion dies out gradually as the
confinement is made softer, as one should expect. More
interesting is the dependence of f,; with the in-plane distance
s, which is plotted in Fig. 7.

The hydrodynamic force (on column 1) is repulsive (point-
ing away from column 2) and reaches a maximum value

(a)

F(s/d)

001 o1 T o
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at smax =~ 0.6678. For s > syax the repulsive force decays
like 1 /sz, like in the strict confinement case. However, for
§ < Smax the mutual hydrodynamic “repulsion” also dies out
gradually as s — O (like f>; ~ slog(s)). This second regime
corresponds to parcels of colloids which are so close (with
respect the confinement width §) that they tend to behave as if
they were in 3D (where f>; = 0). Beyond the column-column
interaction, one could analyze in deeper detail the structure of
mutual mobility field inside the layer. In particular, we analyze
the force due to a column of colloids at s on a colloid i = 1
at s; = 0 and at height z,. The components of such force in §
(pointing towards the column) and the Z directions are

. 3kea [ expl—(Z + £)2/215E6(Z + £)
f.§ = — 2
> 427 J oo a (32 + £2)%2 » 28)
fopo  aa [T expl-Ci+ 67/
a2 ) (2 + &)1
g2 N
X |:1 + m](m + &), (29)

with Z; = z1/8 and & = (z, — z1)/8. This force field, illus-
trated in Fig. 7(b), indicates that the hydrodynamic force
exerted by the the column becomes attractive if the colloid is
far enough from the layer center |z| > O(8). This counterflow,
shown in Fig. 7(b), is the signature of the Oseen tensor within
the finite layer and it is the origin of the gradual slowdown of
collective diffusion as the confinement is made softer § >> a.

A pertinent question is how does the strict confinement
(or in mathematical terms holonomic constraint) is recov-
ered as the confining potential becomes infinitely stiff. The
current at ry is vi = [ dry P(r))Ma(ry,r)F(r2) and we
have F; = —V,,,U and P(r;) ox exp[—BU(r»)]. Thus v, =
[ draM Ve, P = —kgT [ dry P(r2)Vy, - M. For Bkg —
00, P(r) becomes a Dirac § (in our case it forces z, = 0)
and one gets the known limit [13] vi = —kgTV,, - Mz =
kgTVy, - Mz, where r; is constrained to move over some
manifold (here z; = 0).

Equation (18) can be used to determine the minimum
wavelength A = 27 /k required for collective diffusion to

‘ \\\\\\\\u

\ AN -
\ ‘t\\ .

-,

FIG. 7. (a) The magnitude of the force in Eq. (26), between two columns of colloids separated by an in-plane distance s. (b) The
hydrodynamic force field on a single colloid at height z; due to a colloid column at distance s.
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FIG. 8. Contour plots of the wave number ka (with a the particle
radius) at which the hydrodynamic function equals H.(k) = 10
(a) and H.(k) = 1 (b). According to Eq. (13) both cases respectively
correspond to D, 2 times and more than 10 times faster than Dj.

become significantly larger than in an unbounded 3D do-
main. The corresponding wave number k = k(H) is the
solution of the transcendental equation H.(k) = H arising
from Eq. (18). We recall that H = Hy + H. ~ 1 + H,, so if
H.(k) =1 the collective diffusion D.(k) = DoH (k)/S(k) is
approximately doubled with respect diffusion in unbounded
3D domain. Figure 8 shows the wave-number isocontours
for H.(k) =1 (left) and H.(k) = 10 (right) in a surface
fraction ¢-confinement & chart. As an example, for a projected
surface fraction (¢ = wa?N/L?) of about 0.4, a rather soft
confining potential of width § = 3a will induce more than
a 10-fold increase in collective diffusion (H. = 10) for a
wavelength A ~ 100a. For nanoparticles (of about 10 nm)
these lengths are still small (order 10 microns). The effect
is somewhat reduced in dilute suspensions, as for ¢ = 0.1,
one would require system sizes or patterns with A ~ 400a
to observe a 10-fold increase in D.()). There are many
applied examples where these observations are relevant, in

PHYSICAL REVIEW E 95, 012602 (2017)

general, cases where colloids are confined near a wall or by
some external potential. For charged colloids near charged
surfaces, the Debye length (here acting as §) can be quite
small (nanometers). Colloids can be softly attracted to walls in
polymer-colloid mixtures due to depletion forces; in this case
8 ~ a.Inthese two cases, the mobility gradient is also modified
by the wall presence. An example where the present theory is
directly applicable is colloidal confinement by ultrasound. The
ultrasound (quadratic) potential arising from high-frequency
(MHz) pressure waves and matter interaction allows us to
confine colloids in strips of quite small width (typically § >~ a
for colloid radius a in the micron range) [6,7,23].

V. CROSSOVER TO THE INERTIAL REGIME

An immediate striking consequence of the divergence of
the collective diffusion D, o k~! is that, for a small-enough
wave number, mass diffusion becomes faster than vorticity
diffusion and inertia. This wave number determines a crossover
between overdamped and damped (oscillatory) density fields.
A simple estimation can be obtained from the ratio between
mass and vorticity diffusion characteristic times [respectively,
Tp, = (D.k*)~" and 7, = (vk*)~'] providing

3 1
k. —¢p—. 30
a <k 2¢Sc (30)

The Schmidt number for a small 10-nm colloid is already
a huge number Sc ~ 107, so the crossover would be only
possibly observed at macroscopic lengths (millimeters to cen-
timeters). We now present a numerical study of the transition
to the damped regime and compare with theoretical results of
Dominguez et al. [14]. To make the transition wavelengths
accessible to simulations, we consider unrealistically small
values of Sc in our time-dependent scheme (which includes
advection and transient terms in the fluid momentum equation).
The analysis of Dominguez ef al. [14] provides the expression
for the time evolution of the intermediate scattering function
obtained by preserving the transient and advective terms in the
fluid momentum equation,

F.(k,t) = S(k){geif cos (?m)

o0
— l/ dx e e ML, (31a)
T Jo x3 + 1
1
4 -3
u= [%] 43 (31b)
(kpT)* 3

Equation (31a) present a damped oscillatory behavior with
a frequency where 7 = (kD). The frequency u increases
algebraically with k*/ due to the advection of the ambient flow.
In deriving these relations, Dominguez [14] used the k — 0
limit to approximate the Green function. This approximation
is correct for very large wavelengths and basically neglects the
diffusion of solvent momentum in the plane (which scales like
k?) in favor of the transient advection (3;v).

Figures 9(a) and 9(b) illustrate the change in dynamic
regime by comparing the collective scattering function ob-
tained for kh = 0.05 and kh = 0.12 and for large and small
values of the Schmidt number (Sc = 900 and Sc = 5). The
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FIG. 9. Normalized collective intermediate scattering function of ideal tracers at wave numbers ki = 0.05 (a) and ki = 0.12 (b) for two
different Schmidt numbers (% is the mesh size). Time is scaled with the particle diffusion time 7, = a®/ Dy(Sc), where the Schmidt dependence
of Dy(Sc) was taken from Ref. [24]. (c) Values of the frequency u(k) obtained from best fit of simulation results to Eq. (31a). (d) The minimum
(negative) value of the normalized collective intermediate scattering function F,(k,t)/S(k). Lines corresponds to analytic result in Eq. (31a)
and Eq. (31b). In all cases the box dimensions are 128 x 128 x 100 4> and the surface fraction ¢ = 0.6. The values of the crossover wave
number k. in Eq. (30) are 0.18/ 1, 0.09/ h and 0.001/ h, respectively, for Sc = 5, 10, and 900.

large value of Sc (red symbols) is clearly in the overdamped
regime k > k. = 0.0014! [see Eq. (30)] and it is in excellent
agreement with the overdamped expression for F(k,t) in
Eq. (7) (solid line in Fig. 9). The crossover wave number
for Sc = 5is k, = 0.18%~! and thus for k = 0.05/h < k. we
are now exploring the inertial regime. Simulations indeed
show damped dynamics with a negative correlation in the
density correlation F.(k,t) at some finite time (of about 10
bare diffusion times, 7, = a®/Dy). Figure 9(b) shows the case
k = 0.12 h~! which is still below the crossover k. = 0.18 h~!
for Sc = 5. In this case, the peak of negative correlation is quite
small, indicating that the dynamic is almost overdamped. In
Fig. 9(c) the dashed line corresponds to the best fit to the
theoretical expression in Eq. (31a), using the frequency u
appearing in Eq. (31a) as only free parameter. The agreement
with the theory is excellent for this value of k. This is also
illustrated in Fig. 9(c) where the numerical estimations of u(k)
obtained from best fits to Eq. (31a) are compared with the
theoretical expression for the frequency u(k) in Eq. (31b).
However, for slightly larger values of k. simulations start to
systematically deviate from the theory. This fact can be seen in
Fig. 9(c), showing that the theoretical trend u(k) oc k*/3 is not
recovered for k > k./4. The relative difference of u(k) with
respect the theoretical value reaches about 25% for k >~ k.
and decreases to about 3% for (k. — k) >~ 0.7k.. Deviations
from the theory as k increases were to be expected because the

theory was developed using the k — 0 approximation for the
Green function (mobility) [14].

VI. CONCLUSIONS

We have analytically derived and numerically studied the
collective diffusion of colloids under a confining quadratic
potential, corresponding to a Gaussian trap of width §. This
setup permits us to determine how robust is the hydrodynamic
effect which is known to enhance the collective diffusion of
large wavelength patterns of colloidal density when colloids
are trapped in a 2D surface embedded in the surrounding
3D fluid. The excellent agreement between analytical and
numerical results permits us to conclude that the anomalous en-
hancement of collective diffusion is robust and still significant
under soft confinement. For instance, that a stain of a couple
of microns formed by a concentrated phase of nanocolloids
of size a = 2.5 nm (to put the typical size of a protein)
softly trapped (6 =~ 2a) near a surface (e.g., by electrostatic or
depletion forces) will spread towards less-populated regions 10
times faster than by the “standard” diffusion. The effect is more
important at large surface fractions, for instance, for ¢ >~ 0.5,
a very slight confinement with § ~ 10a still enhances in about
10-fold the collective diffusion of wavelengths A ~ 150a. We
believe that the consequences of this hydrodynamic effect
are relevant in transport phenomena in biological systems
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and nanotechnological applications. This work highlights
the need of considering collective diffusion when studying
Brownian displacements of colloids or molecules restricted
to move in a manifold embedded in a higher dimensional-
ity. The list of environments is large [14,25] and includes
vesicles, lipids, or proteins in membranes; colloids near
charged surfaces with DLVO forces; or depletion. In fact,
the hydrodynamic enhancement of collective diffusion is
scarcely being taken into account in applied studies. After
the first experimental evidence of the phenomena [26], an
increasing number of groups have been or are now involved
in studying different scenarios involving hydrodynamics in
confined geometries [2,12,14,16,25]. Renewed experimental
interest have showed even larger diffusion enhancement under
quasi-1D confinement [11], which is relevant for the collective
diffusion of molecular motors moving in molecular filaments.
Collective diffusion determines the spreading of patterns
created by a collection of diffusing individuals. In confined
media, hydrodynamics not only enhance spreading but also
probably activate their coordinated motion. This is particularly
relevant for systems like lipid rafts [27] and motor proteins
walking over microtubules [28,29], where the origins of the
observed coordinated motions are still under scrutiny.

Another aspect of this work has been a validation of
Dominguez’s theory [25] for the inertial regime at very small
wave numbers. Simulations were performed at unphysical
values of the Schmidt number to be able to explore the
inertial regime, which takes place forka < k.a = (3/2)¢Sc™".
Numerical results reproduce quite exactly the theoretical trend
for F.(k,t) at very small k but deviate as it is made larger. In
terms of the relative difference Ay = (k. — k)/ k., differences
between the k — 0 theoretical limit and simulations are 10%
for Ay = 0.4 to just 3% for Ay = 0.7. The k — 0 limit [25]
neglects in-plane vorticity diffusion (k*v) in favor of the
transient advection (3,v ~ k°). As k is increased, below the
crossover wave number k < k. we observe that diffusion of
in-plane vorticity adds some contribution to F,(k,?).

The phenomenon of hydrodynamic enhancement of collec-
tive diffusion in confined media has been ascribed to long-time
diffusion [10,14]. The systems hereby considered were not
dense enough to exhibit the slowdown of diffusion at long
times. However, we think that this statement needs to be
revised. The physics of the long-time diffusion is probably
not affected by hydrodynamics, being determined by steric
and potential forces between elements in dense media. This
long-time diffusion regime is preceded by a temporal window
of anomalous diffusion, where memory arising from slowly
varying global configurations alter the MSD exponent (it
becomes smaller than one). The role of hydrodynamics in
the anomalous diffusion of highly packed colloids or smaller
molecules moving in confined systems is still to be explored.

To conclude, we mention an important open question
which regards the role of walls in collective diffusion of
colloids near or confined between walls. Colloids near walls
is a ubiquitous problem in colloidal science whose dynamics
can be now studied using evanescent wave dynamics [30].
Previous experimental works on colloids near a wall report
an increase in D.(g) with decreasing g [31]. However, these
results corresponds to the small-wave-number range g a > 1
where the increase in D.(g) arises from the osmotic pressure
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[i.e., from a reduction in S(g)] and not from hydrodynamics
[see Fig. 5(a) for WCA]. In fact, the authors of Ref. [31]
mention a reduction of D, with respect the 3D case. Other
experiments observed some increase in the diffusion of certain
collective modes of a group of six close-by colloids [32] and
suggest the relevance of three-body interactions (interestingly,
at intermediate wave number, we also observe an increase in
D, due to three-body interactions). We are not aware of any
work studying the analog of the hydrodynamic divergence
of D.(q) in single-wall confinement. However, under two-
wall confinement, recent experiments [11] report a study of
F.(g,t) showing surprisingly large enhancements of collective
diffusion. Colloids of about 1.5 microns in a slit of about 1.8—
3.0 microns showed D, ~ 1/g* witha € [1.7,1.9]. Such large
exponents might be due to fluid slippage near the walls [11],
although this is still an open question. The common source
of the hydrodynamic enhancement of collective diffusion
is the presence of a nonvanishing gradient (more properly,
divergence) of the mutual mobility. Such a scenario is probably
present near walls and in fact theoretical analysis on the
mobility of two colloids indicate My, ~ 1/ r2, with r the
distance between two colloids [33,34]. In view of these
findings, the simulation of the hydrodynamic enhancement
of diffusion close to near walls requires accurate models able
to resolve the near-field hydrodynamics (up to 10% of the
colloid radius) and three-body interactions. One candidate is
the multiblob model for colloids [21,22] based on Eulerian-
Lagrangian approaches. Stokesian dynamics is indeed another
alternative; however, it is limited by the accuracy of the
mobility kernels (see, e.g., Ref. [12]). Moreover, the scheme
should allow us to model slip and no-slip surfaces and, ideally,
partial slip.
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APPENDIX A: DERIVATION OF H,

We start from expression (16) for the crossed hydrodynamic
mobility, where we use a pairwise microscopic diffusion
matrix D;; = D;;(q;;), such as the Oseen approximation in
Eq. (15). This is,

Di2(qi2)
Dy

x exp[—ik - qi2]dqidqa,

H.(k) = N / Py(q1,q)k - k
(Al)

where P(q;,q) is the reduced two-particle probability. It is
convenient to work in the two-particle system’s reference by
introducing

Q@ tq

R ,andr = q2 — qy.
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In these coordinates, the two-particle probability P, for dilute
suspension becomes

1
P (R,r) = z exp{—B[Y(r) + V(Z,2)1}. (A2)

In the case of a confining harmonic potential it is possible to
separate the action of the external potential into the center-of-
mass R and the relative coordinate r as

V(Z,2) =Vi(Z+2)+ Vo(Z = 2)

ks , 1,
= ) 2Z° + 52 = Vr(Z) + Vi (2).

We use the notation Vi and V, to alleviate expressions. This
kind of separation is not generally applicable to any confining
potential. For instance, for an exponential trap, V(z) =
exp(—az), V(Z + z) + V(Z — z) = 2 exp(—aZ) cosh(az).
In the following, in-plane coordinates will be denoted by

7751

S >
r=s+ 77
Considering the case of ideal colloids (W (r) = 0), one has
.~ D N
H.(k) = B / dPre POk . % -kexp{—ik -r}, (A3)
o
where k is a two-dimensional vector over the confining plane,
ie., k-Z=0and
Nfd3Re*‘3VR(Z) _ N _ P2~/ Bk
2 - Jdriexpl-BV,(2)] 2w
Introducing the inverse Fourier transform of D,(r) with
D) 1 [ e LT KK
Dy ~ (m)uo nk’> k>
and substituting in Eq. (A3),

B PN 5, 1 Kk’
H.(k) = dze Pk | PK—|1- —
(277)311«0 nk;Z k/z

% etkzz ~k/dse_lk'selk”'s.

B

ki 2k (k)
dsexp{—is - (k —k)} = (27)?6?(k — K|) (where § is the
Dirac § function) one thus obtains

Writing k- D%(()r) . RMO” = and using f

00 12

Ho = -3 [Tar— % v (a4
( ) (277):“077 v/;oo z(k£2 +k2)2 ( z) ( )

where V(k]) is the 1D Fourier transform of the Boltzmann
factor associated to the confining potential,

oo
Vik) = / dze PV @eik,
—0o0

Equation (A4) clearly indicates the effect of the soft confining
potential. The strict 2D confinement corresponds to the limit to
P>(R,r) — 8(2)5(Z) and V(k.) — 1, for which one recovers
the expression derived in previous papers [10]. Under a softer
confinement V(k) = 2/78 exp[—(kécS)z] acts as a long-wave-
number filter damping out contributions in the integral with

PHYSICAL REVIEW E 95, 012602 (2017)
k. > 87" such as

H.(k) = e KD (A5)

00 k/2
[k
Vamon Joso (k2 4 k2)
Integrating Eq. (AS) it yields

H.(k) = 3"52 { B(ka‘)l + (ka)]e<’<5>2erfc(k5) - %}

(A6)

APPENDIX B: NUMERICAL METHODS
1. Colloidal hydrodynamics with FLUAM

Numerical simulations of the dynamics of a colloid as-
sembly under confinement have been performed using our
immersed boundary hydrodynamic solver, FLUAM (acronym
for FLuid And Matter). FLUAM is a free open-source code
running in GPU [15]. The fluid phase is solved using a finite
volume solver for incompressible fluctuating hydrodynam-
ics [35] and it is equipped with the immersed boundary method
to couple fluid and particle dynamics. We consider neutrally
buoyant particles (i.e., without inertia) in and incompressible
fluid. Although colloid dynamics usually correspond to the
Stokes limit, where the fluid momentum has negligible inertia,
we kept the transient term in the fluid momentum equation
to investigate the non-over-damped regime of collective
diffusion, in Sec. V. The equations solved by FLUAM are

prdv=—Vp+nViv+ > FiSc—q), (Bl

V.v=0, (B2)

G =u = / drS(r — qv(). (B3)

Here py = 1 is the constant fluid density (used as reference),
v(r) is the fluid velocity field, F; is the total force acting on
particle “i,” and p is the mechanic pressure which guarantees
incompressibility V - v = 0. The third kinetic condition guar-
antees that the particle velocity u = dq/dt equals the velocity
of the fluid it displaces, as it should be. Note that q;(¢) is
the position vector of particle “i”” while r denotes the Eulerian
(fixed) coordinates of the fluid. In practice, Eq. (B1) is spatially
discretized in a regular-grid of size h, containing M, fluid
cells per direction «. The grid size is our reference length
h=M,/L, = 1. The time evolution of the fluid and particle
equations is discretized with a time step A¢, whose maximum
value is determined by the fastest process, according to the
Courant stability condition. Here At < h?/v.

In Eq. (B1) the force acting on each colloid F; is locally
transferred, or spread, to the fluid as a force density. The
spreading operation is carried out using a kernel of compact
support which moves concomitant to (each) particle position,
S(r — q;). In this minimal resolution model, each kernel
corresponds to a single “colloid” or to a “blob,” which is the
term we used in previous papers. The kernel, which has units of
inverse volume, acts like a regularized Dirac §. But, contrary to
the Dirac § used to represent a point-particle disturbance, this
kernel provides a finite hydrodynamic radius R;, to the blob.
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TABLE 1. Parameters used in hydrodynamic simulations (FLUAM).

Parameter Description Value

h Cell dimension 1

ky T Thermal energy 1

O Fluid density 1

" Fluid viscosity [0.5-7]

m, Colloid excess mass 0

Ry Hydrodynamic radius 0.91h

o Colloid LJ diameter 2h

a Nominal radius: ideal colloids R,
Nominal radius: nonideal colloids a/2

€ Colloid LJ energy 1.36k,T

At Time step 0.1

Tepu/T GPU time/step 3.8 ms

Here we use a 3-point Peskin kernel for which R, = 0.91h.
It also provides a mutual mobility tensor compatible with
level of resolution of the Rotne-Prager-Yamawaka model.
For an unabridged description, we refer to Refs. [23,36] and
references therein.

Simulations were typically performed in rectangular pe-
riodic boxes of sides L, x L, x L, = (64 x 64 x 16)h>.
Calculations with increased length in z direction were also
performed to check for any finite-size effects on the shorter
confining direction z. Interestingly, the finite box effects we
faced were revealed by discrepancies with the theoretical
solutions at hand. In particular, for the softest confinements we
had to work with boxes of sides 128 x 128 x 100 4> to avoid
interference from the periodic images of the colloid sheet.

a. Systems studied

We studied three types of colloidal systems, ideal colloids
(ideal particles) and short ranged potentials: the purely repul-
sive WCA and the Lennard-Jones potential with cutoff 2.5¢,
where the diameter of the interparticle potential iso = 2 k, and
the size of the fluid grid 4 is taken as a reference length. The
potential interaction energy was set to € = 1.36kgT. Details
of the simulation parameters are given in Table I.
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b. Schmidt number

The bare diffusion of one particle is given by the Stokes-
Einstein formula Dy = kgT /(6 Ry,). The Schmidt number,
the ratio between the fluid momentum diffusion and the
bare mass diffusion coefficient, Sc = v/Dg (with v =1n/pf
the kinematic viscosity), is extremely large for any colloid
suspended in a liquid. As shown in Ref. [24], to safely recover
the Stokes limit regime one requires Sc > 100. The Stokes-
Einstein-based Schmidt number Sc = 67 3%R;,/(p rkpT) can
be controlled by increasing the fluid kinematic viscosity.
Results in Sec IIT A and IV, corresponding to the Stokes limit
regime, were carried out for Sc >~ 900.

Surface density pop = N/Aandarea A = L, L, was varied
in the range ¢ = 0.03 to 0.54. The largest value corresponds
to an average interparticle distance of p,, Dl/ ? = 2.65Ry,, which
is a reasonable limit for the accuracy of the blob model in term
of mutual mobility [36].

c. Confining potential

The confining potential was varied in the range k; €
[0.1,50] corresponding to a range of confinement width § €
[0.14,3.16] h (recall kg T = 1isused as reference, see Table I).
For the softest confinement, with § = 3.16/, we had to increase
the length of the box in z direction to avoid hydrodynamic
coupling between periodic images of the system. We tried
L, =32h and 64 h, observing convergence on L, = 32h
(which is about 10 times §).

2. Brownian dynamics without HI

Simulations without hydrodynamic interactions were per-
formed with the GROMACS package [37,38]. The solver

performs the standard BD,
dq; = poFidt + (2kppu)' > dW;, (B4)

where F; is the total force applied on the ith molecule,
1o the bare mobility, and the white (time uncorrelated) noise
covariance is

<dW,(l)dWJ(t)) = (Sijdl (BS)
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