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Power-law statistics and universal scaling in the absence of criticality
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Critical states are sometimes identified experimentally through power-law statistics or universal scaling
functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes
away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime
where the nodes have independent and identically distributed dynamics. We thus investigated the statistics of a
system in which units are replaced by independent stochastic surrogates and found the same power-law statistics,
indicating that these are not sufficient to establish criticality. We rather suggest that these are universal features of
large-scale networks when considered macroscopically. These results put caution on the interpretation of scaling
laws found in nature.
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I. INTRODUCTION

Power-law statistics are ubiquitous in physics and life
sciences. They are observed in a wide range of complex phe-
nomena arising in natural systems, from sandpile avalanches to
forest fires [1,2], earthquakes amplitude solar flares, website
frequentation, as well as economics [3]. These distributions
reveal unusual properties: The observed quantity has no typical
scale and is not well characterized by its mean (when it exists).
It is distributed over orders of magnitudes and large deviations
are not exceptionally rare, in the sense that extreme events are
far more likely than they would be, for instance, in a Gaussian
distribution. These singular properties, combined with their
ubiquity in nature, has attracted wide attention in applied
science.

A number of theories were proposed in order to account for
the presence of such power-law distributions. Some theories
use an analogy with statistical physics systems and consider
the presence of power-law scalings as the hallmark that the
system could be operating at a phase transition. These theories
associate a power law to a so-called notion of criticality:
Classically, in statistical physics, critical phenomena are the
behaviors occurring in systems in association with second-
order phase transitions. These are largely thought to be
universal although no proof has been provided yet. Indeed,
a number of statistics are found in vastly distinct models
and, in particular, in the Ising model [4] poised at its phase
transition. The critical regime thus occurs only at very specific
parameters values. At this regime, the properties of the system
are particularly singular; in particular, a number of statistics
are scale invariant, including, for instance, the size, duration,
and shape of collective phenomena. The seminal work of
Bak, Tang, and Wiesenfeld on the Abelian sandpile model
[5] largely popularized the hypothesis that criticality may be
the origin of power laws observed in nature. Indeed, despite the
fact that parameters for criticality are very rare, systems may
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self-organize naturally at criticality (at the phase transition
point) without requiring fine-tuning by a mechanism called
self-organized criticality (SOC) [1]. This remarkable theory
has sometimes led to the conclusion that natural systems were
critical, based on the identification of power-law relationships
in empirical data (see Refs. [2,5] for reviews).

While power laws, as well as phase transitions (thus
criticality), are well identified in models, a number of authors
have underlined the importance of being cautious when
claiming power-law behavior in finite systems, questioning
their relevance or usefulness [6,7]. In particular, Stumpf and
Porter [6] aptly noted the importance of taking a nuanced
approach between theoretical and empirical statistical support
reporting a power law, as theories arise from infinite systems
while real systems and usual data sets are finite.

In physics, several alternative theories have been proposed
to account for the presence of power laws (see, e.g., Ref.
[3] for a review). In particular, it was noticed very early that
a pure random typewriter (a monkey sitting at a typewriter)
would generate texts with a power-law distribution of word
frequencies [8] identical as the one observed in data. This
work brilliantly showed that a power law may arise from
purely stochastic mechanisms, evidencing that some power-
law distributions may not reflect deep structures in the
data. Li [9] formalized Miller’s theory, highlighting the fact
that combinations of exponentials naturally yield power-law
relationships. Bouchaud and others [10,11] noted that the
inverse of regularly distributed quantities may show power-law
distributions. Newman and colleagues showed that random
walks generate several statistics scaling as power laws [3];
Yule introduced a process with broad applications, particularly
in evolution, naturally associated to power-law distributions;
and Takayasu and collaborators [12–14] showed that systems
with aggregation and injection naturally generate clusters
of size scaling as a power law with exponent −3/2. In
neuroscience, Benayoun, Wallace, and Cowan have shown that
neuronal networks models in a regime of balance of excitation
and inhibition also provide power-law scalings of avalanches
[15]. All of these mechanisms are independent of any phase
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transition and arise away from criticality from a particular way
of considering a random process.

The hypothesis that networks of the brain operate at
criticality was introduced a decade ago with the development
of recording techniques of local populations of cells and
the analysis of specific events corresponding to collective
bursts of activity separated by periods of silence. The first
empirical evidence that neuronal avalanches may show power-
law distributions of duration or size was derived from the
analysis of neuronal cultures in vitro activity [16]. Based on
an analogy with the sandpile model, these bursts were seen
as “neuronal avalanches” and were apparently distributed as
a power law with a slope close to −3/2, consistent with the
distribution of sandpile avalanches. These in vitro findings
were based on indirect evidence of spiking derived from
local field potentials and extracellular signals associated with
the summation of postsynaptic potentials [bursts produce
negative peaks in the local field potential (LFP) signals]
and affected by a number of events unrelated with spiking
activity. Similar LFP statistics were later found in vivo in the
awake monkey [17] and in the anesthetized rat [18]. These
empirical evidences were used to draw strong conclusions
on neural coding: The presence such power laws would
ensure maximized information capacity, dynamic range, and
information transmission [19,20]. However, the method of
analyzing the amplitude of negative LFP peaks was shown
to produce spurious power-law scaling [21] regardless of the
spike activity of cells. Indeed, identical scalings were found
in surrogate data (positive LFP peaks that are independent of
spiking activity), and also arise in elementary purely stochastic
signals, such as excursions of Ornstein-Uhlenbeck processes
through thresholds away from the mean or in one-dimensional
random walks [22,23]: Both duration and time of excursions
show power-law statistics and display shape invariance. It
was further shown in that both in data and surrogate models,
statistical significance of these power laws of LFP peak was
poor and depended on the threshold chosen. In Ref. [24],
Dehghani and collaborators have made a statistical analysis
combining multielectrode in vivo recordings from the cerebral
cortex of cat, monkey, and human and did not confirm the
presence of power laws. The data rather showed an optimal fit
with two independent exponential processes.

The poor statistical significance of LFP avalanche analysis
and the ambiguous results it yields has motivated an in-depth
exploration of in vitro spiking data of cultures of neurons
[25]. In this remarkable work, the authors used multiunit data
from in vitro cultures and addressed a number of properties
of critical systems reported by Sethna et al unified theory of
criticality of statistical systems [26]. Of crucial importance
in this theory are power-law scalings of specific events and
the relationship between the different scaling exponents.
Friedman and collaborators [25] revealed that the data was
consistent with Sethna et al. theory, since power-law scalings
of both avalanche size and duration were reported, with
slopes consistent with the critical exponents of −3/2 and
−2, respectively, but also the existence of a universal mean
temporal profiles of firing events collapsing under specific
scaling onto a single universal scaling function, thereby
providing a more substantial analogy between this in vitro
system with statistical physics models at criticality.

In the present paper, we show that these observations can
arise naturally in neuronal systems that are not at criticality.
We also provide a theoretical explanation for this, as well
as analytic access to some of the relevant properties of such
systems.

II. AVALANCHES IN SPIKING NETWORK MODELS

We start by investigating the avalanche distributions gener-
ated by the classical model of a spiking neuronal network with
excitatory and inhibitory connections introduced by Nicolas
Brunel in Ref. [27]. This model describes the interaction of n

neurons described through their voltage (vi)i=1···n that decays
to reversal potential in the absence of input, receives external
input and spikes from interconnected cells, and fires action
potentials when the voltage exceeds a threshold θ . In detail,
the voltage of neuron i satisfies the equation:

τ
dvi

dt
= −vi + Rτ

n∑
j=1

Jij

∑
k�0

δ
(
t − t kj − D

)
, (1)

while vi � θ and where τ denotes the time constant of the
membrane and R its resistivity. The input received by the
neuron are Dirac δs. Neuron i receives the kth impulse
of neuron j , emitted at time t kj , after a delay denoted D

and assumed constant, which alters its membrane potential
of a quantity proportional to Jij . Brunel’s model assumes
that these coefficients are zero except for a fixed number
of cells randomly chosen in the excitatory and inhibitory
populations, for which the coefficient Jij have fixed values J

and −gJ , respectively (see Ref. [27] for details). This model
is particularly interesting for its versatility and ability and to
produce diverse spiking patterns. One can classify the regimes
of activity in terms of levels of synchrony and regularity, and
different regimes emerge as a function of the relative levels of
excitation and inhibition and the input, which can be identified
through the computation of precise bifurcation curves [27].
The thus-obtained regimes are termed activity states to dis-
tinguish these from the statistical mechanics notion of phase:
The regimes are here separated by bifurcations occurring in
the mean-field limit of the system. Of special interest are the
asynchronous irregular (AI) states, in which neurons fire in
a Poisson-like manner, with no period of silence (and hence
no avalanche). This activity is evocative of the spike trains
observed experimentally in awake animals. Such sparsely
connected networks can also display periods of collective
activity of broadly distributed duration interspersed by periods
of silence, called synchronous irregular (SI) regimes, known
to reproduce the qualitative features of spiking in anesthetized
animals or neuronal cultures. Although partially ordered and
partially disordered, SI regimes occur for a wide range of
parameter values (all in inhibition-dominated regimes) [27]
and are not very sensitive to modifications of biophysical
parameters. The SI regime is not at a transition in the activity
regime; within this region, chaotic activity takes place. Indeed,
inhibition dominates the excitation, thus when the activity
spreads throughout the network, it triggers massive inhibition
that naturally silences the network. This is what we observe in
simulations of the Brunel model (Fig. 1) [28]. We investigate
the statistics of spike units in both cases (see Fig. 1).
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FIG. 1. Avalanche spike statistics in the sparsely connected networks [27] with N = 5000 neurons in the SI and AI states. (a) Raster plot
of the SI together with the firing rate (below). (b) Raster plot in the AI state: Spiking is asynchronous and faster (notice that the time window is
shorter compared to A for legibility); no silence period arises. Parameters as in Ref. [27], Fig. 2(d)] with g = 4 (excitation-dominated regime)
and νext/νthresh = 1.1. In the SI states (c), avalanche size (number of spikes) and (d) avalanche duration (number of bins) scale as power law
(dashed line is the maximum likelihood fit), and averaged avalanche size scales as a power law with the duration avalanche duration according
to the universal scaling law [26] (e). Average avalanche shapes collapse onto the same curve [(f) and (g)] very accurately. Avalanche shapes
from 20 to 40 bins are plotted in gray, and three of the same size as in Ref. [25] are colored and with distinct thicknesses. Parameters as in
Ref. [27], Fig. 2(d)] with N = 1000, g = 5 (inhibition-dominated regime), and νext/νthresh = 0.9.

First, in the AI state, the sustained and irregular firing
does not leave room for repeated periods of quiescence at
this network scale, preventing the definition of avalanches
[see the raster plot in Fig. 1(b)] [29]. This sharply contrasts
with the SI state, in which we can define avalanches which
display the same statistics assumed to reveal criticality in
cultures [25]. Figure 1(a) represents the raster plot with typical
avalanches taking place. Strikingly, both avalanche duration
and avalanche size show excellent fit to a power law, validated
by Kolmogorov Smirnov test of maximum likelihood estimator
[30], and the exponents found are consistent with those found
in neuronal cultures [25]. In particular, we find that the size
s of the avalanches (number of firings during one avalanche)

apparently scales as s−τ with τ = 1.42 [Fig. 1(c)], close to the
theoretical value of 3/2 (plotted on the figure for indication)
and to the neuronal culture scaling (1.7 reported in Ref. [25]).
Using the Kolmogorov-Smirnov test [30], we have tested the
hypothesis that the data are distributed as a power law and
validated the hypothesis (Kolmogov-Smirnov distance 0.0097,
p-value p > 0.99). This is also the case of the distribution
of the duration t of the avalanches, found scaling as t−α

with α = 2.11 [Fig. 1(d)], close to the theoretical value of
2 for critical systems and from the experimental value of 1.9
found in neuronal cultures [25]. The Kolmogorov-Smirnov
distance with a pure power law is very low, evaluated at 0.031,
which leads to a high p-value p = 0.99, validating clearly the
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hypothesis of a power-law distribution of avalanche durations.
Similarly to what was observed experimentally, the fit is valid
on two octaves and drops down beyond [31]. This exponential
drop is classically related to subsampling effects. We validated
the presence of finite-size cutoffs by varying the size of the
system and found indeed that as the network size increases,
the fit with a power-law distribution is valid on larger time
intervals and the cutoff only arises at later times (see Fig. 6).
Also consistent with neuronal data and crackling noise, we
found that the average avalanche size scales very clearly as a
power of its duration, but with a positive exponent γ = 1.50,
not consistent with the crackling noise relationship between
exponents

γ = α − 1

τ − 1
(2)

that predicts an exponent equal to γ = 2.64 but, however, is
quantitatively consistent with the in vitro data of Ref. [25]. We
have also investigated the shape of the avalanches of different
durations. We have found that, similarly to critical systems or
to in vitro data, the avalanche shapes collapsed onto a universal
scaling function [Fig. 1(e)] when time is rescaled to a unit
interval and shape rescaled by T γ−1 where γ = 1.5 is the
power-law exponent of the average size.

These scalings are not specific to the particular choice of
parameters used in our simulations: We consistently find, in
the whole range of parameter values corresponding to the SI
state of Brunel’s model, and in particular, away from any
transitions, similar apparent power-law scalings with similar
scaling exponents (see Fig. 7). Moreover, we confirmed, in
addition to the fact that this regime is away from all transitions
between the different network activity, that the system is
not at criticality by showing that relaxation towards the SI
regime after perturbation is fast (within milliseconds) within
the region considered, although it does slow down close to the
transition point (see Fig. 8). We conclude that these statistics
are valid in a whole regime of the system where the activity is
synchronous irregular, and neither at a transition of the model
nor in a regime consistent with the slow decay of perturbations
associated to critical regimes. Therefore, finding power-law
statistics in neuronal avalanches with exponents 1.5 and 2
does not reveal that the system operates at criticality but rather
seems a property of synchronous irregular states.

The SI states are prominent in neuronal activity, especially
in anesthesia and neuronal cultures. It is precisely in these
situations that power-law distributions of spike avalanches
were reported experimentally [16,18]. This regime differs from
the awake activity where neurons fire in an AI manner. In
these regimes, power laws and criticality were reported based
on LFP recordings [17]. We will come back to experimental
evidences of power laws in local-field potentials recordings of
the activity in Sec. V.

III. AVALANCHES AND BOLTZMANN MOLECULAR
CHAOS PROPERTY

The observation of such scaling relationship in simple mod-
els of neuronal networks away from criticality and for a broad
range of parameter values suggests that the observed scaling
is related to properties of the systems that are independent

of the notion of criticality and that may be relatively general.
These may therefore be related to the properties of the network
activity that we now describe in more detail.

A. Propagation of chaos in neural networks models

The classical theory of the thermodynamics of interacting
particle systems states that in large networks (such as those
of the brain), the correlations between neurons vanishes. This
is also known as the Boltzmann molecular chaos hypothesis
(Stoßzahlansatz) in reference to the hypothesis that the speed
of distinct particles should be independent, key to the kinetic
theory of gases of Ludwig Boltzmann [32]. In mathematics,
this property is called propagation of chaos and is rigorously
defined as follows:

Definition 1. For (Xn
1 , . . . ,Xn

n) a sequence of measures
on (Rd )n. The sequence is said X chaotic if for any k ∈
N and i1, . . . ,ik a set of indexes independent of n we
have (Xn

i1
, . . . ,Xn

ik
) converge to k independent copies of X

as n → ∞.
In our context, in the limit of large networks, neurons

behave as independent jump processes with a common rate,
which is the solution of an implicit equation. This property
is at the core of theoretical approaches to understand the
dynamics of large-scale networks [27,33–35]. In the case of
Brunel’s model, it is shown that since two neurons share a
vanishing proportion of common input in the thermodynamic
limit, allowing us to conclude that the correlation of the
fluctuating parts of the synaptic input of different neurons
are negligible. This leads the author to conclude that the spike
trains of different neurons are independent point processes
with an identical instantaneous firing rate ν(t) that is the
solution of a self-consistent equation (see Ref. [[27], p. 186,
first column]). In that view, except in the case of constant firing
rate (the asynchronous irregular state), neurons always show
a certain degree of synchrony due to the correlations of the
instantaneous firing rates of different neurons.

Mathematically, several methods were developed for in-
teracting particle systems and gases (see, e.g., Ref. [36] for
an excellent review). It is shown that, generically, systems of
interacting agents, with sufficient regularity, show propagation
of chaos. All these results are in particular valid for neuronal
networks, as was shown recently in a number of distinct
situations. Large-n limits and propagation of chaos was
demonstrated for large networks of integrate-and-fire neurons
[37], firing-rate models with multiple populations [38], and
conductance-based models even in the large time regime
[39] and was shown to hold in realistic network models
incorporating delays and the spatial extension of the system
[40,41]. Rigorous methods of convergence of particle systems
show that the empirical measure of the system:

μ̂n = 1

n

n∑
j=1

δxi

converges in law towards a unique solution. A very powerful
and universal mathematical result demonstrated in Ref. [[42],
Lemma 3.1] ensures that that the convergence of the empirical
measure of a particle systems towards a unique measure
implies propagation of chaos. Several methods may be used
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to show convergence of the empirical measure, including in
the case of neuroscience, coupling methods [41], compacity
estimates [37], or large deviations [43].

These results indicate that a universal form of activity
emerges from neural networks, whereby neurons are inde-
pendent copies of the same process. Before investigating the
avalanche statistics of such regimes of activity, let us discuss
the plausibility of the existence of these regimes in neuronal
data.

B. Decorrelation in experimental data and models

In natural environments, regularity of sensory input to the
brain may create strong and long-range correlations in space
and time [44–47]. It soon appeared that these correlations
would be detrimental for the brain to encode sensory stimuli
and detect changes efficiently [48,49]. Theoretical models
of the visual system in particular have shown that decrease
of redundancy by decorrelation was important for efficient
encoding of natural images [50–52]. Such a decrease was
confirmed experimentally. In Ref. [53], the authors used
high-density two-dimensional electrode array and found in
particular a marked exponential decay of correlation of
excitatory cells. A clear confirmation of decorrelation even for
closeby cells receiving similar input was recently brought in
a remarkable experimental work where chronically implanted
multielectrode arrays were developed and implanted in the
visual cortex of the macaque [54]. This protocol produced
exquisite data allowing us to show that even nearby neurons,
generally thought to be strongly connected and to receive a
substantial part of common input showed a very low level of
correlation. Similar decorrelation results were reported in the
rodent neocortex [55] with the same level of accuracy.

The origin of this decorrelation is still controversial and
several assumptions were formulated, including the role played
by adaptation ionic currents that could play central role in tem-
poral decorrelation [56], negative correlations associated with
the coevolution of excitatory and inhibitory cells activity [55],
or sophisticated and robust mechanisms relying on neuronal
nonlinearities and amplified by recurrent connectivities [57],
that was compatible with pattern decorrelation observed in the
olfactory bulb of the zebra fish.

All these experimental findings confirm that regimes in
which neurons are independent are plausible representations
of neural networks activity. We now investigate the avalanche
statistics of such networks.

C. Statistics of networks in the molecular chaos regime

Both the mathematical analysis of neuronal network models
and fine analysis of the structure of spike trains motivates
the study of ensembles of neurons that are independent but
with common nonstationary statistics. The simplest model
one could think of is to consider a collection of independent
Poisson processes with identical time-dependent rates.

In that view, cells with constant firing rates resemble AI
regimes. To generate a stochastic surrogate of the SI regime,
the common rate of the cells should display nonperiodically
periods of silence. An obvious choice would be to replay the
rates extracted from the SI state, and indeed such a surrogate

generated power-law statistics (not shown), but in this case
we could not rule out whether the power-law statistics are
encoded in the rate functions. To show that this is not the case,
we generated a surrogate independent of the rate functions by
using a common rate of firing of the neurons given by the
positive part ρ+

t of the Ornstein-Uhlenbeck process:

ρ̇t = −αρt + σξt

with (ξt ) a Gaussian white noise. This choice is interesting
in that although periods of silence do not occur periodically,
the duration between two such silences have a finite mean.
Actually, the distribution of excursions shape and duration
of the Ornstein-Uhlenbeck process are known in closed form
[58]. These distributions are, of course, not heavy tailed: They
have exponential tails with exponent α which is the time scale
of decay of the process.

We investigated the collective statistics of N = 2000 inde-
pendent realizations of Poisson processes with this rate. The
resulting raster plot is displayed in Fig. 2(a). While the firing
is an inhomogeneous Poisson process, macroscopic statistics
show power-law distributions for the size [τ = 1.47, Fig. 2(b)]
and for the duration [α = 1.9, Fig. 2(c)], both statistically
significant [30] and consistent with critical exponents. Again,
a linear linear relationship between average avalanche size
and duration is found, with a coefficient evaluated to γ = 1.4
and explaining all the variance but 6 × 10−4. Again, this
coefficient is not consistent with the crackling relationship
(2). Notwithstanding, we found that the averaged shape of
avalanches of a given duration collapse onto one universal
curve when the amplitude is rescaled by the duration to the
power γ − 1 [Figs. 2(d) and 2(e)].

Of course, these statistics are not related to the nature of the
rate chosen. We display in Fig. 9, for instance, the avalanche
statistics of independent Poisson processes with a rate given
by the positive part of a reflected Brownian, and we find
exactly the same power-law statistics of avalanche shapes and
durations, as well as a very nice collapse of avalanche shapes.

D. Analytical derivations in the stationary and slow rate regime

In this simple model, it is actually very simple to indeed
compute explicitly the distribution of avalanche duration, for
instance. Disregarding the Poisson nature of the firings and the
type of rate chosen, we can indeed write down the probability
for an avalanche of duration t to occur at a specific time.
These distributions can be computed analytically in cases
where the spiking is described by a point process. In that case,
denoting by p(t) the probability for a neuron to spike in the
time interval [t,t + δ], the probability to observe an avalanche
of size τ starting at time t∗ in a collection of n independent
realizations is

q(t∗)nq(t∗ + τ + 1)n
τ∏

t=1

[1 − q(t∗ + t)n],

where q(t) = qt := 1 − p(t). Assuming stationarity, the prob-
ability of finding an avalanche of duration τ is given by∫

[0,1]τ+2
qn

0 qn
τ+1

τ∏
t=1

(
1 − qn

t

)
dρτ+2(q0, . . . ,qτ+1),
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FIG. 2. Avalanches statistics in the independent Poisson model with Ornstein-Uhlenbeck firing rate (α = σ = 1). Apparent power-law
scalings, together with scale invariance of avalanches shapes. Avalanches of size 10 to 40 in gray, and three specific trajectories highlighted.

where ρ denotes the joint probability for the firing rate to have
a specific sequence of values (q0, · · · ,qτ+1).

This formula remains quite complex. Assuming now that
the rate is extremely slow compared to the avalanches, one
can simplify further the probability of p0

τ of an avalanche of
size τ :

p0
τ =

∫ 1

0
q2n(1 − qn)τ ρ1(q)dq,

and thus with a simple change of variable:

p0
τ = 1

n

∫ 1

0
x1+ 1

n (1 − x)τ ρ1
(
x

1
n

)
dx.

As expected, when n → ∞, the probability of having an
avalanche of prescribed, finite duration goes to zero as 1/n.
The typical shape of the distribution can be obtained by
rescaling this probability by n. Since we are interested in
the logarithmic shape of the distribution, we disregard any
multiplicative constant. As n → ∞, we thus obtain that

the probability profile converges towards a universal limit
independent of the particular shape of the distribution ρ,
precisely given by:

p0,∞
τ ∝

∫ 1

0
x(1 − x)τ dx = 1

(τ + 1)(τ + 2)
,

which is indeed a power law with exponent −2, identical to the
one arising in critical systems, consistent with those reported in
neuronal data [25], in neuron models (Fig. 1), and in surrogate
systems (Fig. 2).

We now show that this extends to the distribution of
avalanche size and the scaling of the mean avalanche size with
duration. Indeed, the size of avalanches of duration τ have a
binomial distribution, corresponding to s − τ successes among
(n − 1)τ independent Bernoulli variables with probability of
success 1 − q(t). Moreover, the De Moivre-Laplace theorem
[59] ensures convergence as n increases towards a normal vari-
able with mean (n − 1)τp(t) and variance (n − 1)τp(t)q(t).
Using again our separation of time scale and stationarity
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FIG. 3. Universal shape of the avalanche size distribution in the
slow rate and large-n limit.

hypotheses, we find the probability the probability of finding
an avalanche of size s and duration τ averaged on the firing
rate:

p̄n(s,τ ) ∼
∫ 1

0
e
− [s−τ−n(1−q)τ ]2

2nqτ (1−q)
q2n(1 − qn)τ√
2πnqτ (1 − q)

ρ(q)dq,

which converges, as n → ∞, towards:

p̄∞(s,τ ) ∼
∫ 1

0
e

{s−τ [1+log(u)]}2
2τ log(u)

u(1 − u)τ√
2πτ log(u)

du.

We thus obtain at leading order the size distribution:

P(s) ∼ es

s∑
τ=1

∫ 1

0
e

(s−τ )2

2τ log(u)
u[

√
u(1 − u)]τ√

2πτ log(u)
dx. (3)

It is hard to further simplify this formula, but it can be easily
evaluated numerically. We depict the result of this computation
in Fig. 3 and illustrate the apparent power-law scaling with
slope −3/2.

Eventually, we obtain for the average size Aτ of avalanches
of duration τ :

Aτ ∼
∫ 1

0

∫ ∞

s=τ

s e
{s−τ [1+log(u)]}2

2τ log(u)
ds√

2πτ log(u)
du

∼ τ 3/2
∫ 1

0
[− log(u)]5/4u

√
τ

−8π log(u) du.

We thus conclude that while a power-law relationship persists
between Aτ and τ , the scaling exponent is not related to
the exponents of the power law of size (3/2) and duration
(2) distribution through Sethna’s crackling noise relationship,
which would predict an exponent equal to 2. Importantly, we
note that the exponent found here is quantitatively perfectly
consistent with the exponent found in in vitro data [25] in the
neural network model (Fig. 1) or surrogate Poisson system
(Fig. 2).

IV. SPIKE PATTERN ENTROPY AND INFORMATION
CAPACITY

We have thus proved that power-law distributions of
avalanches do not necessarily reveal that the network is
operating at criticality. However, a number of theories have
proposed that operating at criticality was an optimal regime
of information processing in the brain, perhaps selected by
evolution as a useful trait for the nervous system [19,60,60–
64]. The question that arises is thus whether these theories
break down when power-law statistics no longer arise from
the system operating at criticality but from a mean-field
Boltzmann chaos regime.

In order to address this outstanding question, we came back
to the methods used in order to demonstrate optimality of data
processing capabilities at criticality. These theories rely on
the computation of the information capacity of the network
in different activity regimes evaluated, following Shannon’s
information theory, as the entropy of the patterns of spike fired.
In detail, a spike pattern in a network of size N is an N -uplet
s ∈ {0,1}N , with si = 1 (respectively, si = 0) if neuron i has
fired (respectively, not fired) in a specific time bin. If p denotes
the probability of occurrence of spike patterns, then the entropy
is given by:

Entropy =
∑

s∈{0,1}N
p(s) log[p(s)].

In order to test whether our theory accounting for the
emergence of power-law distributions in the absence of
criticality challenges high information capacity of neuronal
networks, we computed the information capacity of Brunel’s
model in different regimes (see Fig. 4). The numerical results
show that this is not the case, and the information capacity
is maximal in the SI regime where power-law statistics of
avalanches were observed. However, we observe no difference

AI

E
n
tr
o
p
y

g

SR

FIG. 4. Computation of the entropy (circles) of the network in the
Brunel’s model [27] for distinct values of the input intensity νext and
inhibition ratio g. The color code indicates the entropy amplitude.
Parameters as in the original model [[27], Fig. 2(b)]. The blue surface
represents the boundary between SI and AI regimes, and the green
surface separates SR regimes from SI regimes. We observe a clear
transition from low entropy (SR) to high entropy (SI+AI).
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between entropy levels in the SI or AI states. Therefore, we
conclude that the maximality of entropy is not necessarily
related to the emergence of power-law statistics.

These observations can be well understood heuristically.
Indeed, the entropy of spike patterns is a measure of the
variability of possible spike patterns observed in the course of
neuronal activity. The diagram of Fig. 4 is thus not surprising.
Indeed, while the diversity of spike patterns is reduced in
the highly synchronized regular regimes, it will be large
in the irregular regimes, both synchronized asynchronous
[65]. In other words, entropy is maximized within irregular
regimes where more diverse patterns are fired, independently
of the underlying mechanisms supporting the emergence of
the irregular activity.

V. LOCAL FIELD POTENTIALS ARE AMBIGUOUS
MEASURES OF CRITICALITY

We have thus shown that discarding the criticality assump-
tion does not degrade the quantifications of network efficiency.
This being said, we are facing an apparent contradiction.
Indeed, our theory provides an account for the presence of
critical statistics in networks in the SI regime but discards
AI states as possibly having critically distributed avalanches.
Evidence of critical statistics of avalanches in vivo in the awake
brain have been reported but are more scarce and controversial.
Unlike neuronal cultures, the activity in the awake brain does
not display bursts separated by silences but is sustained. Using
a macroscopic measurement of neuronal activity, the LFP,
power laws could be shown from the distribution of peaked
events [17]. The motivation to use negative LFP peaks to
deduce information from the distribution of spike avalanches
relied on the fact that the amplitude of these peaks correlated
with firing activity [16,19].

However, this monotonic relationship between the number
of spikes and the number of spikes does not imply that
there should exist a relationship between the distribution of
peak amplitude and avalanches. Moreover, it was shown that
power laws naturally emerge from the random nature of the
signal and the thresholding procedure used in this analysis,
and, moreover, these power laws may not be statistically
significant [21]. Indeed, no power-law scaling could be found
from unit activity, which was better fit by double-exponential
distributions [24]. These analyses rather suggest that the
power-law statistics of LFP peaks do not reflect scale-invariant
neural activity.

In an attempt to clarify this, we investigate here whether
the distribution of LFP peaks can display power-law scaling
in spiking networks or in their stochastic surrogates. To
obtain a more biophysical model where LFP can be defined,
we considered the current-based Vogels and Abbott model
[66] which provides a biologically realistic model of spiking
network displaying asynchronous irregular and synchronous
regular states and in which synaptic currents are described
by exponentially decaying functions with excitation and
inhibition having distinct time constants (in place of Dirac
impulses in the Brunel model (1) see Ref. [66] for details).
Simulations of the model provide an instantaneous distribution
of postsynaptic currents, from which we computed LFP
signals.

(a) (b) (c)

FIG. 5. Avalanche analysis defined from the macroscopic vari-
able VLFP of a network of integrate-and-fire neurons with exponential
synapses. Networks displaying an SI (left) or AI (middle) state
and a purely stochastic surrogate (right) show similar macroscopic
power-law LFP peak statistics with the same exponent close to −3/2.

In detail, we have considered a spatially extended neural
network of 5000 units randomly located on a two-dimensional
square and satisfying the Vogels-Abbott model. We evaluated
an LFP signal VLFP from the postsynaptic currents according
to Coulomb’s law [67]:

VLFP = Re

4π

∑
j

Ij

rj

,

where VLFP is the electric potential at the electrode position,
Re = 230 � cm is the extracellular resistivity of brain tissue,
Ij are the synaptic currents of neuron j , and rj is the distance
between Ij and electrode position. Remarkably, applying to
this more sophisticated model the same procedures as in
the original paper [17], we found that the method cannot
distinguish between structured or nonstructured activity: For
a fixed firing rate and bin size, we have been comparing
in Fig. 5 the LFP statistics of the avalanche duration in a
network of neurons in the AI regime [Fig. 5(a)] or in the
SI regime [Fig. 5(c)] that shows partial order of the firing
and saw no difference. We also compared the statistics to
those of independent Poisson processes with constant rate
[Fig. 5(b)]: The three instances show power-law scaling of
avalanche duration, with the same exponent, that seem to rather
be related to the firing rate and bin size than to the form of the
network activity. The scaling coefficient is, again, close to 3/2
and varies with bin size. Clearly, in this case, the dynamics of
LFP peaks cannot distinguish between critical and noncritical
regimes.

VI. DISCUSSION

In this paper, we have evaluated how power-law statistics
and universal scaling can arise in the absence of criticality. We
first outline the novel contributions of the present manuscript,
and then we discuss their significance.

The contributions of the present manuscript are as follows:
(i) We first investigated the avalanche statistics of spiking

neural networks models (Sec. II). We showed that these net-
works display power-law statistics with the critical exponents
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−3/2 and −2, as well as collapse of the shapes of avalanches.
This observation is robust and valid for a wide region of
parameters corresponding to synchronous irregular activity in
such networks and thus away from any transition point (i.e.,
away from criticality).

(ii) This robust numerical observation led us to investigate
theoretically how such statistics can emerge from the collective
activity of spiking networks. One ubiquitous property of
large neural networks models is that neurons behave as
independent processes with the same statistics. This property,
termed Boltzmann’s molecular chaos regime in statistical
physics, or propagation of chaos in mathematics, is universal
in the dynamics of large-scale networks. We reviewed such
properties in models, as well as recent experimental evidence
supporting this decorrelation between the dynamics of cells.

(iii) We next tested the hypothesis that power laws may
emerge from such large systems of weakly correlated units
with similar statistics. We introduced and investigated numeri-
cally the dynamics of a surrogate network made of independent
neurons sharing the same statistics (Sec. III C). Surprisingly,
despite the simplicity of these systems, they display precisely
the same power-law statistics of avalanche duration and size
with the same exponents and shape collapse as fully connected
networks.

(iv) This surrogate model is simple enough to derive in
closed form the statistics of the duration and size of the
avalanches. Using this analytic expression, we demonstrate
that the “critical” exponents emerge naturally in large-scale
systems (operating within the Boltzmann chaos regime),
without the need to invoke criticality (Sec III D).

(v) Current literature indicate that criticality is an optimal
information processing regime for the brain. We considered
the same measures of information capability (entropy of spike
trains) on our biologically plausible models and showed that,
indeed, information is maximized in the SI regime where
power laws emerge. However, we show that this is not
exclusive of the SI regime but the same levels of entropy are
found in AI regimes where no avalanche can be defined.

(vi) Finally, we also addressed the presence of power-law
scalings observed in LFP recordings by simulating such signals
emerging from more realistic neuronal network models with
excitatory and inhibitory cells. Surprisingly, we observed
that power laws with the same exponents as observed in
experiments are found in all regimes tested. These exponents
persisted when neurons were replaced by independent Poisson
processes. This clearly indicates that power-law scalings in
LFPs do not constitute any proof of criticality in the underlying
system.

All together, these numerical and theoretical findings
provide a new interpretation for the emergence of power-law
statistics in large-scale systems, independent of the notion
of criticality. We propose to explain the emergence of such
scaling based on Boltzmann molecular chaos regime, known
to govern the dynamics of most large-scale interacting systems
[27,36,40]. In other words, power-law and universal scaling
functions can be due to a mean-field effect in systems made of
a large number of interacting units. Of course, this theory does
not hypothesize that the elements considered (here, neurons)
are disconnected in reality. To the contrary, the fact that the
critical exponents still resist the removal of interconnections

shows that such exponents do not need criticality to be
explained.

The main mechanism explored here, Boltzmann’s molecu-
lar chaos, is a universal feature of many statistical systems.
The very particular structure of different particles activity
it induces, namely statistical independence of the particles
behavior together with a correlation in the law, may induce as
we have observed, the same type of power laws as in critical
systems, with universal coefficients that are consistent with
those found in critical systems. In agreement with this theory,
we have seen that the same statistics are reproduced by a
sparsely connected network and a surrogate stochastic process
where the periods of firing and silences are themselves gener-
ated by another stochastic process. This interpretation suggests
that similar scaling relationships shall arise in more realistic
neural network models with fixed connectivity patterns, in
particular including axonal propagation delays (constant de-
lays are already present in Brunel model), dendritic structure,
spike frequency adaptation, and noninstantaneous synaptic
transmission. Indeed, most of these elements will make the
intrinsic dynamics of each cell more complex, but we do not
expect that this complexity could affect the fact that these sys-
tems operate within the Boltzmann molecular chaos regime.
Notwithstanding, models including synaptic plasticity, which
is the process by which the brain acquires skills and stores
memories, may not belong to the class of systems described in
this paper. Indeed, in such systems, the connectivity patterns
vary depending on the pairwise correlations of cells activity,
and this relationship may compete with the establishment of
Boltzmann’s molecular chaos regime. While this may not
occur in the adult brain where plasticity is much slower than
neuronal activity, distinct phenomena not described by our
model may occur occur during the critical periods of brain
development, when plasticity occurs at a faster time scale.
Further experimental and theoretical investigations are neces-
sary to characterize avalanche distributions in these systems, as
well as to compute correlation levels to test if the decorrelation
characteristic of Boltzmann’s molecular chaos occurs.

Interestingly, a network operating in Boltzmann’s molec-
ular chaos regime can be interpreted as a high-dimensional
system with hidden variables, as studied recently in Refs.
[68,69]. In these contributions, the authors investigate the
rank distribution of high-dimensional data with hidden latent
variable and show that such systems display Zipf law scaling
(power laws with slope −1 in the rank distribution) that
generically arise from entropy consideration and use the
elegant identity between entropy and energy shown in Ref.
[70]. While these developments do not generalize here, Boltz-
mann molecular chaos provides a natural explanation for the
emergence of weakly correlated units with similar probability
laws: In the neural network system case, the common rate
could be seen as a latent variable, and both independence and
irregularity build up only from the interactions between cells.
As a result of this theory, revealing apparent power-law scaling
with exponents of −3/2 and 2, as well as shape collapse, may
be entirely explained statistically; in particular, these criteria
constitute no proof of criticality and experimental studies
solely relying on them should be re-evaluated.

This statement is even more true when it comes to macro-
scopic measurements such as the LFP: Both SI and AI regimes,
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as well as stochastic surrogates, display power-law statistics
in the distribution of LFP peaks. This shows that systems
of weakly correlated units, or their stochastic surrogates, can
generate power-law statistics when considered macroscopi-
cally. Here again, the power-law statistics tells nothing about
the critical or noncritical nature of the underlying system.
This potentially reconciles contradictory observations that
macroscopic brain variables display power-law scaling [17],
while no sign of such power-law scaling was found in the units
[24,71]. More generally, these results also put caution on the
interpretation of power-law relations found in nature.

A question that naturally emerges is how to distinguish
power laws due to criticality from those due to Boltzmann’s
molecular chaos regime. We used the previous observation
[26] that a prominent characteristic of criticality beyond the
presence of power-law scalings is the particular relationship
one finds between the exponents. We found here that the
power-law scalings emerging in the absence of criticality did
not satisfy this relationship. We propose to use that criterion as
a possible way to distinguish between power-law scaling due
to criticality or due to Boltzmann’s molecular chaos.

In conclusion, we have shown here that stochastic models
can replicate many of the experimental observations about
“critical” exponents, which demonstrates that not only is
power-law scaling not enough to prove criticality but also we
need new and better methods to investigate this in experimental
systems. The fact that such exponents are seen for networks
and for stochastic systems shows that they apply to a large
class of natural systems and may be more universal than
previously thought. As Georges Miller noticed in his seminal
paper [8] examining random text typed by virtual monkeys,
the texts produced may not be interesting but have some of
the statistical properties considered interesting when humans,
rather than monkeys, hit the keys. Similarly, the present results
show systems that can emulate the power-law scaling seen in
brain activity but with no criticality involved. We thus cannot
conclude on whether the brain operates at criticality or not, but
we need more elaborate methods to resolve this point.
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APPENDIX A: POWER-LAW STATISTICS AND MAXIMUM
LIKELIHOOD FITS FOR STATIONARY DATA

We review here the methods used to fit the power-law
distributions that closely follow the methodology exposed
in Ref. [30]. This methodology applies to stationary data.
Taking the logarithm of the probability density of a power-law
random variable, we obtain log[p(x)] = −α log(x) + log(a).
The histogram of the power law therefore presents an affine
relation in a log-log plot. For this reason, power laws in
empirical data are often studied by plotting the logarithm of

the histogram as a function of the logarithm of the values
of the random variable and doing a linear regression to fit
an affine line to through the data points (usually using a
least-squares algorithm). This method dates back to Pareto
in the 19th century (see e.g., Ref. [72]). The evaluated point
x̂min corresponding to the point where the data start having
a power-law distribution is mostly evaluated visually, but
this method is very sensitive to noise (see, e.g., Ref. [73]
and references herein). The maximum likelihood estimator
of the exponent parameter α corresponding to n data points
xi � xmin is

α̂ = 1 + n

(
n∑

i=1

log
xi

xmin

)−1

.

The log-likelihood of the data for the estimated parameter
value is as follows:

L(α̂|X) = n log

(
α̂ − 1

xmin

)
− α̂

n∑
i=1

log

(
xi

xmin

)
.

The parameter x̂min is evaluated then by minimizing the
Kolmogorov-Smirnov distance:

KS = max
x�xmin

|S(x) − P̂ (x)|,

where S(x) is the cumulative distribution function (CDF) of
the data and P̂ (x) is the CDF of the theoretical distribution
being fitted for the parameter that best fits the data for
x � xmin), as proposed by Clauset and colleagues in Ref.
[74]. In order to quantify the accuracy of the fit, we use a
standard goodness-of-fit test which generates a p-value. This
quantity characterizes the likelihood of obtaining a fit as good
or better than that observed if the hypothesized distribution is
correct. This method involves sampling the fitted distribution
to generate artificial data sets of size n and then calculating the
Kolmogorov-Smirnov distance between each data set and the
fitted distribution, producing the distribution of Kolmogorov-
Smirnov distances expected if the fitted distribution is the true
distribution of the data. A p-value is then calculated as the
proportion of artificial data showing a poorer fit than fitting the
observed data set. When this value is close to 1, the data set
can be considered to be drawn from the fitted distribution, and,
if not, the hypothesis might be rejected. The smallest p-values
often considered to validate the statistical test are taken
between 0.1 and 0.01. These values are computed following
the method described in Ref. [30], which in particular involves
generating artificial samples through a Monte Carlo procedure.

These methods, very efficient for stationary data, fail to
evaluate the tails of nonstationary data as is the case for
neuronal data. A weighted Kolmogorov-Smirnov test with
a refined goodness-of-fit estimate is valid up to extreme
tails [75].

APPENDIX B: SUBSAMPLING EFFECTS

Of course, any analysis of finite sequences of data is subject
to subsampling effects. While these may be neglected for
light-tailed data, they become prominent when it comes to
assessing possible slow decay of the tails of a statistical sample
distribution. These effects were discussed in detail in a number
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FIG. 6. Subsampling effects. Statistics for a randomly extracted subset of neurons of size n = 125,250,500, among 1000 neurons whose
dynamics is described by Brunel’s model. Theoretical power laws with critical exponents are displayed with black dashed lines.

of contributions. In the context of neuronal avalanches, these
effects were characterized in Ref. [76], and the results show
indeed a modification of the slope with subsampling, together
with exponential cutoffs pushed to larger sizes as sampling
becomes finer.

We have confirmed these results in our own data. In Fig. 6,
we have computed the distribution of avalanche size and
duration when considering only a fraction of the neurons for
the statistics. In detail, we have simulated the Brunel model
[27] with N = 1000. This yields a raster plot, from which
we have extracted a randomly chosen subset of n neurons,
with n = N/k for k ∈ {2,4,8}. We indeed observed that an
exponential cutoff is shifted towards larger sizes and slopes
increase with the subsampling ratio k.

APPENDIX C: BRUNEL’S MODEL

In our simulations, we have used the neuronal network
model introduced by Brunel [27] and have referred to the
different dynamical regimes of this system. We review here
the model, provide all parameters used in our simulations, and
show that the conclusions drawn in one example of the SI
state are valid for all parameters tested within this regime.
The model describes the dynamics of N integrate-and-fire
neurons, 80% of which are excitatory and the others inhibitory.
In the model, it is assumed that each neuron receives C = εN

randomly chosen connections, that are assumed to uniformly
arise from the excitatory and the inhibitory population, thus
80% of the incoming connections to any cell come from the
excitatory population. The network is assumed to be sparsely
connected, thus ε 	 1. The depolarization vi of neuron i at
the soma satisfies the equation:

τ
dvi

dt
= −vi + RIi(t),

where Ii(t) is the total current reaching the soma at time t .
These currents arrive from the synapses made with other cells
within the network, as well as from connections to neurons
outside the network. It is assumed that each neuron receives
Cext connections to and from excitatory neurons outside the
network and that these synapses are activated by independent
Poisson processes with rate νext. The current receives by neuron

i is thus the sum:

RIi(t) = τ

C+Cext∑
j=1

Jij

∑
k

δ
(
t − t kj − D

)
,

where the sum is taken over all synapses, Jij are the synaptic ef-
ficacies, t kj are the spike times at synapse j of neuron i, and D is
the typical transmission delay, considered homogeneous at all
synapses for simplicity. In order to simplify further the model,
it is assumed that Jij = J > 0 for all excitatory synapses,
and Jij = −gJ < 0 for inhibitory synapses. The parameter g

is relevant in that it controls the balance between excitation
and inhibition: If g < 4, then the network is dominated
by excitation, and otherwise it is dominated by inhibition.
The neuron i fires an action potential when vi reaches a
fixed threshold θ , and the depolarization of neuron i is
instantaneously reset to a fixed value Vr where it remains fixed
during a refractory period τrp (during this period, the neuron is
insensitive to any stimulation). An important parameter is the
ratio between the rate of external input νext and the quantity
denoted νthresh corresponding to the minimal frequency that
can drive one neuron, disconnected from the network, to fire
an action potential: νthresh = θ

0.8Jτ
(the coefficient 0.8 in that

formula corresponds to the fraction of excitatory neurons).
In this model, the parameters that are kept free are the

balance between excitation and inhibition g and the external
firing rate νext. All other parameters are chosen as in Table I
using a mean-field analysis together with a diffusion approxi-
mation, the authors find that all neurons are independent point
process driven by a common rate ν(t) given by a self-consistent
equation. Heuristically, during the time interval [t,t + dt], the
probability for any given to spike is given by ν(t) dt , and
the realization of this random variable are independent in the
different neurons. When the rate ν(t) depends on time, neurons
thus show a level of synchrony, and when ν(t) is constant, the
regime is called asynchronous, in the parlance of Ref. [27]. In
that paper, an analysis of the self-consistent rate equation in

TABLE I. Parameters used in all simulations of Brunel’s model,
as in Ref. [27].

ε D J τrp θ Vr

0.1 1.8 ms 0.2 mV 2 ms 20 mV 10 mV
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FIG. 7. Avalanche statistics for the Brunel model with randomly chosen parameters within the SI regime.

the mean-field limit led to the identification of several regimes
that are depicted in Fig. 7:

(i) The AI state in which ν(t) converges towards a strictly
positive constant value, which occurs when the excitatory
external inputs are sufficiently large (νext > νthresh) and when
inhibition dominates excitation.

(ii) The SR regime corresponds to a state in which ν(t) is a
periodic function of time. This regimes arises in the excitation
dominated regime, and the oscillation frequency is controlled
essentially by the transmission delay D and the refractory
period τrp (approximately varying as τrp/D). The transition
thus occurs close from the line g = 4.

(iii) The SI regime occurs essentially in the inhibition-
dominated regime when the input are not sufficient to
drive the network to a sustained firing state, i.e., when
νext < νthresh.

We have reproduced in Fig. 7 the bifurcation diagram [[27],
Fig. 2(b)] with the bifurcation lines among the AI, SI, and SR
states. Within the SI state, we have been randomly drawing
30 parameter points and analyzed the avalanches arising for
these parameters. We have found that all regimes show a very
clear power-law distribution of avalanche size and duration
with exponents consistent with the exponents −1.5 and −2
predicted by the theory.

(a) (b)

FIG. 8. Relaxation time of the Brunel model in the SI regime. (a) Typical trajectory (blue) perturbed by a constant input (red) into a SI
regime returns to the SI state after a few milliseconds. This is true over the whole SI domain (b): Relaxation times are on the order of a few
milliseconds and increase sharply close from the transition.
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APPENDIX D: NO SLOWING DOWN WITHIN THE
SI REGIME

In addition to the fact that the SI regime is away from
any transition between the different network regimes, we
confirmed that the system did not show the typical properties
of critical states. A number of criteria were proposed in the
Ising model to be characteristic of the critical regime. These
include the divergence of the correlation length and of the heat
capacity or magnetic susceptibility, which are all related to
long-range correlations between spins. Here, the absence of
the order parameter and spatial dimension prevents us from
using similar criteria to investigate the presence of critical
dynamics. However, a criterion independent of the definition
of an analogous of order parameter or magnetic susceptibility
is the critical slowing down occurring at phase transitions for
dynamical systems. This criterion states that the relaxation
time of the system, namely the time it takes for the system to
return to its stationary regime after a perturbation, diverges at
criticality.

In the present case, computing relaxation times is a
challenge since the system is not at an equilibrium but within a
chaotic regime, thus all perturbations produce massive changes
in the dynamics of the system. Following the methodology
developed in Refs. [77,78], we designed a numerical criterion
to evaluate relaxation time to the SI regime. That regime is
essentially defined by the alternation of periods of collective
activity followed by silences. We have thus perturbed the
system by adding a constant input within a short time window
[see Fig. 8(a)], which has the effect of switching the system
into an asynchronous irregular regime where the firing is
uninterrupted. As the perturbation stops, the system quickly
returns to an SI regime with alternations of silences and
collective bursts. An upper bound of the relaxation time can
thus be defined as the first time, after the perturbation has
stopped, at which the system is completely silent. We have
made extensive simulations within the SI regime to compute
the relaxation time and obtained that the system returns to
SI statistics after a few milliseconds after stimulation (on
the order of 2 ms). This time increases very fast close to
the SI-AI transition as expected from the theory, but within
the SI regime, the system did not show any indication of critical
slowing down.

APPENDIX E: DIVERSE REGIMES OF INDEPENDENT
PROCESSES

We have confirmed that the statistics of independent
Poisson processes with fluctuating instantaneous firing rates
produce avalanches with power-law distributions of avalanche
size and durations, consistent with our theory. To this purpose,
we have performed a similar analysis as in Fig. 2, replacing

FIG. 9. Avalanche statistics and shape collapses for independent
Poisson processes with rates given by a reflected Brownian motion.

Ornstein-Uhlenbeck firing rates with the positive part of a
Brownian motion reflected at ±1. This choice was motivated
by two constraints: The positive part was taken in order to
consider only positive firing rates for consistency, and the
reflection at ±1 was forced in order to prevent us from having
too-long excursions of the Brownian motion, so we can indeed
assess that the heavy tails of the avalanche distributions are
rather due to the statistical structure of the firing rather than
to very long excursions of the Brownian motion. The results
of the simulations are provided in Fig. 9. As in the case of the
positive part of the Ornstein-Uhlenbeck process, we find very
clear power-law distributions of avalanche size and durations,
with slopes consistent with our theory, and a very clear collapse
of the avalanche shapes.

We add that, beyond the collapse of the avalanche trajec-
tories, the shapes on these avalanche collapses may convey
important information, as noted and investigated in the context
of one-dimensional random walks [22,23]. We observe indeed
that the shape of the network-generated avalanches are not
similar to the shapes obtained in the Brownian or Ornstein-
Uhlenbeck cases and may similarly contain information that
goes beyond pure shape collapse reported in neural data [25].
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