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Nonequilibrium Markov state modeling of the globule-stretch transition
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We describe a systematic approach to construct coarse-grained Markov state models from molecular dynamics
data of systems driven into a nonequilibrium steady state. We apply this method to study the globule-stretch
transition of a single tethered model polymer in shear flow. The folding and unfolding rates of the coarse-grained
model agree with the original detailed model. We demonstrate that the folding and unfolding proceeds through
the same narrow region of configuration space but along different cycles.
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I. INTRODUCTION

Computer simulations have developed into a powerful tool
to predict and optimize material properties. However, even
given the ever-increasing computational power, relevant time
and length scales, in particular for biological and synthetic
macromolecules [1,2], will remain prohibitively long for fully
atomistic simulations, and multiscale methods are crucial
to make progress. While structure-based coarse graining
[3] has been quite successful [4,5], challenges remain like
transferability (e.g., from bulk to surfaces) and in particular the
correct treatment (or a posteriori deduction) of the materials
dynamical properties through the coarse-grained dynamics.
For the latter, Markov state models (MSMs) [6–9] have been
used successfully to tackle the evolution of large proteins
towards their native state, bridging the gap from molecular
dynamics on nanoseconds to folding on milliseconds [10,11].
The dynamics of MSMs is a discrete-time master equation
with transition probabilities that obey detailed balance on a
network of long-lived (metastable) mesostates.

Here we describe a systematic approach to construct MSMs
with dynamics that break detailed balance. We employ this
method to study a model polymer in shear flow. The rheology
of dilute flexible polymers has been studied extensively due
to their fundamental and practical relevance [12]. Examples
include biomolecules such as the von Willebrand factor in
blood plasma and deoxyribonucleic acid (DNA) in steady
shear flow [13]. The shear drag can overcome the entropic
forces favoring coiled or globular configurations and stretch
the polymers, which might be a continuous or even discon-
tinuous transition [14]. Motion of DNA tethered to a planar
surface has been described as cyclic in experiments [15] and
computer simulations [16,17].

Driving a system away from thermal equilibrium implies a
nonvanishing entropy production. In a steady state, this entropy
is produced exclusively in cycles since there are no sources
and sinks for the probability. This poses novel challenges
for constructing coarse-grained models in nonequilibrium,
which only very recently have been begun to be addressed
[18–20]. Reducing the complexity by removing states implies
a reduced entropy production, which severely influences
dynamical properties and fluctuations [21]. In Ref. [22],
we have introduced nonequilibrium Markov state modeling
(NE-MSM) performing the coarse graining in cycle space
instead of collecting configurations in metastable basins as
for conventional MSM. The analog of these basins are now

communities of cycles with similar properties. The coarse-
graining procedure preserves the entropy production of these
communities, which makes our approach consistent with
stochastic thermodynamics [23].

II. MODEL

We study a single model polymer with N = 50 beads
moving in shear flow close to a substrate. The specific model
parameters are inspired by Ref. [24]. We employ Brownian
dynamics (BD) simulations with

ṙk = −∇kU + v(rk) + ηk(t) (1)

for the bead positions rk = (xk,yk,zk)T , where v(r) repre-
sents the shear flow. Interactions with solvent particles are
modeled by a random force with correlations 〈ηα

k (t)ηβ

l (t ′)〉 =
2δklδ

αβδ(t − t ′), where upper indices label vector compo-
nents. The potential energy U = Unb + Ub + Uwall is split
into the nonbonded short-ranged Lennard-Jones (LJ) pair
potentials Unb = εLJ

∑
k<l[r

−12
k,l − 2r−6

k,l ] and bonds Ub =
κ
2

∑N−1
k=1 (rk+1,k − 1)2 that connect the nearest-neighboring

beads. Here, rk,l is the distance between the kth and lth bead,
εLJ = 2.3 determines the strength of the nonbonded potential,
and κ = 100 is the effective spring constant. The polymer
is grafted onto a repulsive planar surface (the x-y plane with
z = 0) by fixing the position of the first bead to r1 = (0,0,0.5).
The wall potential is modeled by Uwall = εwall

∑N
k=1 z−12

k

with zk the z component of the kth bead and εwall = 2. All
quantities have been nondimensionalized by rescaling lengths
with the bead diameter σ and time scales with the characteristic
monomer diffusion time σ 2/(4D0). Numerical values for the
strain rate γ̇ thus correspond to the Weissenberg number.

The polymer is driven into a nonequilibrium steady state
through simple shear flow. While some scaling relations
depend on hydrodynamic interactions [24,25], the qualitative
behavior of the cyclic motion does not and in the following we
neglect hydrodynamic interactions. As flow profile we choose

v(r) = γ̇ (z − zc)ex, (2)

where γ̇ is the strain rate and zc is the z component of the
center of mass of the polymer. We found that this shift of
the flow stabilizes the globular and stretched configurations
as it increases the effective barrier for folding and unfolding
and thus leads to a better separation between globular and
extended states. Qualitatively, the same effect would be
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FIG. 1. Mean end-to-end distance 〈Ree〉 as a function of strain rate
γ̇ . For γ̇ = 1.6 [yellow (bright) circle] the inset shows an exemplary
time series. Also shown are two snapshots for the globule (bottom)
and extended polymer (top).

expected when including hydrodynamic interactions with the
wall. Our conclusions do not depend on this detail. Although
simplified, this model reproduces the cyclic dynamics found
in experiments [15].

The solvent flow drives the polymer away from thermal
equilibrium, which is reflected by the nonvanishing entropy
production rate [23],

Ṡ =
N∑

k=1

〈v(rk) · ∇kU 〉 = γ̇ 〈σxz〉, (3)

with off-diagonal stress σxz of the polymer.
A reasonable order parameter describing the folding and

unfolding of the polymer is the relative end-to-end distance
Ree ≡ |x0 − xN |/N , where Ree = 1 corresponds to a straight
line of touching beads. We perform BD simulations for
multiple values of γ̇ , see Fig. 1. We find different behaviors
of 〈Ree〉 that we categorize into three regimes. For γ̇ � 1 the
polymer remains collapsed, while for γ̇ � 2.2 it is dominantly
found in elongated conformations. For intermediate strain
rates the polymer exhibits transitions between globular and
elongated conformations, which was also found in similar
simulations for free polymers [24] and grafted polymers
[16,26] under shear. The exemplary time series for γ̇ = 1.6
in the inset of Fig. 1 shows a clear separation of both states
with random lifetimes and fast transitions. The average folding
time tfold ≈ 3000 is much larger than the intrinsic Rouse time
tR = N2/(2π2κ) ∼ 1 of the polymer.

III. THEORY

Our goal is to construct a dynamically consistent NE-MSM
with as few discrete states as possible. Every discrete state
i is a set of N particle positions, which we collect in the
vector Ri ≡ (rk) with 3N entries. These states, or centroids,
represent discrete volumes of configuration space, i.e., many
configurations with slightly different positions. Following
Ref. [22], the outline of the algorithm is as follows: The
first step is to generate many (specifically M = 500) centroids
using the BD simulation data as input employing a spatial

clustering algorithm (for technical details, see Ref. [9] and
Appendix A). From the counting matrix of transitions in
the BD data we construct an approximate Markov process
and identify cycles. The crucial step is to group cycles into
communities (i.e., clusters of cycles with similar properties
defined through suitable order parameters) and determine one
cycle representative for each community. In the actual coarse
graining, only representatives and the states that they visit are
retained. The final step is then to rescale the Markov dynamics
so it preserves the entropy production of every community as
well as the total entropy production.

In this representation, entropy production arises from non-
vanishing probability currents J i

j ≡ �i
j − �

j

i with probability
fluxes �i

j along transitions i → j . In thermal equilibrium the

condition of detailed balance holds, �i
j = �

j

i , which implies
zero currents. The mean entropy production rate [22,27] is

Ṡ =
∑
ij

�i
jA

i
j = 1

2

∑
ij

J i
j A

i
j (4)

with affinities Ai
j ≡ log �i

j − log �
j

i .

A. Cycle decomposition

In a steady state, Kirchhoff’s law implies that probability
flows in cycles. A cycle α = (i1 → i2 → · · · → i1) is defined
as an ordered set of states, at the end of which the starting state
is reached again and all other states are visited exactly once.
Cycles that differ only in the cyclic permutation of their states
are considered identical. We extend the concept of affinities to
cycles, yielding the cycle affinities Aα ≡ ∑

(i→j )∈α Ai
j , where

the sum is over all edges along cycle α. Traversing a full
cycle, the entropy produced equals the cycle affinity. Graph-
theoretical results allow us to decompose the probability fluxes
[22,27,28]

�i
j =

∑
α
(i→j )

ϕα (5)

into cycle fluxes with non-negative weights ϕα � 0. The
summation is over all cycles α that include the edge (i →
j ) ∈ α. The number of cycles quickly becomes very large.
Here we employ the algorithm introduced in Ref. [22] and
summarized in Appendix B to efficiently determine a subset of
cycles with nonvanishing weights ϕα > 0. These cycles have
non-negative cycle affinities (and thus entropy production),
which makes our approach conceptually differ from the well-
known Schnakenberg theory [29]. Inserting Eq. (5) into Eq. (4),
we obtain Ṡ = ∑

α ϕαAα , which clearly shows that all entropy
production is encoded in cycles.

B. Cycle communities

At this point we have determined all entropy-producing
cycles. To make progress, we now need to find similarities
between cycles. One approach is to consider the connectivity
between cycles [22,27,30]. For the globule-stretch transition,
we found this approach to be less suitable since it groups cycles
that are located in different parts of configuration space [31].
Instead, here we describe an alternative, general method to
reduce the complexity of the high-dimensional configuration
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FIG. 2. Configuration space (γ̇ = 1.6). Scatter plot of the nor-
malized projections of all centroids onto the two largest principal
components. Colors indicate the end-to-end distance Ree.

space to a few variables based on the topology of cycles. As our
main tool, we perform a principal component analysis (PCA)
[32], which is an orthogonal linear transformation returning the
eigenvectors (the principal components) and eigenvalues of the
covariance matrix of the centroid positions. The principal com-
ponent C(1) corresponding to the largest eigenvalue coincides
with the direction in configuration space exhibiting the largest
variance; in the present case it already accounts for ≈96% of
the observed variance. In Fig. 2 the normalized projections
c

(n)
i ≡ Ri · C(n)/N of centroids onto first and second principal

components are plotted, where the normalization N ensures
that c

(1)
i ∈ [−1,1]. Centroids with small (negative) values for

c
(1)
i correspond to globular configurations (they contribute little

to the observed variance of positions), and large (positive)
values correspond to stretched configurations. The second
component indicates the variance within these states. Both
globular and stretched configurations show larger fluctuations
while the intermediate states with c

(1)
i ∼ 0 exhibit smaller

fluctuations. Hence, the PCA reproduces the expected, typical
picture of two basins with intermediate transition states.

Going back to cycles, we now define two variables: (i) the
cycle centers

xα ≡
(

1

|α|
∑
i∈α

Ri

)
· C(1) (6)

with |α| the number of centroids in cycle α and (ii) the cycle
diameters

dα ≡ max
i,j∈α

{∣∣c(1)
i − c

(1)
j

∣∣}. (7)

The set of points (xα,dα) is plotted in Fig. 3(a), where every
point now represents a single cycle. These points are clearly not
random. Many cycles have a small diameter dα but different
cycle centers. We identify these cycles as local because the
centroids i ∈ α in these cycles have similar c

(1)
i and thus belong

to a compact region in configuration space. There is a second
group of cycles with large diameter, which, consequently,
we identify as global cycles. Basically the same structure is
recovered when plotting (xα,Aα) shown in Fig. 3(b), indicating
that local cycles have low affinities and global cycles have large
affinities.

We can turn these insights into a more quantitative statement
by partitioning the cycle space into k communities. To this

FIG. 3. Cycle space (γ̇ = 1.6). (a) Scatter plot of cycle center
vs. the cycle diameter, and (b) cycle affinity vs. cycle center. The
cycle diameter and centers are computed using a PCA (see text
for details). Colors represent cycle communities while gray points
indicate no community. The filled black circles indicate the cycle
representatives. [(c) and (d)] The same plots as for (a) and (b) but for
three cycle communities. (e) The fuzzy partition coefficient computed
for multiple communities. The best result is obtained for three
communities followed by a slightly lower value for five communities.

end we employ an implementation of the fuzzy c-means
algorithm (an implementation is available in Ref. [33]), which
assigns to each cycle a probability for belonging to a specific
community. First, we normalize all three features (cycle
diameters, cycle centers, and affinities) by their variance to
make them comparable. These features are then used as an
input for the fuzzy c-means clustering algorithm returning
membership degrees uij which express the probability that
observation i belongs to community j . To obtain an indicator
of how good the clustering results are we compute the fuzzy
partition coefficient (FPC) that is defined as the Frobenius
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norm of the membership matrix,

FPC = 1

n

k∑
i=1

n∑
j=1

u2
ij . (8)

Here k is the number of chosen communities and n the number
of observations (cycles in our case). The closer the FPC gets
to one the better the cycle space can be partitioned into the
chosen number of clusters.

The advantage of fuzzy partitioning is that some cycles
might not belong to any cycle community while others match
well in multiple ones. The minimal number of cycle communi-
ties to account for the collective folding and unfolding dynam-
ics is k = 3 [see Fig. 3(e)], but to capture the full dynamics we
found k = 5 cycle communities to be more appropriate. We
identify three local communities colored in blue, green, and
red, as well as two global communities colored in magenta and
cyan, see Figs. 3(a) and 3(b). The blue community represents
cycles that correspond to globular configurations while the
green and red communities represent similar dynamics for
intermediate and fully stretched configurations, respectively.
The global cycle communities connect two (cyan) or all three
(magenta) local communities.

C. Coarse graining

Next, we replace each cycle community by one cycle that
we will refer to as representative [22]. We find appropriate
representatives by mapping mean first-passage times between
states that belong to different local cycle communities. After
selecting representatives, we delete all states not belonging to
any of the representatives and rescale the remaining transition
rates with restrictions whereby the total entropy production
rate Ṡ, all remaining cycle affinities Aα , and all remaining
edge affinities Ai

j are preserved. For details, see Ref. [22] and
Appendix C.

At this stage the coarse-grained MSM still contains many
states since a single cycle can traverse hundreds of states. The
important point is, however, that the coarse-grained model lost
much of its original complexity as it now contains only a few
cycles. We can thus further reduce the number of states. To
this end we identify two dominant motifs, which we refer to as
bridge and triangle states. Both motifs build on states that have
exactly two neighbors. For bridge states the neighbors are not
connected to each other [34]. Triangle states complete cycles
that do not exhibit positive entropy productions and thus are
not part of the decomposition Eq. (5). We iteratively search
and remove these states (for details, see Appendix D) until no
more are found, which completes our coarse-graining scheme.

IV. COARSE-GRAINED NE-MSM

The final NE-MSM for strain rate γ̇ = 1.6 is shown
in Fig. 4(a). After removing the bridge and triangle states
the transition network contains 15 states (centroids). The
collective rates for folding and unfolding of this coarse-grained
model agree with those obtained from the BD simulations
by construction. Moreover, the remaining five cycles now
allow for detailed insights into the relevant pathways in
nonequilibrium. The three local cycles are composed of
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FIG. 4. Final NE-MSM for γ̇ = 1.6. (a) Transition network of
the polymer dynamics with 15 centroids (filled circles) and five
cycles. The colored states green, blue, and red correspond to the
colors of the local cycle communities shown in Fig. 3. States with a
black border are structurally very similar and constitute the transition
ensemble. The arrows point in the direction of probability currents
(net flux), while the arrow widths represent the magnitude of currents.
On average, the polymer dynamics follows the direction of the arrows.
Arrow colors cyan and magenta correspond to the global cycles.
(b) Transition network in configuration space using the normalized
projections onto the two largest principal components. Symbols are
the configurations while lines indicate the cycles with the arrows
pointing in the direction of the net flux.

three states, the minimal number for a nontrivial, entropy-
producing cycle. The red and blue cycle connect stable
globular and stretched configurations, respectively. The green
cycle represents a metastable intermediate of half-stretched
configurations that do not unfold correctly but quickly fold
back to the intermediate. The global cyan cycle also contains
half-stretched configurations (structurally similar to the green
cycle) but here the unfolding reaches the final stretched states
before returning to their half-stretched origin. Finally, the
magenta cycle represents the full transition from globule to
stretched configurations and back.

The five states (3, 4, 5, 12, and 13) describing intermediate,
half-stretched configurations are very close in configuration
space [see Fig. 4(b)]. They constitute the analog of the
transition ensemble through which the folding and unfolding
has to proceed. In nonequilibrium, however, the folding and
unfolding processes follow different paths through this narrow
region of configuration space. The globule-to-half-stretched
transition proceeds along 2 → 4 (with state 4 belonging to
the green cycle), whereas the reverse half-stretched-to-globule
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transition proceeds along 13 → 14 → 2, with states 13 and 14
belonging to the cyan cycle. The cycle topology thus reveals
the dynamical trapping of the polymer in an intermediate,
which cannot be captured by structural information alone.
Employing order parameters like distances in configuration
space or lifetimes to identify mesostates will clearly miss this
important feature of cyclic nonequilibrium dynamics.

Another question that we can address is dissipation, the
role of which for bioprocesses has been investigated recently,
e.g., for self-replication [35] and in the activation of signaling
proteins [36]. The rate of dissipated heat Q̇diss = Ṡ/T created
in each cycle community is proportional to their respective
entropy production rate Ṡ. Our analysis reveals that both the
blue and red cycles are equally responsible for about 30% of
the total dissipated heat, while the green, cyan, and magenta
communities produce 5%, 15%, and 50%, respectively. The
latter is caused by the large conformational changes (folding
and unfolding process) of the polymer. The blue and red cycles,
on the other hand, do not exhibit large conformational changes,
and, therefore, the conformational changes must be on very
short time scales, which is confirmed by the large probability
currents shown in Fig. 4(a).

We finally comment on using a PCA, which is not neces-
sarily the best method to reduce the dimensionality of config-
uration space, and more advanced methods such as the time-
lagged independent correlation analysis exist [37]. Moreover,
it is common practice to first apply a dimensionality reduction
to the continuous molecular dynamics (or BD) data and
subsequently discretize the reduced configuration space into
finite sets. We did not follow this approach because NE-MSMs
built from reduced configuration space exhibit a significantly
lower entropy production rate than NE-MSMs built from full
configuration space (assuming the same number of centroids
is used). Recent results [38,39] suggest that the fluctuations of
general currents are bounded by the entropy production, which
directly links dynamic with thermodynamic consistency.

V. CONCLUSIONS

To conclude, we have presented a general method to system-
atically construct coarse-grained models composed of a few
discrete states from molecular data of steadily driven systems.
Specifically, we have studied the globule-stretch transition of
a simple model polymer, but the method can in principle be
applied to more realistic and complex molecules (such as
F1-ATPase [40]), delivering minimal and thermodynamically
consistent Markov state models. While these models can
be employed to bridge time scales, they also allow insights
into the relevant transition pathways. Here we have shown
that different directions can pass through the same region
of configuration space, which we believe might be a general
property of transitions in driven systems.
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APPENDIX A: SPATIAL CLUSTERING

The configuration space is discretized by employing the
popular k-means clustering algorithm which divides the con-
tinuous configuration space into k volumes and returns their
centroids (center of each volume). Next the BD trajectories are
projected onto the centroids, storing its dynamical information
as simple sequences of centroid indices. We extract the
dynamical information by counting the number of transitions
Ci→j (τ ) for a given lag time τ (time in between transitions).
The count matrix C(τ ) is used to approximate the transition
matrix T (τ ) by

Ti→j (τ ) = Ci→j (τ )∑
j Ci→j (τ )

, (A1)

which is also the maximum probability estimator for the true
transition operator [9]. We additionally require T to have
two important properties: First, T must be ergodic, i.e., each
state can be reached from every other state in finite time or
the transition network spanned by T is connected. Second,
all occurring transitions are reversible, i.e., if T i

j > 0, then

T
j

i > 0.
If the process described by T is time homogeneous, then

its entries T i
j ought to be time independent. To test this,

we perform a lag time analysis [41] shown in Fig. 5. For
equilibrium systems the eigenvalues λi of the transition matrix
T can be converted into relaxation time scales of the system
ti = −τ/ log (λi) with slowest modes corresponding to the
largest λi . If the largest eigenvalues are lag-time independent,
then also the slowest modes are lag-time independent yielding
a good estimation of the minimal lag time that can be used. In
NE-MSM the eigenvalues can become complex, which leaves
their physical interpretation still open for discussion. However,
for the polymer dynamics the largest eigenvalues sorted by
either their real part or absolute value exhibit no imaginary
part.

For a continuous-time Markov process with rate matrix
W , the transition probability can be expressed as T = eWτ .
While conventional Markov state models have discrete-time
dynamics, for our purposes we require a rate matrix, which we

FIG. 5. Lag time analysis. The six slowest internal time scales
are plotted for different lag times. For building the MSM we choose
τ = 20.
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approximate from the computed transition matrix through

W ≈ T − 1
τ

. (A2)

All off-diagonal elements of W are non-negative ωi
j � 0

while the diagonal elements are ωi
i = −∑

j ωi
j . Following

the Perron-Frobenius theorem, T and thus W have a unique
largest real eigenvalue λmax with a corresponding eigenvector
that has strictly positive entries. This eigenvector represents the
steady-state probability distribution with elements pi . Finally,
the probability fluxes are obtained by �i

j = ωi
jpi .

APPENDIX B: CYCLE DECOMPOSITION

Here we describe an algorithm that decomposes a given
probability flux matrix � into cycle fluxes. Each element of
� transforms through �i

j = ∑
(i→j )
α ϕα with ϕα � 0. The

sum adds the cycle weights of all cycles containing the edge
i → j . For the cycle decomposition we start by dividing �

into a symmetric detailed-balance part �db and a non-negative
current part J so

� = �db + J . (B1)

Here J is obtained by � − �T with all negative elements
set to zero. The symmetric part follows as �db = � − J .
To make progress, we identify all nonzero elements of �db

yielding a set of trivial cycles, i.e., cycles with only two
different states (i → j → i). Their cycle weights are identical
to their corresponding nonzero entry ϕi→j→i ≡ �i db

j = �
j db
i .

The algorithm to decompose the current part J is split into
two parts: first, searching for nontrivial cycles (cycle with
more than two different states) and, second, determining its
cycle weights. Theoretically, the number of possible nontrivial
cycles grows exponentially with the number of nonzero entries
of J . However, if both steps run alternately the decomposition
becomes computationally affordable, even for a large number
of states. To detect a nontrivial cycle, we propose the following
steps:

(1) Find the position of the largest element of J ,
arg max(J i

j ).
(2) Search for the shortest path (smallest number of

transitions) from state j leading back to state i (only following
the nonzero transitions). This step can be efficiently achieved
by applying a breadth-first search [42].

(3) Return the nontrivial cycle, i.e., (i → j → found path).
To determine the corresponding cycle weight ϕα , we take

all flux values along cycle α and determine their smallest value
becoming the cycle weight

ϕα ≡ min
i→j∈α

{
J i

j

}
. (B2)

Summing up both steps, the final algorithm reads
(1) Find a nontrivial cycle
(2) Compute its cycle weight ϕα

(3) Update the current matrix by subtracting ϕα along α,
J = J − ∑

(i→j )∈α ϕα and repeat with the first step
(4) The algorithm stops when the residuum ||Jmax|| has

become smaller than a threshold.

General considerations [27,28] show that the maximum
number of needed nontrivial cycles is bounded by Ncycles =
|E| − |V | + 1 with |E| being the number of nonzero elements
of J and |V | its rank. We provide a numerical implementation
of the cycle decomposition in the Supplemental Material [43].

APPENDIX C: CYCLE REPRESENTATIVES
AND COARSE GRAINING

Once the cycle communities are found, the idea for
coarse graining the NE-MSM is to pick one cycle for each
community—we refer to it as representative—delete all states
not belonging to any representative and, finally, rescale
the remaining transition rates ωi

j . To be thermodynamically
consistent the newly computed transition rates have to preserve
four quantities: The total entropy production rate Ṡ, the
cycle affinities of the representatives Aα , all remaining edge
affinities Ai

j and the dissipated heat along the remaining

edges log (ωi
j ) − log (ωj

i ). For a detailed description of the
coarse-graining algorithm we refer the reader to our previous
publication [22].

Since we know now how to coarse grain a given set of
cycle representatives, we address the question of how to select
“appropriate” representatives. Any set of cycle representatives
is thought to be appropriate if the graph spanned by their
coarse-grained transition matrix is ergodic and the mean
first passage times (MFPT) between local communities are
preserved. For example, the polymer dynamics for k = 3
communities as illustrated in Figs. 3(c) and 3(d) exhibits 2
local and 1 global community. To compute the MFPTs we
identify all states of the red community, say, as set R, and all
states belonging to the blue one as set B. Any appropriate
set of representatives needs to preserve MFPTR→B and
MFPTB→R .

Especially, the conservation of MFPTs is of particular
importance as it ensures the coarse-grained MSM to express
the correct time scales. So far no determinstic algorithm exists
that returns a reliable set of representatives. For this reason
we formulate a stochastic algorithm that picks candidates for
cycle representatives randomly and checks for ergodicity and
MFPTs. The algorithm is outlined as follows:

(1) Choose one representative per cycle community by
drawing a random number.

(2) Check if set of representatives span ergodic transition
network. If yes, compute coarse-grained MSM, else go back
to step (1).

(3) Compute MFPTs of the coarse-grained MSM and
compare to MFPTs of full MSM. If MFPTs match, return
coarse-grained MSM, else go back to step (1).

APPENDIX D: COARSE GRAINING OF BRIDGE
AND TRIANGLE STATES

To coarse grain bridge states [state 1 in Fig. 6(a)] we form a
new connection between the two neighboring states [state 0 and
2 in Fig. 6(a)]. The new transition rates ω̂0

2 and ω̂2
0 have to pre-

serve three characteristics: (i) edge affinities Â0
2 = A0

1 + A1
2,

(ii) probability currents Ĵ 0
2 = J 0

1 = J 1
2 , and (iii) dissipated heat

log (ω̂0
2/ω̂

2
0) = log (ω0

1/ω
1
0) + log (ω1

2/ω
2
1). Using conditions

012503-6



NONEQUILIBRIUM MARKOV STATE MODELING OF THE . . . PHYSICAL REVIEW E 95, 012503 (2017)

0 2
1

... ...

0 2
1

(a)

(b)

FIG. 6. Illustration of bridge and triangle state coarse-graining
approach. (a) Bridge state: After deletion of state 1 the other states are
directly connected (dotted arrow). (b) Triangle state: After deletion
of state 1 the existing connections 0 ↔ 2 are modified. The arrows
point in the direction of probability currents.

(i) and (ii), the new probability fluxes follow as

�̂0
2 = �̂2

0
�0

1�
1
2

�1
0�

2
1

and �̂0
2 = �̂2

0 + �0
1 − �1

0

⇒ �̂2
0 = �0

1 − �1
0(�0

1�
1
2

�1
0�

2
1

) − 1
. (D1)

To fulfill condition (iii) we demand that the ratio between any
two probabilities of the full network are preserved p̂i/p̂j =

pi/pj , which includes p̂0/p̂2 = p0/p2, and thus

wi
j

w
j

i

= �i
j

�
j

i

pj

pi

= �̂i
j

�̂
j

i

p̂j

p̂i

= ŵi
j

ŵ
j

i

. (D2)

Condition (iii) is also the main difference between our ap-
proach and the one discussed in Ref. [34]. In our adaptation the
probability distribution of the complete network is changed,
while Altaner et al. change it only locally (p0 and p2) and hence
absorb p1 into p0 and p2. The disadvantage of the latter is that
condition (iii) is not preserved for the full network and, when
using the coarse-graining approach iteratively, accumulation
of probability in single states might occur, which leads to
unphysical results.

For the coarse-graining of triangle states [state 1 in
Fig. 6(b)] we consider all cycles that contain the edges
0 → 1 → 2. We modify these cycles by replacing the edges
0 → 1 → 2 with a new edge 0 → 2. To be thermodynamically
consistent the modified cycles have to (i) preserve the cycle
entropy production rate Ṡα ≡ ϕαAα , (ii) preserve the edge
affinities A0

2, and (iii) dissipated heat log (ω0
2/ω

2
0). To rescale

the transition rates we use the same rescaling algorithm as for
the rescaling of the cycle representatives. Note that through
restriction (i) it is not necessarily possible to coarse grain
all found triangle structures. Assume, for instance, that the
modified cycle coincides with an already-existing cycle; then
the rescaling is not unique anymore and entropy production is
destroyed as only one of two cycles survives.
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