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Geometric somersaults of a polymer chain through cyclic twisting motions
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This study explores the significance of geometric angle shifts, which we call geometric somersaults, arising
from cyclic twisting motions of a polymer chain. A five-bead polymer chain serves as a concise and minimal
model of a molecular shaft throughout this study. We first show that this polymer chain can change its orientation
about its longitudinal axis largely, e.g., 120◦, under conditions of zero total angular momentum by changing
the two dihedral angles in a cyclic manner. This phenomenon is an example of the so-called “falling cat”
phenomenon, where a falling cat undergoes a geometric somersault by changing its body shape under conditions
of zero total angular momentum. We then extend the geometric somersault of the polymer chain to a noisy and
viscous environment, where the polymer chain is steered by external driving forces. This extension shows that
the polymer chain can achieve an orientation change keeping its total angular momentum and total external
torque fluctuating around zero in a noisy and viscous environment. As an application, we argue that the geometric
somersault of the polymer chain by 120◦ may serve as a prototypical and coarse-grained model for the rotary
motion of the central shaft of ATP synthase (FOF1-ATPase). This geometric somersault is in clear contrast to the
standard picture for the rotary motion of the central shaft as a rigid body, which generally incurs nonzero total
angular momentum and nonzero total external torque. The power profile of the geometric somersault implies a
preliminary mechanism for elastic power transmission. The results of this study may be of fundamental interest
in twisting and rotary motions of biomolecules.
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I. INTRODUCTION

Rotary motions play important roles in biological functions
of molecular motors. Examples include the rotary motions of
the central shaft of ATP synthase [1–5] and those of flagellar
filaments driven by flagellar motors [6–9]. Molecular motors
generally consist of protein subunits that are relatively flexible
in comparison to their mechanical loads and thermal noise, yet
their functions are highly robust and efficient [10–12]. Hence,
the mechanisms for the rotary motions of molecular motors
could be very different from the rotations of rigid bodies that
we generally expect for macroscopic man-made motors.

This study is concerned with a possible mechanism through
which biomolecules exploit their flexibility in achieving rotary
motions. Specifically, we focus on the kinematic coupling
between shape deformations and rotary motions of a polymer
chain. Using such kinematic coupling, a polymer chain can
indeed change its orientation even under conditions of zero
total angular momentum. This is known as the so-called
“falling cat” phenomenon, where a falling cat, starting from
an upside-down attitude, can change its orientation in the air
and is able to land on the ground with its legs down [13,14].
Throughout this process, the total angular momentum of the
cat is essentially zero. This phenomenon implies that shape
deformations alone are enough to induce an orientation change
without causing total angular momentum or total external
torque.

In the literature of molecular vibrations, the falling cat
phenomenon is associated with the coupling between vi-
brations and rotations or the Coriolis coupling [15]. This
coupling is indeed often disregarded approximately based on
the so-called Eckart conditions [16–18]. Examples include
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normal-mode analysis of polyatomic molecules [19], clus-
ters [20], and proteins [21–23], the method of reaction-path
Hamiltonian [24,25], constrained simulations of peptides
[26–28], and principal-component analysis of proteins [29,30].
While the approximate separation of vibrations and rotations
is effective for small amplitude motions of molecules, the
coupling between vibrations and rotations may have non-
negligible effect in large-amplitude motions. Rather, such cou-
pling could play active roles in the functions of biomolecules,
as in the somersault of a falling cat.

The geometric framework for describing the falling cat
phenomenon has been developed for the past few decades
[31–35]. Guichardet [36], Tachibana and Iwai [37], and
Iwai [38] developed a geometric setting for describing the
coupling between vibrations and rotations in polyatomic
molecules. Littlejohn and Reinsch [39] formulated the gauge
fields responsible for this coupling in the n-body problem. Dy-
namical roles of the gauge fields and associated non-Euclidean
geometry have been explored in structural transitions of
small clusters and molecules in vacuum [40–44] and in a
random environment [45]. Moreover, mathematically similar
gauge fields arise in the swimming of microorganisms at
low Reynolds numbers [46–48], in the swimming in curved
space-time [49], in robotic locomotion [50–53], and in the
locomotion in granular media [54]. Given the recent progress
in these geometric methods, it is of fundamental interest to ex-
plore the roles of the gauge fields responsible for the coupling
between shape deformations and rotary motions in biological
functions of molecular motors. Although one can hardly expect
that the total angular momentum of a biomolecule is conserved
to zero in the noisy and viscous environment, it may still be
possible that the total angular momentum is kept fluctuating
around zero. In such a situation, the gauge fields responsible
for the coupling between vibrations and rotations could play a
dominant role.
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Among molecular motors, FOF1-ATPase has been attracting
significant interest as a ubiquitous and conserved rotary motor
in biological systems [1–5]. This motor consists mainly of
two domains, the membrane-embedded FO domain and water-
soluble F1 domain. These two domains are connected with a
central rotary shaft. The FO and F1 domains drive the rotary
motions of the central shaft in opposite directions, which are
associated with reverse functions: Hydrolysis of ATP in the F1

domain induces a stepwise rotary motion of the central shaft
by 120◦ in a counterclockwise manner (when observed from
the membrane side), which is in turn supposed to transmit
energy to the FO domain to translocate protons [55]. This
stepwise rotary motion by 120◦ is known to consist of two
substeps [5,56,57]. On the other hand, proton-motive force
at FO domain induces a rotary motion of the central shaft
in a clockwise manner (when observed from the membrane
side) [55,58–60], which is in turn supposed to transmit energy
to the F1 domain to synthesize ATP [61].

The rotary motion of the central shaft may generally suggest
a “rigid-body rotation,” in which the effect of shape deforma-
tion is negligible and the rotary motion is characterized by a
single angular variable about a single axis. However, recent
studies have indicated possible difficulties with the rigid-
body rotation and rather indicated the significance of twist
deformations of the central shaft: For one thing, the mismatch
between the rotational symmetries of FO and F1 domains
suggests the need for the mechanism of an elastic power
transmission between these two domains [55,60,62–64], in
which the central shaft twists and stores energy temporarily
to smooth out the movement of the motor. Based on this
indication, recent experiments [62,63] and atomistic numerical
simulations [64] identified torsionally compliant parts of the
central shaft. For another, since the central shaft is intrinsically
bent and is situated in a narrow cavity of the molecular motor,
a rigid-body rotation of the central shaft may face severe steric
hindrances due to the surrounding subunits. Thus, Kutzner
et al. [65] introduced a novel simulation method of flexible
axis rotation, where the central shaft is subdivided into rotary
slabs and adopts to steric restraints flexibly like a “flexible
pipe cleaner.” They showed that the flexible axis rotation
of the central shaft requires less amount of total torque and
mechanical work than the rigid-body rotation in the narrow
cavity of molecular motor.

In this study, we highlight the kinematic coupling between
twisting motions and rotations of a five-bead polymer chain,
with the expectation that such coupling might play an essential
role in the rotary motions of the central shaft of FOF1-ATPase.
We first show that a cyclic twisting motion of the five-bead
polymer chain can give rise to a stepwise angle shift by
120◦ about its longitudinal axis under conditions of zero total
angular momentum. This is a manifestation of the falling cat
phenomenon, and we call it a geometric somersault of the
polymer chain. We then extend this geometric somersault
to a noisy and viscous environment using the Langevin
dynamics, where the polymer chain is steered by external
forces and achieves an angle shift by 120◦ with keeping
total angular momentum and total external torque fluctuating
around zero. This is in clear contrast to the rigid-body rotation
of the polymer chain, which inevitably incurs nonzero total
angular momentum and nonzero total external torque. We
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FIG. 1. (a) Schematic illustration of the five-bead polymer chain.
This chain consists of five mass points, i.e., beads, of equal mass
connected with four bonds. The chain has three bending angles
θ1, θ2, and θ3 and two dihedral angles φ1 and φ2. The body-fixed
frame R ≡ (x̂, ŷ, ẑ) is located at the first bead. (b) Four typical
cyclic paths of interest in this study, paths (i)–(iv), in the space
of dihedral angles φ1 and φ2. All the four paths are circular in
the space of dihedral angles, starting from and returning to the
origin (φ1,φ2) = (0◦,0◦), representing cyclic twisting motions of the
five-bead polymer chain. These paths are parametrized by Eqs. (26)
and (27), where σ determines the center and the radius of the circular
paths. Typical values of σ in this study are σ = −70.88◦ for paths (i)
and (ii), and σ = 70.88◦ for paths (iii) and (iv).

finally discuss the relevance of the geometric somersault of
the five-bead polymer chain as a prototypical model of the
rotary motion of the central shaft of the FOF1-ATPase. The
model suggests a preliminary mechanism for the elastic power
transmission, where the polymer chain temporarily stores and
accumulates the input energy in the form of twisting potential
energy and releases it later.

This paper is organized as follows. In Sec. II, we present
a gauge-theoretical framework for the computation of geo-
metric somersault of the five-bead polymer chain in vacuum.
Section III extends the geometric somersault to a noisy and vis-
cous environment using the Langevin dynamics, and compares
it with a rigid-body rotation of the five-bead polymer chain.
We finally discuss implications of the geometric somersault
of the five-bead polymer chain for the rotary motion of the
central shaft of FOF1-ATPase. Section IV concludes this paper
with some remarks on future studies.

II. GEOMETRIC SOMERSAULTS OF A FIVE-BEAD
POLYMER CHAIN IN VACUUM

This section scrutinizes the geometric angle shifts, i.e.,
geometric somersaults, arising from torsional kinematics of
a five-bead polymer chain in vacuum. We show that a cyclic
twisting motion of the five-bead polymer chain can give rise
to a geometric angle shift by 120◦ about its longitudinal axis
under conditions of zero total angular momentum.

A. Model and coordinates

A five-bead polymer chain serves as a concise model of a
molecular shaft throughout this study. Configuration of this
model is shown in Fig. 1(a). This model consists of five
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mass points, i.e., beads, of equal mass, mi = m (i = 1, . . . ,5),
connected with four bonds. In the present section (Sec. II),
the length of the four bonds is fixed to a. Thus, the shape of
the five-bead polymer chain is parametrized by three bending
angles θ1, θ2, and θ3, and two dihedral angles, φ1 and φ2, in
the following manner [66,67].

We first introduce a body-fixed frame, which specifies
instantaneous orientation of the system. The body-fixed frame
is represented by a three-dimensional orthogonal matrix R ∈
SO(3), whose three columns consist of a triplet of orthogonal
unit vectors R ≡ (x̂, ŷ,ẑ) [see Fig. 1(a)]. Let the position of
ith (i = 1, . . . ,5) bead with respect to the body-fixed frame be
represented by the three-dimensional vector r i = (xi,yi,zi)T .
We assume that the origin of the body-fixed frame coincides
with the first bead. Thus, r1 = (0,0,0)T . The ẑ axis of the
body-fixed frame R is set parallel to the vector connecting the
first and the second beads r2 − r1. The ŷ axis is defined to
be perpendicular to the ẑ axis and to lie within the plane
spanned by the first three beads at r1, r2, and r3. The x̂
axis is defined as x̂ = ŷ × ẑ. Thus, the position of the second
bead with respect to the body-fixed frame R is represented by
r2 = (0,0,a)T . Hereafter, T on a vector or a matrix represents
the transposition.

The positions of the third, fourth, and fifth beads, r3, r4,
and r5, are represented as

r3 = r2 + R2
3(0◦,θ1)a, (1)

r4 = r3 + R2
3(0◦,θ1)R3

4(φ1,θ2)a, (2)

r5 = r4 + R2
3(0◦,θ1)R3

4(φ1,θ2)R4
5(φ2,θ3)a, (3)

where we have introduced the matrices

Ri−1
i (φi−3,θi−2) ≡

⎛
⎝cos φi−3 − sin φi−3 0

sin φi−3 cos φi−3 0
0 0 1

⎞
⎠

×
⎛
⎝1 0 0

0 cos θi−2 − sin θi−2

0 sin θi−2 cos θi−2

⎞
⎠

(i = 3,4,5), (4)

with φ0 ≡ 0◦, and a vector a ≡ (0,0,a)T . Note that θi (i =
1,2,3) is the bending angle of the polymer chain at (i + 1)th
bead, and φi (i = 1,2) is the dihedral angle between the
planes spanned by the three beads at {r i ,r i+1,r i+2} and at
{r i+1,r i+2,r i+3}. In this study, we assume that the ranges of
these angles are

0◦ � θi < 180◦ (i = 1,2,3), (5)

− 180◦ � φi < 180◦ (i = 1,2). (6)

A positive value of φi characterizes a right-handed twist, while
a negative value of φi characterizes a left-handed twist.

In the present section (Sec. II), we fix all the bending
angles to θ1 = θ2 = θ3 = 30◦, in order to reduce the degree of
freedom for simplicity and to focus on the torsional kinematics
of the model. The reason for the nonzero bending angles is
that the central shaft of the ATP synthase (FOF1-ATPase) is
intrinsically bent [2,64]. In addition, it is necessary to avoid

zero bending angles in order to define the dihedral angles
uniquely. Thus, only the two dihedral angles, φ1 and φ2,
determine the shape of the system uniquely in Sec. II.

It is convenient to introduce a two-dimensional space of φ1

and φ2 as shown in Fig. 1(b). This two-dimensional space of
dihedral angles serves as a shape space in the sense that a point
in this space specifies the shape of the five-bead polymer chain
uniquely. A closed path in this shape space represents a cyclic
twisting motion of the system. Figure 1(b) shows four typical
cyclic paths of interest in this study, (i)–(iv). All the four paths
are circular in the space of dihedral angles, starting from and
returning to the origin, (φ1,φ2) = (0◦,0◦), which corresponds
to the planar and uniformly bent conformation of the polymer
chain as shown in Fig. 1(a). The parameter σ determines the
center and the radius of the circular paths. Paths (i) and (ii)
follow the same circular orbit in opposite directions. Paths
(iii) and (iv) follow as well. In the following subsections,
we consider geometric angle shifts of the polymer chain
arising from the cyclic twisting motions represented by these
paths.

B. Gauge-theoretical description of the coupling between
twisting motions and rotations

This section describes the geometric angle shifts of the
five-bead polymer chain, which are characterized by the
movements of the body-fixed frame R, arising from twisting
motions due to dihedral angles φ1 and φ2 under conditions of
zero total angular momentum. See Ref. [39] for more general
and systematic account for the gauge fields responsible for the
coupling between internal motions and rotations.

We denote the position of ith bead of the polymer chain with
respect to the space-fixed frame by a three-dimensional column
vector rsi = (xsi,ysi ,zsi)T (i = 1, . . . ,5). The subscript s of
rsi indicates the vector with respect to the space-fixed frame,
whereas the vector r i without the subscript s, such as the
one appeared in Sec. II A, represents the position vector with
respect to the body-fixed frame R. Hereafter, we adopt a similar
convention for the subscript s, indicating a variable with
respect to the space-fixed frame [39]. The relation between
rsi and r i is

rsi − cs = R(r i − c) (i = 1, . . . ,5), (7)

where

cs =
∑5

i=1 mi rsi∑5
i=1 mi

, c =
∑5

i=1 mi r i∑5
i=1 mi

. (8)

The vector cs represents the center of mass of the system
with respect to the space-fixed frame, while the vector c
represents the center of mass of the system with respect to
the body-fixed frame. Throughout Sec. II, we assume that the
total linear momentum of the polymer chain is conserved to
zero, assuming that the system is in vacuum and is isolated.
Thus, cs is independent of time and can be set to the origin of
the space-fixed frame, i.e., cs = 0, without loss of generality.

In order to separate the translational degrees of freedom
from the overall system, we employ the mass-weighted Jacobi
coordinates with respect to the space-fixed frame {ρsi}, which
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are defined as [68]

ρsi = √
μi

(∑i
k=1 mk rsk∑i

k=1 mk

− rs,i+1

)
(i = 1, . . . ,4), (9)

where μi are the reduced masses defined by

μi = mi+1
∑i

k=1 mk∑i+1
k=1 mk

(i = 1, . . . ,4). (10)

The mass-weighted Jacobi coordinates with respect to the
body-fixed frame {ρi} are determined from {r i} in the same
manner as Eq. (9), and are related to {ρsi} in a similar manner
to Eq. (7):

ρsi = Rρi(φ1,φ2) (i = 1, . . . ,4). (11)

Note that {ρi} are the functions of only dihedral angles φ1 and
φ2 since all the bending angles are assumed to be constant as
noted in Sec. II A, while {ρsi} depend on both the dihedral
angles φ1 and φ2 and the body-fixed frame R.

Differentiation of Eq. (11) with respect to time gives

ρ̇si = Ṙρi + R
2∑

μ=1

∂ρi

∂φμ

φ̇μ. (12)

Hereafter, a dot over a variable represents the time derivative.
Total angular momentum of the system with respect to the
space-fixed frame Ls is

Ls =
4∑

i=1

ρsi × ρ̇si . (13)

Using Eqs. (11) and (12), total angular momentum with respect
to the body-fixed frame L = RT Ls is written as

L =
4∑

i=1

ρi × (ω × ρi) +
2∑

μ=1

4∑
i=1

ρi × ∂ρi

∂φμ

φ̇μ, (14)

where ω is the angular velocity vector of the body-fixed
frame with respect to the body-fixed frame itself. The three-
dimensional vector ω is related to the angular velocity matrix
� as

� ≡ RT Ṙ =
⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ ⇔ ω ≡

⎛
⎝ωx

ωy

ωz

⎞
⎠. (15)

Equation (14) can be written more compactly as

L = M

⎛
⎝ω +

2∑
μ=1

Aμφ̇μ

⎞
⎠, (16)

where M is the moment-of-inertia tensor with respect to the
body-fixed frame, whose components are

Mαβ =
4∑

i=1

[(ρi · ρi)δαβ − ρiαρiβ], (17)

where α and β specify the axes of the body-fixed frame (α,β =
x,y,z), and δαβ is the Kronecker delta. Aμ in Eq. (16) is the
gauge potential [39] defined by

Aμ = M−1

(
4∑

i=1

ρi × ∂ρi

∂φμ

)
. (18)

The corresponding curvature form, which is also referred to as
Coriolis tensor [39], is given by

Bμν = ∂ Aν

∂φμ

− ∂ Aμ

∂φν

− Aμ × Aν . (19)

Under conditions of zero total angular momentum, Ls =
L = 0, Eq. (16) reduces to

ω = −A1φ̇1 − A2φ̇2. (20)

This equation determines the instantaneous angular velocity
of the body-fixed frame ω arising from the movements of
dihedral angles φ̇1 and φ̇2 under conditions of zero total angular
momentum. That is, for a given time evolution of φ̇1(t) and
φ̇2(t), Eq. (20) determines the corresponding evolution of
ω(t) and its matrix representation �(t) [see Eq. (15)] under
conditions of zero total angular momentum. Using this �(t),
one can compute the movement of the body-fixed frame under
conditions of zero total angular momentum by solving the
differential equation

Ṙ = R�(t). (21)

The solution of Eq. (21) is expressed as a time- or path-ordered
product as

R(t) = R0T exp

[∫ t

0
�(s)ds

]
(22)

= R0P exp

[∫
C

(−A1dφ1 − A2dφ2)

]
, (23)

where R0 is the initial body-fixed frame, and T and P represent
time and path orderings. In Eq. (23), C on the integral sign
represents a path in the space of dihedral angles such as the
one in Fig. 1(b), and A1 and A2 are the matrix representations
of A1 and A2. The relation between Ai and Ai (i = 1,2) is the
same as the one between ω and � in Eq. (15).

In this study, we compute the movements of the body-fixed
frame R using quaternions [69], instead of solving Eq. (21)
directly. Using quaternions (q0,q1,q2,q3), one can express the
transpose of the body-fixed frame RT as

RT =
⎛
⎝q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q2

0 − q2
1 − q2

2 + q2
3

⎞
⎠. (24)
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FIG. 2. Upper three panels show the fields of the gauge potentials of the five-bead polymer chain (a) Ax , (b) Ay , and (c) Az in the space of

two dihedral angles φ1 and φ2. Lower three panels show the contour plots of the corresponding components of the curvature form (d) B12,x , (e)
B12,y , and (f) B12,z.

For a given time evolution of angular velocity ω(t) =
[ωx(t),ωy(t),ωz(t)]T , one can compute the corresponding
time evolution of quaternions by integrating the differential
equations⎛

⎜⎜⎝
q̇0

q̇1

q̇2

q̇3

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
ωx(t)
ωy(t)
ωz(t)

⎞
⎟⎟⎠. (25)

Based on thus computed time evolution of quaternions
[q0(t),q1(t),q2(t),q3(t)], one can reconstruct the evolution of
the body-fixed frame R(t) through Eq. (24), which character-
izes the geometric angle shifts.

C. Numerical implementation and results: Geometric angle
shifts arising from cyclic twisting motions of a polymer chain

We numerically implement here the procedures introduced
in Secs. II A and II B, and present the results for the geometric
angle shifts of the five-bead polymer chain under conditions
of zero total angular momentum. In the procedures above,
gauge potentials Aμ (μ = 1,2) in Eq. (18) play an essential
role for the computation of geometric angle shifts. Indeed,
computation of the gauge potentials A1 and A2 for the
five-bead polymer chain is too lengthy to be done by hand

calculations. We thus used the Mathematica software [70] to
obtain analytic expressions for the gauge potentials. While
the resulted analytic expressions are also too lengthy, it is
insightful to visualize the resulted gauge potentials A1 and A2

as fields in the space of dihedral angles in the following manner.
Let the three components of the gauge potentials defined in

Eq. (18) be A1 = (A1x,A1y,A1z)T and A2 = (A2x,A2y,A2z)T ,
where the subscripts 1 and 2 specify the two dihedral angles
φ1 and φ2, whereas the subscripts x, y, and z specify the x̂,
ŷ, and ẑ axes of the body-fixed frame introduced in Sec. II A
[see Fig. 1(a)]. By regrouping these components, we define
two-dimensional vector fields as Ax ≡ (A1x,A2x)T , Ay ≡
(A1y,A2y)T , and Az ≡ (A1z,A2z)T for the sake of visualizing
the gauge potentials as the fields in the space of dihedral
angles. As Eq. (20) indicates, Aα ≡ (A1α,A2α)T (α = x,y,z)
determines the instantaneous angular velocity of the body-
fixed frame about its α̂ axis (α̂ = x̂, ŷ,ẑ) under conditions of
zero total angular momentum.

Upper three panels of Fig. 2 show thus defined fields of
gauge potentials (a) Ax , (b) Ay , and (c) Az in the space of
dihedral angles. As Eq. (23) indicates, path-ordered integral
of these gauge potentials along a path in the space of dihedral
angles determines the movement of the body-fixed frame
under conditions of zero total angular momentum. Lower three
panels of Fig. 2 show the contour plots of the curvature form
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B12 ≡ (B12,x,B12,y ,B12,z)T in Eq. (19) for (d) B12,x , (e) B12,y ,
and (f) B12,z. Note that these curvature forms characterize the
strength and sign of “vorticity” of the fields of gauge potentials
in Figs. 2(a)–2(c). One can find similar visualizations of vector
fields or curvature forms in the literature of swimming [48,52]
and robotics [53,54]. Intuitively, a cyclic path encircling a
region of large absolute value of the curvature form can give
rise to a large amount of geometric angle shift in the three-
dimensional physical space. According to Figs. 2(d)–2(f),
the curvature form of the gauge potentials tends to have
larger magnitudes in the first and third quadrants in the space
of dihedral angles as compared to the second and fourth
quadrants. We thus expect that a cyclic path encircling a region
in the first or the third quadrant, such as the paths in Fig. 1(b),
can induce a large amount of geometric angle shift in the
three-dimensional physical space.

Based on the above consideration, we examine the cir-
cular cyclic paths in the space of dihedral angles that are
parametrized as

φ1(t) = σ +
√

2|σ | cos(t + t0), (26)

φ2(t) = σ +
√

2|σ | sin(t + t0), (27)

where t is the parameter of the path and can be regarded as time,
and t0 = π/4 or 5π/4. (φ1,φ2) = (σ,σ ) is the center and

√
2|σ |

is the radius of the circular path. The paths in Fig. 1(b) are all of
this type. For example, path (i) in Fig. 1(b) starts from the origin
[φ1(0),φ2(0)] = (0◦,0◦) at t = 0 with t0 = π/4, and returns
to the origin at t = 2π after a left-handed cyclic revolution
mainly in the third quadrant of the space of dihedral angles. At
the origin, the five-bead polymer chain assumes a planar and
uniformly bent conformation since the chain has no torsion,
while at other points on the path, the polymer chain generally
assumes “twisted” out-of-plane conformations. Thus, a cyclic
revolution along the path of Eqs. (26) and (27) prescribes a
cyclic twisting motion of the five-bead polymer chain. Here,
recall that all bending angles of the polymer chain are fixed
to θ1 = θ2 = θ3 = 30◦ and all the bond lengths are fixed to a

throughout Sec. II as noted in Sec. II A. Since all the four paths
in Fig. 1(b) start from the origin [φ1(0),φ2(0)] = (0◦,0◦) at t =
0, we adopt t0 = π/4 for paths (i) and (ii), and t0 = 5π/4 for
paths (iii) and (iv). For paths (i) and (iii), t evolves positively,
while for paths (ii) and (iv), t evolves negatively.

Given a cyclic path in the space of dihedral angles [Eqs. (26)
and (27)], we now implement the corresponding movements of
the five-bead polymer chain in the three-dimensional physical
space, i.e., time evolution of rsi (i = 1, . . . ,5) in Eq. (7), under
conditions of zero total angular momentum. This is achieved
in the following steps that are based on the procedures in
Secs. II A and II B:

(1) At each time t , compute the coordinates of the five
beads with respect to the body-fixed frame r i(t) (i = 1, . . . ,5),
using the two dihedral angles φ1(t) and φ2(t) and the three
bending angles θ1 = θ2 = θ3 = 30◦ based on the procedure in
Sec. II A.

(2) Compute the center of mass of the system with respect
to the body-fixed frame at time t , c(t), based on Eq. (8),
using the coordinates of beads r i(t) (i = 1, . . . ,5), obtained in
Step 1.

(3) At each time t , compute the body-fixed frame R(t) by
integrating Eq. (25) along the path in the space of dihedral
angles [φ1(t),φ2(t)], where the angular velocity components
ωx(t), ωy(t), and ωz(t) are determined from φ̇1(t) and φ̇2(t)
via Eq. (20).

(4) After obtaining r i(t) in Step 1, c(t) in Step 2, and
R(t) in Step 3, transform r i(t) into rsi(t) through Eq. (7) with
cs = 0.
Steps 1–4 are repeated for each time step along the path in the
space of dihedral angles [φ1(t),φ2(t)]. In Step 3, we use the
leap-frog algorithm [69,71] to integrate Eq. (25). We set the
initial condition for the integration of the body-fixed frame R
in Step 3 as

q0 =
√

1

2
+

√
2

4
, q1 = −

√
1

2
−

√
2

4
, q2 = q3 = 0. (28)

With this initial condition, the longitudinal axis of the five-bead
polymer chain is aligned along the zs axis of the space-fixed
frame. In other words, the vector rs5 − rs1 as well as rs4 − rs2

is parallel to the zs axis of the space-fixed frame at the initial
configuration, where [φ1(0),φ2(0)] = (0◦,0◦).

Based on the above procedures, we compute a geometric
angle shift of the five-bead polymer chain in the three-
dimensional physical space under conditions of zero total
angular momentum. In this study, we specifically searched,
on a trial and error basis, for a cyclic path in the space of
dihedral angles in the form of Eqs. (26) and (27) that gives rise
to a geometric angle shift by 120◦ about the longitudinal axis.
Here, we judged the geometric angle shift by 120◦ in terms of
the 120◦ change in the orientation of the third (central) bead
rs3(t) with respect to the center of mass. We then found that the
cyclic path of Eqs. (26) and (27) with t0 = π/4, σ = −70.88◦,
and t changing from t = 0 to 2π , which is categorized as
path (i) in Fig. 1(b), achieves this goal. Figures 3(a) and 3(b)
show the snapshots of the five-bead polymer chain in the
three-dimensional physical space for the three repeats of this
cyclic path, i.e., from t = 0 to 6π . Figure 3(a) shows the
“top” view of the polymer chain observed from the positive zs

axis of the space-fixed frame. Figure 3(b) shows the “side”
view of the polymer chain observed from the negative ys

axis of the space-fixed frame. In each of Figs. 3(a) and 3(b),
the orthogonal frame on the left represents the orientation of
the space-fixed frame. The horizontal axis at the bottom of
Figs. 3(a) and 3(b) represents the corresponding evolution of
t . See Movie 1 in Supplemental Material [72] for the motion
of the polymer chain in Fig. 3.

We confirm from Figs. 3(a) and 3(b) that every time
when the system completes the cyclic twisting motion along
path (i) in Fig. 1(b) and returns to the origin (φ1,φ2) =
(0◦,0◦), the five-bead polymer chain recovers the same planar
and uniformly bent conformation. However, after this cyclic
twisting motion, the orientation of the system changes by
120◦ in a counterclockwise manner when viewed from the
positive zs axis of the space-fixed frame. (More rigorously,
our computation indicates that this angle shift by 120◦ is not
exactly about the zs axis but about a slightly shifted axis.
However, since the difference is almost imperceptible as in
Fig. 3, we ignore this difference throughout this study.) After
three repeats of the cyclic twisting motion, the system recovers
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FIG. 3. (a), (b) Geometric angle shifts, i.e., somersaults, of the five-bead polymer chain through cyclic twisting motions under conditions
of zero total angular momentum. The polymer chain repeats a cyclic twisting motion along the path parametrized by Eqs. (26) and (27) with
t0 = π/4 and σ = −70.88◦ [path (i) in Fig. 1(b)] for three times, i.e., from t = 0 to 6π . (a) Shows the snapshots of the system observed
from the positive zs axis of the space-fixed frame (top view) for every π/2 increment of t . (b) Shows the corresponding snapshots of the
system observed from the negative ys axis (side view). (c) Shows the projection of the corresponding trajectory of the third bead on the
xs-ys plane (green). Arrows represent the directions of the movement. The cross symbol (blue) at the origin (xs,ys) = (0,0) represents the
center of mass of the polymer chain, which is fixed throughout the process. Three filled circles (red) represent the starting and ending points
of each cyclic twisting motion, where t = 0, 2π, 4π, and 6π . See Movie 1 in Supplemental Material [72] for the motion of the polymer
chain.

the initial orientation in the three-dimensional physical space
[see the equivalence between the leftmost and rightmost
snapshots in Figs. 3(a) and 3(b)]. This orientation change under
conditions of zero total angular momentum is the geometric
angle shift, which is of major interest in this study. We call this
orientation change the geometric somersault in analogy with
the somersault of a falling cat [13,14].

The result of Fig. 3(b) indicates that the movement of the
third (central) bead of the polymer chain is confined in the
narrow vicinity of the xs-ys plane of the space-fixed frame,
where zs ≈ 0. We thus show in Fig. 3(c) the projection of the
trajectory of the third bead (green) rs3(t) onto the xs-ys plane of
the space-fixed frame. Arrows along the trajectory represent
the directions of the movement. The cross symbol (blue) at
the origin (xs,ys) = (0,0) represents the center of mass of the
polymer chain, which is fixed throughout the process. Three
filled circles (red) on the trajectory represent the starting and
ending points of each cycle, where t = 0, 2π, 4π, and 6π . The
trajectory in Fig. 3(c) possesses the threefold symmetry about
the center of mass of the overall system, which confirms the
geometric somersault by 120◦ for each cyclic twisting motion.
We again observe that this geometric somersault by 120◦ is in
a counterclockwise manner when viewed from the positive zs

axis. We also see that the third bead makes a small loop in the
connecting part of successive cycles.

For later discussion, we divide the single cycle of the
twisting motion along path (i) in Fig. 1(b) into four parts by
every π/2 increment of t . In the first part, which is from t = 0
to π/2 in Eqs. (26) and (27), the dihedral angle φ1 changes
largely in the negative direction, i.e., a left-handed twist arises
in φ1, while the change in φ2 is small. This is evident from
the geometry of path (i) in Fig. 1(b), and is also confirmed
in Fig. 3(b) by noting that φ1 and φ2 are the lower and upper
dihedral angles in the snapshots of Fig. 3(b). In the second
part, which is from t = π/2 to π , φ2 changes largely in the

negative direction, i.e., a left-handed twist arises in φ2, while
the change in φ1 is small. In the third part, which is from t = π

to 3π/2, the left-handed twist in φ1 reverts back to zero, while
the change in φ2 is small. In the fourth part, which is from
t = 3π/2 to 2π , the left-handed twist in φ2 reverts back to
zero, while the change in φ1 is small. Thus, the cyclic twisting
motion in Fig. 3 is essentially a twist propagation consisting of
the sequential generation and annihilation of left-handed twists
in the two dihedral angles. This type of twist propagation is of
great interest not only in the rotary shafts of molecular motors,
which will be discussed in Sec. III, but also in the helical
motions of flagellar filaments [6–9] and in the swimming of
helically shaped bacteria at low Reynolds number [73–75].

D. Relation between the directions of cyclic twisting motions
and geometric angle shifts

We investigate here the directions of geometric angle shifts
of the five-bead polymer chain for the four different cyclic
twisting motions prescribed as paths (i)–(iv) in Fig. 1(b). Path
(i) is the one that we have just scrutinized in Sec. II C. We
describe path (i) as “φ1(left) → φ2(left)” since the two dihedral
angles generate mainly left-handed twists in the order of φ1

and φ2, and then they revert back to zero in the same order for
path (i). We then describe the resulted geometric angle shift
of the polymer chain in the three-dimensional physical space
as “CCW, 120◦” since the system changes its orientation by
120◦ in the counterclockwise direction when viewed from the
positive zs axis. This is summarized in the row (i) of Table I.

Table I also summarizes the numerical results for other three
cyclic paths, paths (ii)–(iv), in Fig. 1(b) with σ = ±70.88◦. For
these three paths, initial configuration of the polymer chain in
the three-dimensional physical space is exactly the same as that
for path (i) in Sec. II C. When the system undergoes a cyclic
twisting motion along path (ii) in Fig. 1(b), which follows
the same path as path (i) in the reverse direction, the resulted
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TABLE I. Relation between the directions of cyclic twisting
motions and geometric angle shifts. The path numbers in the first
column, (i)–(iv), refer to those in Fig. 1(b).

Path Order of twists (handedness) Geometric angle shift

(i) φ1(left) → φ2(left) CCW, 120◦

(ii) φ2(left) → φ1(left) CW, 120◦

(iii) φ1(right) → φ2(right) CW, 120◦

(iv) φ2(right) → φ1(right) CCW, 120◦

geometric angle shift is 120◦ in the clockwise (CW) direction
when viewed from the positive zs axis. See Movie 2 in Sup-
plemental Material [72] for the motion of the polymer chain
for path (ii). Since the two dihedral angles generate mainly
left-handed twists in the order of φ2 and φ1, and then they
revert back to zero in the same order for path (ii), we describe
path (ii) as in the row (ii) of Table I. This result is understood
from the time- or path-ordered product in Eq. (22) or (23).
That is, along the reverse path in the space of dihedral angles,
the angular velocity �(t) or (−A1dφ1 − A2dφ2) in Eq. (22)
or (23) arises with the opposite sign and in the reverse order.

When the system undergoes a cyclic twisting motion along
path (iii) in Fig. 1(b), which is the circular path lying mainly in
the first quadrant of the space of dihedral angles, the resulted
geometric angle shift is 120◦ in the clockwise direction when
viewed from the positive zs axis. Since the two dihedral angles
generate mainly right-handed twists in the order of φ1 and φ2,
and then they revert back to zero in the same order for path (iii),
we describe path (iii) as in the row (iii) of Table I. This result
for path (iii), in comparison to path (i), may be understood
from the consideration that the motions for paths (i) and (iii)
should be mirror symmetric with respect to the ys-zs plane
because of the opposite handedness of the dihedral angles. In
addition, the opposite directionality of geometric somersaults
for paths (i) and (iii) should be related to the result that the
components of the curvature form plotted in Figs. 2(e) and 2(f)
have opposite signs in the third and first quadrants.

When the system undergoes a cyclic twisting motion along
path (iv), which follows the same path as path (iii) in the
reverse direction, the resulted geometric angle shift is 120◦ in
the counterclockwise direction when viewed from the positive
zs axis. Since the two dihedral angles generate mainly right-
handed twists in the order of φ2 and φ1, and then they revert
back to zero in the same order for path (iv), we describe path
(iv) as in the row (iv) of Table I. This result for path (iv), in
comparison to path (iii), can be understood similarly to the
relation between paths (i) and (ii) in terms of the sign and
order of angular velocity in Eq. (22) or (23).

The results in Table I are written concisely as

Sangle shift = −SorderShandedness, (29)

where Sangle shift = +1 for a counterclockwise geometric angle
shift, and Sangle shift = −1 for a clockwise geometric angle shift
when viewed from the positive zs axis. Sorder in Eq. (29) is
Sorder = +1 for the order of twists of φ1 → φ2, and Sorder = −1
for the order of twists of φ2 → φ1. Shandedness in Eq. (29) is
Shandedness = +1 when φ1 and φ2 generate mainly right-handed
twists [paths (iii) and (iv)], and Shandedness = −1 when φ1

and φ2 generate mainly left-handed twists [paths (i) and
(ii)]. Equation (29) clarifies how the sequential order and
the handedness of twists determine the direction of geometric
angle shifts, and may be useful for generalization to longer
polymer chains.

III. GEOMETRIC SOMERSAULTS OF A FIVE-BEAD
POLYMER CHAIN DRIVEN BY EXTERNAL FORCES

IN A NOISY AND VISCOUS ENVIRONMENT

In this section, we extend the model of geometric somer-
sault of the five-bead polymer chain presented in Sec. II to a
noisy and viscous environment using the Langevin dynamics.
In view of the fact that biomolecules often achieve their
functions through the interactions with other biomolecules or
subunits, we introduce here time-dependent external forces
that drive the geometric somersault of the five-bead polymer
chain in a noisy and viscous environment. While the geometric
somersault could be of fundamental interest in twisting and
rotary motions of chainlike systems as noted at the end of
Sec. II C, we argue here that the model presented in this section
may serve as a prototypical and highly coarse-grained model
of the rotary motion of the central shaft of FOF1-ATPase.

A. Internal potentials and a time-dependent external potential

The previous section (Sec. II) has focused on the
kinematics of the five-bead polymer chain, where the driving
forces mediating the cyclic twisting motions have not been
specified. In reality, on the other hand, biomolecules usually
achieve their functions through the interactions with other
biomolecules or subunits. In the case of FOF1-ATPase, for
example, the rotary motion of the central shaft is mediated
by the well-coordinated interactions with other surrounding
subunits [4,55,59,60,64,76,77]. This section thus incorporates
a time-dependent external potential function that steers
the geometric somersault of the five-bead polymer chain
preventing the diffusion in the Brownian motion. Forces
arising from this external potential function may be regarded
as a prototypical model of the forces exerted on the central
rotary shaft from the surrounding subunits in FOF1-ATPase as
will be discussed in Sec. III E.

We first introduce internal potential functions for bonding,
bending, and twisting of the five-bead polymer chain in order
to model the elasticity of biomolecules. Potential function for
bonding is given by

Vbond = 1

2a2
kbond

4∑
i=1

(|rs(i+1) − rsi | − a)2, (30)

where kbond is the force constant for bonding, rsi and rs(i+1)

are position vectors of ith and (i + 1)th beads with respect
to the space-fixed frame, and a is the equilibrium distance of
each bond. Potential function for bending is given by

Vbend = 1

2
kbend

3∑
i=1

(θi − θ0)2, (31)

where kbend is the force constant for bending, and θi is the
bending angle at bead i + 1 defined in Sec. II. The angle θ0 is
the equilibrium bending angle and is set to θ0 = 30◦, which is
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the same as the bending angle of the model in Sec. II. Potential
function for twisting is given by

Vtwist = 1

2
ktwist

2∑
i=1

φ2
i , (32)

where ktwist is the force constant for twisting, and φi (i = 1,2)
are the two dihedral angles defined in Sec. II. Thus, the total
internal potential of the polymer chain is

Vint = Vbond + Vbend + Vtwist. (33)

Equations (30)–(32) indicate that the equilibrium conforma-
tion of the five-bead polymer chain is the uniformly bent
conformation with no twist and no stretch, where θ1 = θ2 =
θ3 = 30◦ and φ1 = φ2 = 0◦. This equilibrium conformation
is the same as the conformation in Figs. 3(a) and 3(b) at
t = 0, 2π, 4π , and 6π .

In order to drive the movement of the five-bead polymer
chain, we introduce a time-dependent external potential

Vext({rsi},t) = 1

2a2
kext

5∑
i=1

[rsi − r̃si(t)]
2, (34)

where r̃si(t) represents a reference configuration of bead i

with respect to the space-fixed frame at time t . This potential
function Vext({rsi},t) induces the forces that attract the bead
i at rsi towards the reference configuration r̃si(t) at each
time t . The parameter kext determines the strength of the
attractive forces. This potential function steers the five-bead
polymer chain so that it follows the movement of reference
configuration r̃si(t) (i = 1, . . . ,5). In this section, we consider
the following two types of time evolutions of the reference
configuration r̃si(t) (i = 1, . . . ,5) for comparison:

(1) In the first type, the reference configuration r̃si(t) (i =
1, . . . ,5) exactly follows the movement of Fig. 3 from t = 0
to 2π , which achieves the geometric somersault by 120◦ about
the longitudinal axis through the cyclic twisting motion along
path (i) in Fig. 1(b). We refer to the motion of the polymer chain
induced by this movement of the reference configuration as the
geometric somersault.

(2) For comparison, we also consider the second type,
where the reference configuration r̃si(t) (i = 1, . . . ,5) un-
dergoes a rotation about the zs axis of the space-fixed
frame by 120◦ with a constant angular velocity with keeping
the uniformly bent equilibrium conformation determined by
Eqs. (30)–(32). We refer to the motion of the polymer chain
induced by this movement of the reference configuration as
the rigid-body rotation.

For both the geometric somersault and the rigid-body
rotation, we set the initial reference configuration r̃si(0) (i =
1, . . . ,5) to be the same. Thus, the final reference configuration
is also approximately the same for the two types of time
evolutions. Only the intermediate pathways of the reference
configuration are largely different for the two types of time
evolutions. Note that the center of mass of the reference
configuration is fixed at the origin of the space-fixed frame
for both the geometric somersault and the rigid-body rotation∑5

i=1 r̃si(t) = 0, where we have used the fact that the five
beads have the same mass. In the following, we make a
comparison between the geometric somersault and the rigid-
body rotation in the Langevin dynamics.

B. Langevin dynamics

We simulate the movements of the five-bead polymer chain
in a noisy and viscous environment using the method of
Langevin dynamics. Langevin equation for our model reads
as

m
d2rsi

dt2
= −ζ

d rsi

dt
− ∂Vint

∂ rsi

− ∂Vext

∂ rsi

+ ξ i(t), (35)

where ζ is the friction coefficient and ξ i(t) is a three-
dimensional vector representing the Gaussian white noise on
bead i satisfying

〈ξ i(t)〉 = 0, (36)

〈ξ i(t)ξ j (t ′)〉 = 6ζkBT δij δ(t − t ′), (37)

where kB is the Boltzmann’s constant, T is temperature, δij is
Kronecker’s delta, and δ(t − t ′) is Dirac’s delta function. After
the following scaling of variables,

rsi = a r̂si , t =
√

ma2

ε
t̂, ζ =

√
mε

a2
ζ̂ , (38)

kBT = εT̂ , Vint = εV̂int, Vext = εV̂ext, (39)

where r̂si , t̂ , ζ̂ , T̂ are dimensionless position vector, time,
friction coefficient, temperature, and ε is the unit of energy,
Eqs. (35)–(37) are put into the dimensionless forms

d2 r̂si

dt̂2
= −ζ̂

d r̂si

dt̂
− ∂V̂int

∂ r̂si

− ∂V̂ext

∂ r̂si

+ ξ̂ i(t) (40)

and

〈ξ̂ i(t̂)〉 = 0, (41)

〈ξ̂ i(t̂)ξ̂ j (t̂ ′)〉 = 6ζ̂ T̂ δij δ(t̂ − t̂ ′). (42)

We numerically solve this dimensionless Langevin equation
using the velocity version of Verlet algorithm [78,79].

We now make a crude estimate of the physical parameters
introduced above. We set the equilibrium bond distance
between beads in Eqs. (30) and (34) to be a = 2 nm, which
serves as the unit of length in this study. Thus, the radius
of each bead of the model is assumed to be 1 nm, and the
total length of the polymer chain is assumed to be about
10 nm. We also assume that the mass of each bead of the
polymer chain is m = 7 kDa. This is based on the fact that
the main subunit (γ subunit) of the central shaft of the
FOF1-ATPase has the mass of 35 kDa [80]. We set the unit
of energy to be ε = 1000 pNnm, and set the force constants
for bonding, bending, and external driving in Eqs. (30), (31),
and (34) to be kbond = kbend = kext = 20ε. These very large
force constants are essentially to fix the bonding and bending
degrees of freedom and to achieve precise steering of the
external forces. As for the force constant for twisting in
Eq. (32), we set ktwist = 0.1ε = 100 pNnm by noting that the
values of twisting force constants of the central shaft of FOF1-
ATPase are reported to be from about 10 to 1000 pNnm [64].
According to the Stokes law, the friction coefficient of water
for each bead of the present model, whose radius is 1 nm,
is estimated to be ζ = 6πη = 1.9 × 10−11 kg s−1, where η =
1.0 × 10−3 Pa s is the dynamic viscosity of water. On the other
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(a) Geometric somersault

t = 0.13636 ns t = 0.95452 ns

t = 0.13636 ns t = 0.95452 ns

(b) Rigid-body rotation
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FIG. 4. Time evolutions (snapshots) of the polymer chain in
the Langevin dynamics observed from the negative ys axis of the
space-fixed frame for the (a) geometric somersault and (b) rigid-body
rotation. See Movies 3 and 4 in Supplemental Material [72] for
the (a) geometric somersault (Movie 3) and (b) rigid-body rotation
(Movie 4).

hand, the unit of friction coefficient in Eq. (38) is
√

mε/a2 =
1.7 × 10−12 kg s−1. Thus, we set the dimensionless friction
coefficient to be ζ̂ = ζ/

√
mε/a2 = 11. According to Eq. (38),

the unit of time is
√

ma2/ε = 6.818 ps. We set the temperature
to be T = 300 K, which corresponds to the dimensionless
temperature of T̂ = kBT/ε = 0.0041.

C. Comparison between geometric somersault and rigid-body
rotation: Angular momentum and external torque profiles

We present here the results of the Langevin dynamics of the
five-bead polymer chain, and highlight the difference between
the geometric somersault and the rigid-body rotation defined
in Sec. III A. In the Langevin dynamics, the reference con-
figuration r̃si(t) (i = 1, . . . ,5) in Eq. (34) spends 0.818 16 ns
to complete the movement of the geometric somersault or
rigid-body rotation. We set a dwell time of 0.136 36 ns
before and after the movement of the reference configuration
r̃si(t) (i = 1, . . . ,5) for both the geometric somersault and
the rigid-body rotation. During the dwell time, the reference
configuration r̃si(t) (i = 1, . . . ,5) is fixed in the space to keep
the configuration of the five-bead polymer chain near the
planar uniformly bent equilibrium conformation, where θ1 =
θ2 = θ3 = 30◦ and φ1 = φ2 = 0◦. Thus, the total time duration
is 0.13636 + 0.81816 + 0.13636 = 1.09088 ns for both the
geometric somersault and rigid-body rotation. Figure 4 shows
the time evolutions of the polymer chain in the Langevin
dynamics observed from the negative ys axis of the space-fixed
frame for the (a) geometric somersault and (b) rigid-body
rotation. See Movies 3 and 4 in Supplemental Material [72] for
the motions of the polymer chain for the geometric somersault

FIG. 5. Upper two panels show the projections of the trajectories
of the third (central) bead of the five-bead polymer chain r s3 on the x-y
plane in the Langevin dynamics for the (a) geometric somersault and
(b) rigid-body rotation. Lower two panels show the corresponding
trajectories in the space of dihedral angles in the (c) geometric
somersault and (d) rigid-body rotation.

(Movie 3) and rigid-body rotation (Movie 4) in the Langevin
dynamics.

Figures 5(a) and 5(b) show the projections of the trajectories
of the third (central) bead of the polymer chain rs3 on
the xs-ys plane for the (a) geometric somersault and (b)
rigid-body rotation in the Langevin dynamics. In the case
of geometric somersault in Fig. 5(a), the trajectory of the
third bead essentially follows the trajectory in Fig. 3(c) for
the first cycle of twisting motion with random fluctuations. In
the case of rigid-body rotation in Fig. 5(b), the third bead
follows the circle centered at (xs,ys) = (0,0) with random
fluctuations. In both Figs. 5(a) and 5(b), the third (central)
bead changes its orientation about the zs axis by 120◦. This
indicates that the movement of the reference configuration
r̃si(t) (i = 1, . . . ,5) has successfully guided the movement of
the five-bead polymer chain through the potential of Eq. (34)
for both the geometric somersault and rigid-body rotation.
Because of the dwell times of 0.136 36 ns before and after
the movements of the reference configuration, the beginning
and ending portions of the trajectories in Figs. 5(a) and 5(b)
are slightly denser and fluctuate wider than the intermediate
portions.

Figures 5(c) and 5(d) show the evolutions of the two
dihedral angles φ1 and φ2 of the five-bead polymer chain
in the (c) geometric somersault and (d) rigid-body rotation
corresponding to Figs. 5(a) and 5(b), respectively. In the case
of geometric somersault in Fig. 5(c), the two dihedral angles φ1

and φ2 essentially follow the circular path (i) in Fig. 1(b) with
random fluctuations, starting from and returning to the origin
(φ1,φ2) = (0◦,0◦). The overall shape of the path in Fig. 5(c)
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is slightly deformed from the complete circle mainly because
of the internal potentials of the five-bead polymer chain and
friction. In the case of rigid-body rotation in Fig. 5(d), the two
dihedral angles φ1 and φ2 keep fluctuating in the vicinity of the
origin (φ1,φ2) = (0◦,0◦) throughout the Langevin dynamics.
This indicates that the polymer chain has rotated by 120◦ like a
rigid body with almost keeping its equilibrium conformation.
Thus, Figs. 5(c) and 5(d) confirm that the movements of the
reference configuration r̃si(t) (i = 1, . . . ,5) have successfully
guided the prescribed geometric somersault and rigid-body
rotation, respectively.

As a fundamental dynamical quantity to characterize the
difference between the geometric somersault and rigid-body
rotation, we investigate the time evolutions of total angular
momentum of the system with respect to the space-fixed frame

Lo
s =

5∑
i=1

mi rsi × ṙsi (43)

in the Langevin dynamics. This quantity Lo
s is slightly different

from the total angular momentum in Eq. (13) in that the former
is about the origin of the space while the latter is about the
center of mass of the chain. We also investigate the time
evolution of total torque of the external driving force about
the origin, i.e., total external torque,

T o
s =

5∑
i=1

rsi ×
(

−∂Vext({rsi},t)
∂ rsi

)
, (44)

where Vext({rsi},t) is the time-dependent external potential in
Eq. (34).

Figure 6 shows the typical time evolutions of the three
components of total angular momentum of the polymer chain
Lo

s ≡ (Lo
sx,L

o
sy,L

o
sz)

T and the three components of total torque
of the external driving force T o

s ≡ (T o
sx,T

o
sy,T

o
sz)

T for the (a)
geometric somersault and (b) rigid-body rotation. In each
panel of Fig. 6, the two vertical broken lines at t = 0.136 36
and 0.954 52 ns represent the beginning and ending of the
movement of the reference configuration r̃si(t) (i = 1, . . . ,5)
in Eq. (34). Since each component of total angular momentum
and total torque fluctuates largely in Fig. 6, we have also plotted
time- and ensemble-averaged evolution of each component
with thick horizontal line (yellow) in each panel. Here, the
averaging procedure is as follows. We first divide the total
time duration of 1.090 88 ns into eight equal time windows of
1.090 88/8 = 0.136 36 ns, where the first and the eighth time
windows correspond to the dwell times, while the reference
configuration of the external potential moves from the second
to seventh time windows. We then average each component
of Fig. 6 with respect to time in each time window. Since this
time-averaged component still generally shows relatively large
fluctuations, we further average this time-averaged component
over 50 trajectories for each time window. In each panel of
Fig. 6, the averaged value is plotted as a thick horizontal line
(yellow) in each time window.

We see from Fig. 6 that all the components of Lo
s and T o

s

more or less fluctuate around zero and are averaged to zero
in the case of geometric somersault in (a). In other words, the
system achieves an orientation change by 120◦ with keeping its
total angular momentum and total torque of the external driving

force fluctuating around zero. This is a prominent feature of
the geometric somersault in a noisy and viscous environment.

In the case of rigid-body rotation in Fig. 6(b), zs component
of the total angular momentum Lo

sz and that of the total
torque T o

sz show systematic deviations from zero, fluctuating
around and averaged to nonzero values [see the two panels
at the bottom of Fig. 6(b)]. On the other hand, the xs and
ys components, Lo

sx, Lo
sy and T o

sx, T o
sy , more or less fluctuate

around zero and are averaged to zero [see the upper four panels
of Fig. 6(b)]. This is consistent with the standard picture
of rigid-body rotation, which generally incurs nonzero total
angular momentum and nonzero total external torque about
the rotational axis, which is the zs axis in the present case.

In both Figs. 6(a) and 6(b), the widths of fluctuations
of Lo

sz and T o
sz are smaller than those of other components.

This is because the component of moment of inertia tensor
of the polymer chain about the zs axis is generally smaller
than that about the xs and ys axis. In addition, in the case of
geometric somersault in Fig. 6(a), the widths of fluctuations
of Lo

sz and T o
sz become even narrower during the course of

geometric somersault. This reflects the fact that the system
takes elongated conformations along the zs axis in the course
of geometric somersault as is observed in Fig. 4(a).

D. Comparison between geometric somersault and rigid-body
rotation: Power profiles

In Sec. III C, we have evidenced that the five-bead polymer
chain can change its orientation by 120◦ keeping its total
angular momentum and total external torque fluctuating
around zero in the case of geometric somersault. On the other
hand, the rigid-body rotation incurs nonzero total angular
momentum and nonzero total external torque. These results
indicate that, in the geometric somersault, the work of the
external driving force is mostly consumed for deformation,
especially for twisting, of the polymer chain while in the
rigid-body rotation, the work of the external force is mostly
consumed for the pure rotation of the polymer chain. Such
energetic arguments are of large interest from the viewpoint of
energetics of molecular motors. We thus investigate here time
evolutions of the power of the external driving forces supplied
to the polymer chain

P =
5∑

i=1

ṙsi ·
[
−∂Vext({rsi},t)

∂ rsi

]
, (45)

which is a scalar quantity, for both the geometric somersault
and rigid-body rotation.

Upper two panels of Fig. 7 show the time evolutions of the
power defined in Eq. (45) for the (a) geometric somersault and
(b) rigid-body rotation, which correspond to the same time
evolutions as in Fig. 6. As these two panels indicate, the power
fluctuates largely in single time evolutions. We thus average
them with respect to time and ensemble of trajectories in the
same manner as in Fig. 6. The lower two panels of Fig. 7 show
thus averaged evolutions of the power for the (c) geometric
somersault and (d) rigid-body rotation.

We see from Figs. 7(c) and 7(d) that the power profiles
are quite different for the (c) geometric somersault and (d)
rigid-body rotation. In the geometric somersault in Fig. 7(c),
the power is positive during the first half of the evolution while
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FIG. 6. Time evolutions of the three components of total angular momentum (cyan) Lo
s ≡ (Lo

sx,L
o
sy,L

o
sz)

T and total torque of the external
driving force (magenta) T o

s ≡ (T o
sx,T

o
sy,T

o
sz)

T in the Langevin dynamics for the (a) geometric somersault and (b) rigid-body rotation. In each
panel, two vertical broken lines at t = 0.136 36 and 0.954 52 ns represent the beginning and ending of the movements of the reference
configuration r̃ si(t) in Eq. (34). Thick horizontal line (yellow) in each panel represents time- and ensemble-averaged evolution of each quantity.
Notice that all the time evolutions in (a) more or less fluctuate around zero and are averaged to zero, while the time evolutions of Lo

sz and T o
sz

at the bottom of (b) show systematic deviations from zero during the movement of the reference configuration.

FIG. 7. Upper two panels show time evolutions of the power
of the external driving force P defined in Eq. (45), in the Langevin
dynamics for the (a) geometric somersault and (b) rigid-body rotation.
Lower two panels show time- and ensemble-averaged time evolutions
of the power for the (c) geometric somersault and (d) rigid-body
rotation.

it is negative during the last half of the evolution. The positive
power originates mainly from the work of the external driving
forces to generate twists in the two dihedral angles against
the twisting potential in Eq. (32) from about (φ1,φ2) = (0◦,0◦)
to about (φ1,φ2) = (−142◦,−142◦) along the first half of the
trajectory in Fig. 5(c). The positive power also reflects the work
of the external driving forces to move the polymer chain against
friction. On the other hand, the negative power in Fig. 7(c)
arises when the dihedral angles of the polymer chain release the
accumulated twisting energy from about (φ1,φ2) = (−142◦, −
142◦) to about (φ1,φ2) = (0◦,0◦) along the last half of the
trajectory in Fig. 5(c). This negative power indicates that the
polymer chain relaxes the twisting strain almost spontaneously
without much relying on the steering of the external driving
force. To summarize the entire process of Fig. 7(c), the external
driving force first supplies energy to the polymer chain, and
the polymer chain stores this energy mainly in the form of
the twisting potential energy, and finally the polymer chain
releases this energy to outside actively. By integrating the
averaged power with time for the first half of Fig. 7(c), we
see that the energy supplied by the external driving force to
the polymer chain is about 880 pNnm. On the other hand, by
integrating the averaged power with time for the last half of
Fig. 7(c), we see that the energy released by the polymer chain
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to outside is about −210 pNnm. Thus, the total dissipated
energy in the geometric somersault is estimated to be about
670 pNnm.

In the case of rigid-body rotation in Fig. 7(d), the averaged
power is always positive and is almost constant during the
movement of the reference configuration. This indicates that
the external driving force needs to supply energy continuously
in order to rotate the polymer chain with an almost constant
angular velocity against friction. By integrating the averaged
power in Fig. 7(d) with time for the whole time span, we see
that the total energy supplied by the external driving force is
about 320 pNnm. This amount of energy is smaller than the
total supplied energy of 880 pNnm in the geometric somersault
in Fig. 7(c) mainly because the external driving forces do not
need to supply energy to deform the polymer chain in the case
of rigid-body rotation.

In both the geometric somersault and rigid-body rotation,
the velocity of moving the beads of the polymer chain is
a decisive factor to determine the power and total supplied
energy. Since friction is proportional to the velocity of beads,
one can generally reduce the power and total supplied energy of
the external driving forces by reducing the velocity of reference
configuration and spending more time for the same amount of
angle shift. Moreover, in the case of geometric somersault,
the polymer chain can release more energy to outside if the
movement of the reference configuration is slower. This is
because when the movement of the reference configuration
is slower, the polymer chain relaxes its twisting strain more
spontaneously without much relying on the steering of the
external driving forces. On the other hand, when the movement
of the reference configuration is fast and dominates the
movement of the polymer chain, relaxation of the twisting
strain of the polymer chain becomes passive and cannot give
much energy to outside. Thus, one can generally expect a
higher ratio of released energy to supplied energy, i.e., a higher
efficiency, by moving the reference configuration more slowly.

E. Discussion: Implications for the rotary motion of the central
shaft of FOF1-ATPase

We finally discuss implications of the geometric somersault
of the five-bead polymer chain studied in this study for the
rotary motion of the central shaft of FOF1-ATPase. While the
standard picture for the rotary motion of the central shaft
of FOF1-ATPase may be more or less like the rigid-body
rotation studied in Figs. 4(b), 5(b), 5(d), 6(b), 7(b) and 7(d),
we argue here that the actual motion of the central shaft
could be rather like the geometric somersault studied in
Figs. 3, 4(a), 5(a), 5(c), 6(a), 7(a) and 7(c).

Figure 8(a) shows a schematic illustration of FOF1-ATPase.
The FO domain of this molecular motor is embedded in
the membrane, while the F1 domain is protruded from the
membrane. These two domains are connected with the central
rotary shaft, the so-called “central rotor,” which consists
of γ , ε, and c subunits [55,63], as colored in green in
Fig. 8(a). This central rotary shaft is surrounded by the α3β3

complex in the F1 domain. The peripheral part consisting of
a, b, and δ is considered to serve as a static “stator stalk”
preventing corotation of the α3β3 complex with the central
rotary shaft [63,81]. The FO and F1 domains drive rotary

FIG. 8. (a) Schematic illustration of FOF1-ATPase, where the
colored subunits (green) γ, ε, and c constitute the central rotary shaft,
the so-called “central rotor” [55,63]. Different arrowheads correspond
to different functions, i.e., ATP hydrolysis and ATP synthesis. (b) The
present model of the five-bead polymer chain may coarsely serve as
a prototypical model of the central rotary shaft of FOF1-ATPase.

motions of the central shaft in opposite directions, which
are associated with opposite functions: Hydrolysis of ATP
in the F1 domain induces a stepwise rotary motion of the
central shaft by 120◦ in a counterclockwise manner (when
observed from the membrane side), which is supposed to
transmit energy to the FO domain to translocate protons across
the membrane [55]. The actual stepwise rotary motion by
120◦ is known to consist of two substeps [5,56,57]. On the
other hand, proton-motive force at FO domain due to proton
translocation across the membrane induces a rotary motion of
the central shaft in a clockwise manner (when observed from
the membrane side) [58–60], which is supposed to transmit
energy to the F1 domain to synthesize ATP [55,61].

The clockwise and counterclockwise rotary motions of
the central shaft of FOF1-ATPase may be modeled coarsely
by the geometric somersault of the five-bead polymer chain
of this study as follows after disregarding the details of
structures and substep motions. We first suppose that the
dihedral angle φ1 of the present model of the polymer chain
roughly corresponds to the F1 side of the central shaft, while
the dihedral angle φ2 roughly corresponds to the FO side of the
central shaft [see Fig. 8(b)]. In the geometric somersaults in
Figs. 3, 4(a), 5(a), 5(c), 6(a), 7(a), and 7(c), which all stem from
the cyclic twisting motion of path (i) in Fig. 1(b), the dihedral
angles generate mainly left-handed twists in the sequential
order of φ1 and φ2, and then they revert back to zero in the
same order. After this cyclic twisting motion, the polymer
chain changes its orientation by 120◦ in a counterclockwise
manner when observed from above in Fig. 8(b). This type of
geometric somersault could take place in the central shaft of the
FOF1-ATPase upon ATP hydrolysis in the following scenario.

In ATP hydrolysis, the F1 portion of the central shaft
receives driving forces from the surrounding subunits α

and β, where ATP hydrolysis actually takes place [see
Fig. 8(a)] [4,64,76,77]. These driving forces might induce a
left-handed twist in the F1 portion of the central shaft first.
Such left-handed twist in the F1 portion may propagate to the
FO portion through the internal elastic coupling and induce
a left-handed twist in the FO portion of the central shaft as
well. Then, the induced left-handed twists in the F1 and FO
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portions of the central shaft may finally relax in this order.
In this manner, the central shaft of the FOF1-ATPase may
complete a cyclic twisting motion like path (i) in Fig. 1(b)
upon ATP hydrolysis. If this is the case, the central shaft of the
FOF1-ATPase can undergo a geometric somersault by 120◦ in a
counterclockwise manner (when observed from the membrane
side) as Figs. 3, 4(a), 5(a) and 5(c) have indicated.

We can also argue that the clockwise angle shift of the
central shaft of the FOF1-ATPase in ATP synthesis might be
like the geometric somersault of the present polymer chain
model induced by the cyclic twisting motion of path (ii) in
Fig. 1(b), which is the reverse of path (i), as follows. In ATP
synthesis, the FO portion of the central shaft receives driving
forces first since the proton translocation takes place in the FO

domain [see Fig. 8(a)] [55,59,60]. These driving forces might
induce a left-handed twist in the FO portion of the central shaft
first. Such left-handed twist in the FO portion may propagate to
the F1 portion through the internal elastic coupling and induce
a left-handed twist in the F1 portion of the central shaft as
well. Then, the induced left-handed twists in the FO and F1

portions of the central shaft may finally relax in this order.
In this manner, the central shaft of the FOF1-ATPase may
complete a cyclic twisting motion like path (ii) in Fig. 1(b)
upon ATP synthesis. If this is the case, the central shaft of
the FOF1-ATPase can undergo a geometric somersault in a
clockwise manner (when observed from the membrane side)
as the row (ii) of Table I has indicated.

It should be noted that, in the above scenarios for ATP
hydrolysis and synthesis, there are mainly two basic assump-
tions. The first is the propagation of twists in the central shaft
from F1 to FO for ATP hydrolysis and from FO to F1 for ATP
synthesis. The present model of five-bead polymer chain does
not possess the internal mechanism for such propagation of
twists between the two dihedral angles φ1 and φ2. That is, in
the geometric somersault in vacuum in Fig. 3, we have just
assumed the prescribed changes in φ1 and φ2, and have not
specified the driving forces. In the geometric somersault in
the Langevin dynamics in Figs. 4(a), 5(a), 5(c), 6(a), 7(a),
and 7(c), on the other hand, the external driving forces have
completely guided the twisting motion. Thus, in order for
the present model to be more consistent with the picture of
elastic power transmission suggested by the mismatch of the
rotational symmetries of FO and F1 domains [55,60,62–64], it
would be necessary to introduce an elastic coupling between
φ1 and φ2, which mediates the propagation of twists between
these two dihedral angles. Such internal mechanism for twist
propagation would reduce the total amount of mechanical work
of the external driving forces in Fig. 7(c). Given the fact that
the central shaft of FOF1-ATPase consists of a long coiled
coil [2] and is torsionally compliant [55,63,64], the present
assumption of twist propagation seems to be possible. Once
the mechanism for twist propagation is established, the present
model of geometric somersault may provide a basis for the
picture that local interactions between the central shaft and the
surrounding subunits [76,77] can induce the global angle shift
in the narrow cavity of the molecular motor.

The second basic assumption in the above scenarios for
ATP hydrolysis and synthesis is the left-handedness of induced
twists in both F1 and FO portions of the central shaft. The
left-handedness of twists seems to be necessary in order for

the present model of geometric somersault to be consistent
with reality: If the two dihedral angles were to generate
right-handed twists in the order of φ1 and φ2, and then
revert back to zero in the same order upon ATP hydrolysis,
the central shaft would undergo a geometric somersault in a
clockwise manner according to the row (iii) of Table I, which is
inconsistent with the actual counterclockwise angle shift of the
central shaft [3–5]. Similarly, if the two dihedral angles were
to generate right-handed twists in the order of φ2 and φ1, and
then revert back to zero in the same order upon ATP synthesis,
the central shaft would undergo a geometric somersault in a
counterclockwise manner according to the row (iv) of Table I,
which is inconsistent with the actual clockwise angle shift of
the central shaft [55,58–60]. Thus, in Table I, the rows (i) and
(ii) give the most plausible models for the rotary motions of the
central shaft for ATP hydrolysis and synthesis, respectively.

Finally, we note another motivation for considering the
geometric somersault of the central shaft in the function of
FOF1-ATPase from the viewpoint of the transfer (balance)
of angular momentum and torque. If the central shaft were
to possess nonzero total angular momentum due to nonzero
total torque supplied by the surrounding subunits as in the
rigid-body rotation, the surrounding subunits would inevitably
tend to rotate as a whole in the opposite direction as a result
of the reaction torque. For example, in ATP hydrolysis, if the
α3β3 complex were to apply nonzero total torque on the central
shaft and the central shaft were to rotate as a rigid body, the
α3β3 complex would tend to rotate in the opposite direction
due to the reaction torque. If this is the case, the “stator stalk”
domain, a, b, and δ in Fig. 8(a), would be subject to a strong
mechanical load to prevent the corotation of the α3β3 complex,
which could lead to a dissipation of energy. On the other hand,
if the central shaft undergoes a geometric somersault without
causing total angular momentum or total torque, the α3β3

complex would receive no reaction torque and the mechanical
load on the “stator stalk” domain could be small, preventing
energy dissipation.

IV. CONCLUDING REMARKS

This study has explored the significance of geometric angle
shifts, which we have called geometric somersaults, arising
from cyclic twisting motions of a polymer chain both in
vacuum and in a noisy and viscous environment. A five-bead
polymer chain has served as a simple model of a molecular
shaft. We have demonstrated that this polymer chain can
undergo a geometric somersault about its longitudinal axis
largely, e.g., 120◦, under conditions of zero total angular
momentum in vacuum by changing the two dihedral angles
in a cyclic manner. We have then extended this model to a
noisy and viscous environment, where the polymer chain is
driven by external driving forces and achieves an orientation
change keeping its total angular momentum and total torque
of the external driving forces fluctuating around zero.

As an application, we have argued that the geometric
somersault of the five-bead polymer chain by 120◦ may
serve as a prototypical model for the rotary motion of the
central shaft of ATP synthase (FOF1-ATPase). As Fig. 6 has
indicated, the model of geometric somersault has been in
clear contrast to the standard picture for the rotary motion
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of the central shaft of FOF1-ATPase, which is more or less
like a “rigid-body rotation” incurring nonzero total angular
momentum and nonzero total torque of external driving forces.
The model of geometric somersault has implied, in Fig. 7(c), a
preliminary mechanism for elastic power transmission, where
the external driving forces first supply energy to the central
shaft, and then the central shaft stores this energy mainly
in the form of twisting potential energy, and finally releases
this energy to outside spontaneously. We have noted that
at least two fundamental assumptions need to be tested in
order for the present model of geometric somersault to be
acceptable: the first has been the propagation of twists through
the central shaft, and the second has been the left-handedness
of twists arising and propagating in the central shaft. Finer
scale analyses at the level of tertiary or secondary structures
of FOF1-ATPase would judge these assumptions.

This study has aimed at developing a minimal model of a
polymer chain that can achieve a geometric somersault by 120◦
about its longitudinal axis. Our initial study on a four-bead
polymer chain, which has only one dihedral angle and two
bending angles, indicated a difficulty in achieving a geometric
somersault by 120◦ about its longitudinal axis. Thus, the five-
bead polymer chain of this study, having two dihedral angles,
seems to be a minimal model that achieves the goal. This result
suggests that the central shaft of FOF1-ATPase must have at
least two torsionally compliant parts in order for the geometric
somersault to take place in its actual function. Using the two
dihedral angles of the five-bead polymer chain, it is not difficult
to design geometric somersaults by, e.g., 80◦ and 40◦, which
may serve as the models for the substep rotary motions of the
central shaft of FOF1-ATPase [5,56,57]. In reality, however,
the central shaft of FOF1-ATPase may have more torsional
degrees of freedom. If this is the case, the amount of twist of
each torsional degree of freedom can be smaller than those of
the five-bead polymer chain to achieve a geometric somersault
by 120◦. Moreover, a model with more torsional degrees of
freedom can achieve wider varieties of geometric somersaults,
which may be useful to model the rotary shaft of FOF1-ATPase
more finely.

The total amount of supplied energy in the geometric
somersault of the five-bead polymer chain, about 880 pNnm
according to Fig. 7(c), has been higher than that in the
rigid-body rotation, about 320 pNnm according to Fig. 7(d).
This does not necessarily mean that the rigid-body rotation
is energetically more advantageous than the geometric som-
ersault. In the narrow cavity of FOF1-ATPase, a rigid-body
rotation of the central shaft may face steric hindrances as was
pointed out in Ref. [65], which may incur an additional energy.

On the other hand, a motion like the geometric somersault,
which consists of local twists and relaxations of the shaft, may
be more suitable in the narrow cavity of FOF1-ATPase.

In order for the model of geometric somersault to be more
realistic, it is also important to reduce the total amount of
supplied energy up to the experimentally estimated value of
80 pNnm [11], which is known to be almost the same as
the free energy of hydrolysis of one ATP. There are several
ways to reduce the required energy of the present model.
For one thing, reducing the force constant for twisting, ktwist

in Eq. (32), will reduce the supplied energy to achieve the
geometric somersault. For another, reducing the velocity of
moving the beads will also reduce the supplied energy. Finally,
as discussed in Sec. III E, introducing an elastic coupling
between the two dihedral angles would reduce the energy
supplied by the external driving forces. In a more realistic
model, external driving forces first generate a twist in one side
of the shaft, then this twist propagates to the other side of
the shaft through the internal elastic coupling, and the shaft
finally releases energy or achieves a mechanical work when
these twists relax. In order to build such a model, fine tuning
of torsional rigidity, moving velocities, and elastic coupling of
the shaft would be important. The relation among molecular
flexibility, moving velocities, and motor efficiency is of crucial
importance for the understanding of the dynamics of molecular
motors [9,82,83].

Geometric somersaults of this study may imply a rather uni-
versal significance of the kinematic coupling between twisting
motions and rotations in chainlike systems. That is, a chainlike
system can easily change its orientation just by propagating
and relaxing a twist from one side to the other without using
total angular momentum or external torque. This type of twist
propagation and the resulted geometric somersaults may be of
fundamental significance among biological systems, given the
fact that biomolecules are typically helical, i.e., intrinsically
twisted. Exploring the roles of geometric somersaults in the
functions of flagella [6–9] as well as in the swimming of
helically shaped bacteria [74,75] is of significant interest for
future studies.
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(1984).

[37] A. Tachibana and T. Iwai, Phys. Rev. A 33, 2262 (1986).
[38] T. Iwai, Ann. Inst. Henri Poincaré Phys. Theor. 47, 199
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